1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2018. Toyota Research Institute
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of CNRS-LAAS and AIST nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Hongkai Dai <hongkai.dai@tri.global> */
#include <memory>
#include <utility>
#include <vector>
#include <gtest/gtest.h>
#include <Eigen/Dense>
#include "eigen_matrix_compare.h"
#include "fcl/narrowphase/collision_object.h"
#include "fcl/narrowphase/distance.h"
#include "fcl/narrowphase/distance_request.h"
#include "fcl/narrowphase/distance_result.h"
// For two spheres 1, 2, sphere 1 has radius1, and is centered at point A, with
// coordinate p_FA in some frame F; sphere 2 has radius2, and is centered at
// point B, with coordinate p_FB in the same frame F. Compute the (optionally
// signed) distance between the two spheres.
template <typename S>
S ComputeSphereSphereDistance(S radius1, S radius2, const fcl::Vector3<S>& p_FA,
const fcl::Vector3<S>& p_FB,
fcl::GJKSolverType solver_type,
bool enable_nearest_points,
bool enable_signed_distance,
fcl::DistanceResult<S>* result) {
// Pose of the sphere expressed in the frame F. X_FA is the pose of sphere 1
// in frame F, while X_FB is the pose of sphere 2 in frame F.
// We use monogram notation as in Drake, explained in
// http://drake.mit.edu/doxygen_cxx/group__multibody__spatial__pose.html
fcl::Transform3<S> X_FA, X_FB;
X_FA.setIdentity();
X_FB.setIdentity();
X_FA.translation() = p_FA;
X_FB.translation() = p_FB;
fcl::DistanceRequest<S> request;
request.enable_nearest_points = enable_nearest_points;
request.enable_signed_distance = enable_signed_distance;
request.gjk_solver_type = solver_type;
using CollisionGeometryPtr_t = std::shared_ptr<fcl::CollisionGeometry<S>>;
CollisionGeometryPtr_t sphere_geometry_1(new fcl::Sphere<S>(radius1));
CollisionGeometryPtr_t sphere_geometry_2(new fcl::Sphere<S>(radius2));
fcl::CollisionObject<S> sphere_1(sphere_geometry_1, X_FA);
fcl::CollisionObject<S> sphere_2(sphere_geometry_2, X_FB);
const S min_distance = fcl::distance(&sphere_1, &sphere_2, request, *result);
return min_distance;
}
template <typename S>
struct SphereSpecification {
// @param p_FC_ the center of the sphere C measured and expressed in a frame F
SphereSpecification(S m_radius, const fcl::Vector3<S>& p_FC_)
: radius(m_radius), p_FC(p_FC_) {}
S radius;
fcl::Vector3<S> p_FC;
};
template <typename S>
void CheckSphereToSphereDistance(const SphereSpecification<S>& sphere1,
const SphereSpecification<S>& sphere2,
fcl::GJKSolverType solver_type,
bool enable_nearest_points,
bool enable_signed_distance,
S min_distance_expected,
const fcl::Vector3<S>& p1_expected,
const fcl::Vector3<S>& p2_expected, S tol) {
fcl::DistanceResult<S> result;
const S min_distance = ComputeSphereSphereDistance<S>(
sphere1.radius, sphere2.radius, sphere1.p_FC, sphere2.p_FC, solver_type,
enable_nearest_points, enable_signed_distance, &result);
EXPECT_NEAR(min_distance, min_distance_expected, tol);
EXPECT_NEAR(result.min_distance, min_distance_expected, tol);
EXPECT_TRUE(fcl::CompareMatrices(result.nearest_points[0], p1_expected, tol));
EXPECT_TRUE(fcl::CompareMatrices(result.nearest_points[1], p2_expected, tol));
}
template <typename S>
struct SphereSphereDistance {
SphereSphereDistance(const SphereSpecification<S>& m_sphere1,
const SphereSpecification<S>& m_sphere2)
: sphere1(m_sphere1), sphere2(m_sphere2) {
min_distance =
(sphere1.p_FC - sphere2.p_FC).norm() - sphere1.radius - sphere2.radius;
const fcl::Vector3<S> AB = (sphere1.p_FC - sphere2.p_FC).normalized();
p_WP1 = sphere1.p_FC + AB * -sphere1.radius;
p_WP2 = sphere2.p_FC + AB * sphere2.radius;
}
SphereSpecification<S> sphere1;
SphereSpecification<S> sphere2;
S min_distance;
// The closest point P1 on sphere 1 is expressed in the world frame W.
