1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2018. Toyota Research Institute
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of CNRS-LAAS and AIST nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Sean Curtis <sean@tri.global> (2018) */
#include <memory>
#include <gtest/gtest.h>
#include <Eigen/Dense>
#include "eigen_matrix_compare.h"
#include "fcl/narrowphase/collision_object.h"
#include "fcl/narrowphase/distance.h"
// TODO(SeanCurtis-TRI): Modify this test so it can be re-used for the distance
// query -- such that the sphere is slightly separated instead of slightly
// penetrating. See test_sphere_box.cpp for an example.
// This collides a box with a sphere. The box is long and skinny with size
// (w, d, h) and its geometric frame is aligned with the world frame.
// The sphere has radius r and is positioned at (sx, sy, sz) with an identity
// orientation. In this configuration, the sphere penetrates the box slightly
// on its face that faces in the +z direction. The contact is *fully* contained
// in that face. (As illustrated below.)
//
// Side view
// z small sphere
// ┆ ↓
// ┏━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━◯━━━━━━┓ ┬
// ╂┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┼┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╂ x h
// ┗━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━┛ ┴
// ┆
//
// ├────────────────── w ──────────────────┤
//
// Top view
// y small sphere
// ┆ ↓
// ┏━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━┓ ┬
// ╂┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┼┄┄┄┄┄┄┄┄┄┄┄┄◯┄┄┄┄┄┄╂ x d
// ┗━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━┛ ┴
// ┆
//
// Properties of expected outcome:
// - One contact *should* be reported,
// - Penetration depth δ should be: radius - (sz - h / 2),
// - Contact point should be at: [sx, sy, h / 2 - δ / 2], and
// - Contact normal should be [0, 0, -1] (pointing from sphere into box).
//
// NOTE: Orientation of the sphere should *not* make a difference and is not
// tested here; it relies on the sphere-box primitive algorithm unit tests to
// have robustly tested that.
//
// This test *fails* if GJK is used to evaluate the collision. It passes if the
// custom sphere-box algorithm is used, and, therefore, its purpose is to
// confirm that the custom algorithm is being applied. It doesn't exhaustively
// test sphere-box collision. It merely confirms the tested primitive algorithm
// has been wired up correctly.
template <typename S>
void LargeBoxSmallSphereTest(fcl::GJKSolverType solver_type) {
using fcl::Vector3;
using Real = typename fcl::constants<S>::Real;
const Real eps = fcl::constants<S>::eps();
// Configure geometry.
// Box and sphere dimensions.
const Real w = 0.115;
const Real h = 0.0025;
const Real d = 0.01;
// The magnitude of the box's extents along each axis.
const Vector3<S> half_size{w / 2, d / 2, h / 2};
const Real r = 0.0015;
auto sphere_geometry = std::make_shared<fcl::Sphere<S>>(r);
auto box_geometry = std::make_shared<fcl::Box<S>>(w, d, h);
// Poses of the geometry.
fcl::Transform3<S> X_WB = fcl::Transform3<S>::Identity();
// Compute multiple sphere locations. All at the same height to produce a
// fixed, expected penetration depth of half of its radius. The reported
// position of the contact will have the x- and y- values of the sphere
// center, but be half the target_depth below the +z face, i.e.,
// pz = (h / 2) - (target_depth / 2)
const Real target_depth = r * 0.5;
// Sphere center's height (position in z).
const Real sz = h / 2 + r - target_depth;
const Real pz = h / 2 - target_depth / 2;
// This transform will get repeated modified in the nested for loop below.
fcl::Transform3<S> X_WS = fcl::Transform3<S>::Identity();
fcl::CollisionObject<S> sphere(sphere_geometry, X_WS);
fcl::CollisionObject<S> box(box_geometry, X_WB);
// Expected results. (Expected position is defined inside the for loop as it
// changes with each new position of the sphere.)
const S expected_depth = target_depth;
// This normal direction assumes the *sphere* is the first collision object.
