1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Jia Pan */
#include <gtest/gtest.h>
#include "fcl/config.h"
#include "fcl/geometry/octree/octree.h"
#include "fcl/geometry/geometric_shape_to_BVH_model.h"
#include "fcl/narrowphase/collision.h"
#include "fcl/broadphase/broadphase_bruteforce.h"
#include "fcl/broadphase/broadphase_spatialhash.h"
#include "fcl/broadphase/broadphase_SaP.h"
#include "fcl/broadphase/broadphase_SSaP.h"
#include "fcl/broadphase/broadphase_interval_tree.h"
#include "fcl/broadphase/broadphase_dynamic_AABB_tree.h"
#include "fcl/broadphase/broadphase_dynamic_AABB_tree_array.h"
#include "fcl/broadphase/default_broadphase_callbacks.h"
#include "test_fcl_utility.h"
#include "fcl_resources/config.h"
using namespace fcl;
/// @brief Octomap distance with an environment with 3 * env_size objects
template <typename S>
void octomap_distance_test(S env_scale, std::size_t env_size, bool use_mesh, bool use_mesh_octomap, double resolution = 0.1);
template<typename BV>
void octomap_distance_test_BVH(std::size_t n, double resolution = 0.1);
template <typename S>
void test_octomap_distance()
{
#ifdef NDEBUG
octomap_distance_test<S>(200, 100, false, false);
octomap_distance_test<S>(200, 1000, false, false);
#else
octomap_distance_test<S>(200, 2, false, false, 1.0);
octomap_distance_test<S>(200, 10, false, false, 1.0);
#endif
}
GTEST_TEST(FCL_OCTOMAP, test_octomap_distance)
{
// test_octomap_distance<float>();
test_octomap_distance<double>();
}
template <typename S>
void test_octomap_distance_mesh()
{
#ifdef NDEBUG
octomap_distance_test<S>(200, 100, true, true);
octomap_distance_test<S>(200, 1000, true, true);
#else
octomap_distance_test<S>(200, 2, true, true, 1.0);
octomap_distance_test<S>(200, 5, true, true, 1.0);
#endif
}
GTEST_TEST(FCL_OCTOMAP, test_octomap_distance_mesh)
{
// test_octomap_distance_mesh<float>();
test_octomap_distance_mesh<double>();
}
template <typename S>
void test_octomap_distance_mesh_octomap_box()
{
#ifdef NDEBUG
octomap_distance_test<S>(200, 100, true, false);
octomap_distance_test<S>(200, 1000, true, false);
#else
octomap_distance_test<S>(200, 2, true, false, 1.0);
octomap_distance_test<S>(200, 5, true, false, 1.0);
#endif
}
GTEST_TEST(FCL_OCTOMAP, test_octomap_distance_mesh_octomap_box)
{
// test_octomap_distance_mesh_octomap_box<float>();
test_octomap_distance_mesh_octomap_box<double>();
}
template <typename S>
void test_octomap_bvh_rss_d_distance_rss()
{
#ifdef NDEBUG
octomap_distance_test_BVH<RSS<S>>(5);
#else
octomap_distance_test_BVH<RSS<S>>(5, 1.0);
#endif
}
GTEST_TEST(FCL_OCTOMAP, test_octomap_bvh_rss_d_distance_rss)
{
// test_octomap_bvh_rss_d_distance_rss<float>();
test_octomap_bvh_rss_d_distance_rss<double>();
}
template <typename S>
void test_octomap_bvh_obb_d_distance_obb()
{
#ifdef NDEBUG
octomap_distance_test_BVH<OBBRSS<S>>(5);
#else
octomap_distance_test_BVH<OBBRSS<S>>(5, 1.0);
#endif
}
GTEST_TEST(FCL_OCTOMAP, test_octomap_bvh_obb_d_distance_obb)
{
// test_octomap_bvh_obb_d_distance_obb<float>();
test_octomap_bvh_obb_d_distance_obb<double>();
}
template <typename S>
void test_octomap_bvh_kios_d_distance_kios()
{
#ifdef NDEBUG
octomap_distance_test_BVH<kIOS<S>>(5);
#else
octomap_distance_test_BVH<kIOS<S>>(5, 1.0);
#endif
}
GTEST_TEST(FCL_OCTOMAP, test_octomap_bvh_kios_d_distance_kios)
{
// test_octomap_bvh_kios_d_distance_kios<float>();
test_octomap_bvh_kios_d_distance_kios<double>();
}
template<typename BV>
void octomap_distance_test_BVH(std::size_t n, double resolution)
{
using S = typename BV::S;
std::vector<Vector3<S>> p1;
std::vector<Triangle> t1;
test::loadOBJFile(TEST_RESOURCES_DIR"/env.obj", p1, t1);
BVHModel<BV>* m1 = new BVHModel<BV>();
std::shared_ptr<CollisionGeometry<S>> m1_ptr(m1);
m1->beginModel();
m1->addSubModel(p1, t1);
m1->endModel();
OcTree<S>* tree = new OcTree<S>(
std::shared_ptr<octomap::OcTree>(test::generateOcTree(resolution)));
std::shared_ptr<CollisionGeometry<S>> tree_ptr(tree);
aligned_vector<Transform3<S>> transforms;
S extents[] = {-5, -5, -5, 5, 5, 5};
test::generateRandomTransforms(extents, transforms, n);
for(std::size_t i = 0; i < n; ++i)
{
Transform3<S> tf1(transforms[i]);
Transform3<S> tf2(transforms[n-1-i]);
CollisionObject<S> obj1(m1_ptr, tf1);
CollisionObject<S> obj2(tree_ptr, tf2);
DefaultDistanceData<S> cdata;
DefaultDistanceData<S> cdata1b;
cdata.request.enable_nearest_points = true;
cdata1b.request.enable_nearest_points = true;