fcl::Vector3<S> p_WP1;
// The closest point P2 on sphere 2 is expressed in the world frame W.
fcl::Vector3<S> p_WP2;
};
template <typename S>
void TestSeparatingSpheres(S tol, fcl::GJKSolverType solver_type) {
std::vector<SphereSpecification<S>> spheres;
spheres.emplace_back(0.5, fcl::Vector3<S>(0, 0, -1)); // sphere 1
spheres.emplace_back(0.6, fcl::Vector3<S>(1.2, 0, 0)); // sphere 2
spheres.emplace_back(0.4, fcl::Vector3<S>(-0.3, 0, 0)); // sphere 3
spheres.emplace_back(0.3, fcl::Vector3<S>(0, 0, 1)); // sphere 4
for (int i = 0; i < static_cast<int>(spheres.size()); ++i) {
for (int j = i + 1; j < static_cast<int>(spheres.size()); ++j) {
SphereSphereDistance<S> sphere_sphere_distance(spheres[i], spheres[j]);
bool enable_signed_distance = true;
CheckSphereToSphereDistance<S>(
spheres[i], spheres[j], solver_type, true, enable_signed_distance,
sphere_sphere_distance.min_distance, sphere_sphere_distance.p_WP1,
sphere_sphere_distance.p_WP2, tol);
// Now switch the order of sphere 1 with sphere 2 in calling
// fcl::distance function, and test again.
CheckSphereToSphereDistance<S>(
spheres[j], spheres[i], solver_type, true, enable_signed_distance,
sphere_sphere_distance.min_distance, sphere_sphere_distance.p_WP2,
sphere_sphere_distance.p_WP1, tol);
enable_signed_distance = false;
CheckSphereToSphereDistance<S>(
spheres[i], spheres[j], solver_type, true, enable_signed_distance,
sphere_sphere_distance.min_distance, sphere_sphere_distance.p_WP1,
sphere_sphere_distance.p_WP2, tol);
// Now switch the order of sphere 1 with sphere 2 in calling
// fcl::distance function, and test again.
CheckSphereToSphereDistance<S>(
spheres[j], spheres[i], solver_type, true, enable_signed_distance,
sphere_sphere_distance.min_distance, sphere_sphere_distance.p_WP2,
sphere_sphere_distance.p_WP1, tol);
// TODO (hongkai.dai@tri.global): Test enable_nearest_points=false.
}
}
}
GTEST_TEST(FCL_SPHERE_SPHERE, Separating_Spheres_INDEP) {
TestSeparatingSpheres<double>(1E-14, fcl::GJKSolverType::GST_INDEP);
}
GTEST_TEST(FCL_SPHERE_SPHERE, Separating_Spheres_LIBCCD) {
// TODO(hongkai.dai@tri.global): The accuracy of the closest point is only up
// to 1E-3, although gjkSolver::distance_tolerance is 1E-6. We should
// investigate the accuracy issue.
// Specifically, when setting `enable_signed_distance = true`, then except for
// the the pair of spheres (2, 3), the closest point between all other pairs
// fail to achieve tolerance 1E-6. When `enable_signed_distance = false`, then
// all pairs achieve tolerance 1E-6.
TestSeparatingSpheres<double>(1E-3, fcl::GJKSolverType::GST_LIBCCD);
}
//==============================================================================
int main(int argc, char* argv[]) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
|