1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Jia Pan */
#include <gtest/gtest.h>
#include "fcl/narrowphase/detail/traversal/collision_node.h"
#include "test_fcl_utility.h"
#include "eigen_matrix_compare.h"
#include "fcl_resources/config.h"
// TODO(SeanCurtis-TRI): A file called `test_fcl_distance.cpp` should *not* have
// collision tests.
using namespace fcl;
bool verbose = false;
template <typename S>
S DELTA() { return 0.001; }
template<typename BV>
void distance_Test(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method,
int qsize,
test::DistanceRes<typename BV::S>& distance_result,
bool verbose = true);
template <typename S>
bool collide_Test_OBB(const Transform3<S>& tf,
const std::vector<Vector3<S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose);
template<typename BV, typename TraversalNode>
void distance_Test_Oriented(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method,
int qsize,
test::DistanceRes<typename BV::S>& distance_result,
bool verbose = true);
template <typename S>
bool nearlyEqual(const Vector3<S>& a, const Vector3<S>& b)
{
if(fabs(a[0] - b[0]) > DELTA<S>()) return false;
if(fabs(a[1] - b[1]) > DELTA<S>()) return false;
if(fabs(a[2] - b[2]) > DELTA<S>()) return false;
return true;
}
template <typename S>
void test_mesh_distance()
{
std::vector<Vector3<S>> p1, p2;
std::vector<Triangle> t1, t2;
test::loadOBJFile(TEST_RESOURCES_DIR"/env.obj", p1, t1);
test::loadOBJFile(TEST_RESOURCES_DIR"/rob.obj", p2, t2);
aligned_vector<Transform3<S>> transforms; // t0
S extents[] = {-3000, -3000, 0, 3000, 3000, 3000};
#ifdef NDEBUG
std::size_t n = 10;
#else
std::size_t n = 1;
#endif
test::generateRandomTransforms(extents, transforms, n);
double dis_time = 0;
double col_time = 0;
test::DistanceRes<S> res, res_now;
for(std::size_t i = 0; i < transforms.size(); ++i)
{
test::Timer timer_col;
timer_col.start();
collide_Test_OBB(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
timer_col.stop();
col_time += timer_col.getElapsedTimeInSec();
test::Timer timer_dist;
timer_dist.start();
distance_Test_Oriented<RSS<S>, detail::MeshDistanceTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 2, res, verbose);
timer_dist.stop();
dis_time += timer_dist.getElapsedTimeInSec();
distance_Test_Oriented<RSS<S>, detail::MeshDistanceTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<RSS<S>, detail::MeshDistanceTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<RSS<S>, detail::MeshDistanceTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<RSS<S>, detail::MeshDistanceTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<RSS<S>, detail::MeshDistanceTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<kIOS<S>, detail::MeshDistanceTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<kIOS<S>, detail::MeshDistanceTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<kIOS<S>, detail::MeshDistanceTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<kIOS<S>, detail::MeshDistanceTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<kIOS<S>, detail::MeshDistanceTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<kIOS<S>, detail::MeshDistanceTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<OBBRSS<S>, detail::MeshDistanceTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<OBBRSS<S>, detail::MeshDistanceTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<OBBRSS<S>, detail::MeshDistanceTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<OBBRSS<S>, detail::MeshDistanceTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<OBBRSS<S>, detail::MeshDistanceTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test_Oriented<OBBRSS<S>, detail::MeshDistanceTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 2, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
distance_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, 20, res_now, verbose);
EXPECT_TRUE(fabs(res.distance - res_now.distance) < DELTA<S>());
EXPECT_TRUE(fabs(res.distance) < DELTA<S>() || (res.distance > 0 && nearlyEqual(res.p1, res_now.p1) && nearlyEqual(res.p2, res_now.p2)));
}
std::cout << "distance timing: " << dis_time << " sec" << std::endl;
std::cout << "collision timing: " << col_time << " sec" << std::endl;
}
GTEST_TEST(FCL_DISTANCE, mesh_distance)
{
// test_mesh_distance<float>();
test_mesh_distance<double>();
}
template <typename S>
void NearestPointFromDegenerateSimplex() {
// Tests a historical bug. In certain configurations, the distance query
// would terminate with a degenerate 3-simplex; the triangle was actually a
// line segment. As a result, nearest points were populated with NaN values.