S dist1 = std::numeric_limits<S>::max();
S dist1b = std::numeric_limits<S>::max();
// Verify that the order of geometry objects does not matter
DefaultDistanceFunction(&obj1, &obj2, &cdata, dist1);
DefaultDistanceFunction(&obj2, &obj1, &cdata1b, dist1b);
EXPECT_NEAR(dist1, dist1b, constants<S>::eps());
std::vector<CollisionObject<S>*> boxes;
test::generateBoxesFromOctomap(boxes, *tree);
for(std::size_t j = 0; j < boxes.size(); ++j)
boxes[j]->setTransform(tf2 * boxes[j]->getTransform());
DynamicAABBTreeCollisionManager<S>* manager =
new DynamicAABBTreeCollisionManager<S>();
manager->registerObjects(boxes);
manager->setup();
DefaultDistanceData<S> cdata2;
manager->distance(&obj1, &cdata2, DefaultDistanceFunction);
S dist2 = cdata2.result.min_distance;
for(std::size_t j = 0; j < boxes.size(); ++j)
delete boxes[j];
delete manager;
EXPECT_NEAR(dist1, dist2, 0.001);
// Check that the nearest points are consistent with the distance
// Note that we cannot compare the result with the "boxes" approximation,
// since the problem is ill-posed (i.e. the nearest points may differ widely
// for slightly different geometries)
Vector3<S> nearestPointDistance =
cdata.result.nearest_points[0] - cdata.result.nearest_points[1];
// Only check the nearest point distance for a non-collision.
// For a collision, the nearest points may be tangential and not equal to
// the (potentially fake) signed distance returned by the distance check.
if (dist1 > 0.0)
{
EXPECT_NEAR(nearestPointDistance.norm(), dist1, 0.001);
}
}
}
template <typename S>
void octomap_distance_test(S env_scale, std::size_t env_size, bool use_mesh, bool use_mesh_octomap, double resolution)
{
// srand(1);
std::vector<CollisionObject<S>*> env;
if(use_mesh)
test::generateEnvironmentsMesh(env, env_scale, env_size);
else
test::generateEnvironments(env, env_scale, env_size);
OcTree<S>* tree = new OcTree<S>(std::shared_ptr<const octomap::OcTree>(test::generateOcTree(resolution)));
CollisionObject<S> tree_obj((std::shared_ptr<CollisionGeometry<S>>(tree)));
DynamicAABBTreeCollisionManager<S>* manager = new DynamicAABBTreeCollisionManager<S>();
manager->registerObjects(env);
manager->setup();
DefaultDistanceData<S> cdata;
test::TStruct t1;
test::Timer timer1;
timer1.start();
manager->octree_as_geometry_collide = false;
manager->octree_as_geometry_distance = false;
manager->distance(&tree_obj, &cdata, DefaultDistanceFunction);
timer1.stop();
t1.push_back(timer1.getElapsedTime());
DefaultDistanceData<S> cdata3;
test::TStruct t3;
test::Timer timer3;
timer3.start();
manager->octree_as_geometry_collide = true;
manager->octree_as_geometry_distance = true;
manager->distance(&tree_obj, &cdata3, DefaultDistanceFunction);
timer3.stop();
t3.push_back(timer3.getElapsedTime());
test::TStruct t2;
test::Timer timer2;
timer2.start();
std::vector<CollisionObject<S>*> boxes;
if(use_mesh_octomap)
test::generateBoxesFromOctomapMesh(boxes, *tree);
else
test::generateBoxesFromOctomap(boxes, *tree);
timer2.stop();
t2.push_back(timer2.getElapsedTime());
timer2.start();
DynamicAABBTreeCollisionManager<S>* manager2 = new DynamicAABBTreeCollisionManager<S>();
manager2->registerObjects(boxes);
manager2->setup();
timer2.stop();
t2.push_back(timer2.getElapsedTime());
DefaultDistanceData<S> cdata2;
timer2.start();
manager->distance(manager2, &cdata2, DefaultDistanceFunction);
timer2.stop();
t2.push_back(timer2.getElapsedTime());
std::cout << cdata.result.min_distance << " " << cdata3.result.min_distance << " " << cdata2.result.min_distance << std::endl;
if(cdata.result.min_distance < 0)
EXPECT_LE(cdata2.result.min_distance, 0);
else
EXPECT_NEAR(cdata.result.min_distance, cdata2.result.min_distance, 1e-3);
delete manager;
delete manager2;
for(size_t i = 0; i < boxes.size(); ++i)
delete boxes[i];
std::cout << "1) octomap overall time: " << t1.overall_time << std::endl;
std::cout << "1') octomap overall time (as geometry): " << t3.overall_time << std::endl;
std::cout << "2) boxes overall time: " << t2.overall_time << std::endl;
std::cout << " a) to boxes: " << t2.records[0] << std::endl;
std::cout << " b) structure init: " << t2.records[1] << std::endl;
std::cout << " c) distance: " << t2.records[2] << std::endl;
std::cout << "Note: octomap may need more collides when using mesh, because octomap collision uses box primitive inside" << std::endl;
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
|