// If the order is reversed, the normal must be likewise reversed.
const Vector3<S> expected_normal = -Vector3<S>::UnitZ();
// Set up the collision request.
fcl::CollisionRequest<S> collision_request(1 /* num contacts */,
true /* enable_contact */);
collision_request.gjk_solver_type = solver_type;
// Sample around the surface of the +z face on the box for a fixed penetration
// depth. Note: the +z face extends in the +/- x and y directions up to the
// distance half_size. Notes on the selected samples:
// - We've picked positions such that the *whole* sphere projects onto the
// +z face (e.g., half_size(i) - r). This *guarantees* that the contact is
// completely contained in the +z face so there is no possible ambiguity
// in the results.
// - We've picked points out near the boundaries, in the middle, and *near*
// zero without being zero. The GJK algorithm can actually provide the
// correct result at the (eps, eps) sample points. We leave those sample
// points in to confirm no degradation.
const std::vector<Real> x_values{
-half_size(0) + r, -half_size(0) * S(0.5), -eps, 0, eps,
half_size(0) * S(0.5), half_size(0) - r};
const std::vector<Real> y_values{
-half_size(1) + r, -half_size(1) * S(0.5), -eps, 0, eps,
half_size(1) * S(0.5), half_size(1) - r};
for (Real sx : x_values) {
for (Real sy : y_values ) {
// Repose the sphere.
X_WS.translation() << sx, sy, sz;
sphere.setTransform(X_WS);
auto evaluate_collision = [&collision_request, &X_WS](
const fcl::CollisionObject<S>* s1, const fcl::CollisionObject<S>* s2,
S expected_depth, const Vector3<S>& expected_normal,
const Vector3<S>& expected_pos, Real eps) {
// Compute collision.
fcl::CollisionResult<S> collision_result;
std::size_t contact_count =
fcl::collide(s1, s2, collision_request, collision_result);
// Test answers
if (contact_count == collision_request.num_max_contacts) {
std::vector<fcl::Contact<S>> contacts;
collision_result.getContacts(contacts);
GTEST_ASSERT_EQ(contacts.size(), collision_request.num_max_contacts);
const fcl::Contact<S>& contact = contacts[0];
EXPECT_NEAR(contact.penetration_depth, expected_depth, eps)
<< "Sphere at: " << X_WS.translation().transpose();
EXPECT_TRUE(fcl::CompareMatrices(contact.normal,
expected_normal,
eps,
fcl::MatrixCompareType::absolute))
<< "Sphere at: " << X_WS.translation().transpose();
EXPECT_TRUE(fcl::CompareMatrices(
contact.pos, expected_pos, eps, fcl::MatrixCompareType::absolute))
<< "Sphere at: " << X_WS.translation().transpose();
} else {
EXPECT_TRUE(false) << "No contacts reported for sphere at: "
<< X_WS.translation().transpose();
}
};
Vector3<S> expected_pos{sx, sy, pz};
evaluate_collision(&sphere, &box, expected_depth, expected_normal,
expected_pos, eps);
evaluate_collision(&box, &sphere, expected_depth, -expected_normal,
expected_pos, eps);
}
}
}
GTEST_TEST(FCL_SPHERE_BOX, LargBoxSmallSphere_ccd) {
LargeBoxSmallSphereTest<double>(fcl::GJKSolverType::GST_LIBCCD);
LargeBoxSmallSphereTest<float>(fcl::GJKSolverType::GST_LIBCCD);
}
GTEST_TEST(FCL_SPHERE_BOX, LargBoxSmallSphere_indep) {
LargeBoxSmallSphereTest<double>(fcl::GJKSolverType::GST_INDEP);
LargeBoxSmallSphereTest<float>(fcl::GJKSolverType::GST_INDEP);
}
//==============================================================================
int main(int argc, char* argv[]) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
|