// See https://github.com/flexible-collision-library/fcl/issues/293 for
// more discussion.
// This test is only relevant if box-box distance is computed via GJK. We
// intentionally short-circuit the mechanism for dispatching custom methods
// to guarantee GJK is evaluated on these two boxes.
DistanceResult<S> result;
DistanceRequest<S> request;
// These values were extracted from a real-world scenario that produced NaNs.
std::shared_ptr<CollisionGeometry<S>> box_geometry_1(
new Box<S>(2.750000, 6.000000, 0.050000));
std::shared_ptr<CollisionGeometry<S>> box_geometry_2(
new Box<S>(0.424000, 0.150000, 0.168600));
CollisionObject<S> box_object_1(
box_geometry_1, Eigen::Quaterniond(1, 0, 0, 0).matrix(),
Eigen::Vector3d(1.625000, 0.000000, 0.500000));
CollisionObject<S> box_object_2(
box_geometry_2,
Eigen::Quaterniond(0.672811, 0.340674, 0.155066, 0.638138)
.normalized()
.matrix(),
Eigen::Vector3d(0.192074, -0.277870, 0.273546));
// Direct invocation.
// NOTE: This code is basically lifted from ShapeDistanceLibccdImpl::run() in
// gjk_solver_libbd-inl.h.
Box<S>* box1 = static_cast<Box<S>*>(box_geometry_1.get());
Box<S>* box2 = static_cast<Box<S>*>(box_geometry_2.get());
detail::GJKSolver_libccd<S> solver;
void* o1 = detail::GJKInitializer<S, Box<S>>::createGJKObject(
*box1, box_object_1.getTransform());
void* o2 = detail::GJKInitializer<S, Box<S>>::createGJKObject(
*box2, box_object_2.getTransform());
detail::GJKDistance(
o1, detail::GJKInitializer<S, Box<S>>::getSupportFunction(), o2,
detail::GJKInitializer<S, Box<S>>::getSupportFunction(),
solver.max_distance_iterations, request.distance_tolerance,
&result.min_distance, &result.nearest_points[0],
&result.nearest_points[1]);
detail::GJKInitializer<S, Box<S>>::deleteGJKObject(o1);
detail::GJKInitializer<S, Box<S>>::deleteGJKObject(o2);
// These hard-coded values have been previously computed and visually
// inspected and considered to be the ground truth for this very specific
// test configuration.
S expected_dist{0.053516162824549};
// The "nearest" points (N1 and N2) measured and expressed in box 1's and
// box 2's frames (B1 and B2, respectively).
const Vector3<S> expected_p_B1N1{-1.375, -0.098881502700918666,
-0.025000000000000022};
const Vector3<S> expected_p_B2N2{0.21199965773384655, 0.074999692703297122,
0.084299993303443954};
// The nearest points in the world frame.
const Vector3<S> expected_p_WN1 =
box_object_1.getTransform() * expected_p_B1N1;
const Vector3<S> expected_p_WN2 =
box_object_2.getTransform() * expected_p_B2N2;
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], expected_p_WN1,
DELTA<S>(), MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], expected_p_WN2,
DELTA<S>(), MatrixCompareType::absolute));
EXPECT_NEAR(expected_dist, result.min_distance,
constants<ccd_real_t>::eps_78());
}
GTEST_TEST(FCL_DISTANCE, NearestPointFromDegenerateSimplex) {
NearestPointFromDegenerateSimplex<double>();
}
template<typename BV, typename TraversalNode>
void distance_Test_Oriented(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method,
int qsize,
test::DistanceRes<typename BV::S>& distance_result,
bool verbose)
{
using S = typename BV::S;
BVHModel<BV> m1;
BVHModel<BV> m2;
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m1.beginModel();
m1.addSubModel(vertices1, triangles1);
m1.endModel();
m2.beginModel();
m2.addSubModel(vertices2, triangles2);
m2.endModel();
DistanceResult<S> local_result;
TraversalNode node;
if(!initialize(node, (const BVHModel<BV>&)m1, tf, (const BVHModel<BV>&)m2, Transform3<S>::Identity(), DistanceRequest<S>(true), local_result))
std::cout << "initialize error" << std::endl;
node.enable_statistics = verbose;
distance(&node, nullptr, qsize);
// points are in local coordinate, to global coordinate
Vector3<S> p1 = local_result.nearest_points[0];
Vector3<S> p2 = local_result.nearest_points[1];
distance_result.distance = local_result.min_distance;
distance_result.p1 = p1;
distance_result.p2 = p2;
if(verbose)
{
std::cout << "distance " << local_result.min_distance << std::endl;
std::cout << p1[0] << " " << p1[1] << " " << p1[2] << std::endl;
std::cout << p2[0] << " " << p2[1] << " " << p2[2] << std::endl;
std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
}
}
template<typename BV>
void distance_Test(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method,
int qsize,
test::DistanceRes<typename BV::S>& distance_result,
bool verbose)
{
using S = typename BV::S;
BVHModel<BV> m1;
BVHModel<BV> m2;
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m1.beginModel();
m1.addSubModel(vertices1, triangles1);
m1.endModel();
m2.beginModel();
m2.addSubModel(vertices2, triangles2);
m2.endModel();
Transform3<S> pose1(tf);
Transform3<S> pose2 = Transform3<S>::Identity();
DistanceResult<S> local_result;
detail::MeshDistanceTraversalNode<BV> node;
if(!detail::initialize<BV>(node, m1, pose1, m2, pose2, DistanceRequest<S>(true), local_result))
std::cout << "initialize error" << std::endl;
node.enable_statistics = verbose;
distance(&node, nullptr, qsize);
distance_result.distance = local_result.min_distance;
distance_result.p1 = local_result.nearest_points[0];
distance_result.p2 = local_result.nearest_points[1];
if(verbose)
{
std::cout << "distance " << local_result.min_distance << std::endl;
std::cout << local_result.nearest_points[0][0] << " " << local_result.nearest_points[0][1] << " " << local_result.nearest_points[0][2] << std::endl;
std::cout << local_result.nearest_points[1][0] << " " << local_result.nearest_points[1][1] << " " << local_result.nearest_points[1][2] << std::endl;
std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
}
}
template <typename S>
bool collide_Test_OBB(const Transform3<S>& tf,
const std::vector<Vector3<S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose)
{
BVHModel<OBB<S>> m1;
BVHModel<OBB<S>> m2;
m1.bv_splitter.reset(new detail::BVSplitter<OBB<S>>(split_method));
m2.bv_splitter.reset(new detail::BVSplitter<OBB<S>>(split_method));
m1.beginModel();
m1.addSubModel(vertices1, triangles1);
m1.endModel();
m2.beginModel();
m2.addSubModel(vertices2, triangles2);
m2.endModel();
CollisionResult<S> local_result;
detail::MeshCollisionTraversalNodeOBB<S> node;
if(!detail::initialize(node, (const BVHModel<OBB<S>>&)m1, tf, (const BVHModel<OBB<S>>&)m2, Transform3<S>::Identity(),
CollisionRequest<S>(), local_result))
std::cout << "initialize error" << std::endl;
node.enable_statistics = verbose;
collide(&node);
if(local_result.numContacts() > 0)
return true;
else
return false;
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
|