1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
%%
%% This is file `squelette-rr.tex',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% RR.dtx (with options: `sample')
%% ********************************************************************
%% Copyright (C) 1997-1999 2004 2006-2011 INRIA/APICS/MARELLE by Jose' Grimm
%% This file may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% http://www.latex-project.org/lppl.txt
%% and version 1.3 or later is part of all distributions of LaTeX
%% version 2003/12/01 or later.
%% An archive of the software can be found at
%% ftp://ftp-sop.inria.fr/marelle/RR-INRIA
\PassOptionsToPackage{table}{xcolor}
\documentclass[twoside]{article}
\usepackage{etex}
\usepackage[a4paper]{geometry}
\usepackage{RR}
\usepackage{hyperref}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{stmaryrd}
\usepackage{subeqnarray}
%%\usepackage[frenchb]{babel} % optionnel
%%\RRNo{7003}
\RTNo{444}
%%
%% date de publication du rapport
\RRdate{\today}
%%
%% Cas d'une version deux
%% \RRversion{2}
%% date de publication de la version 2
%% \RRdater{November 2008}
%%
\RRauthor{% les auteurs
% Premier auteur, avec une note
Vincent Acary\thanks{INRIA Rh\^one--Alpes. LJK Laboratoire Jean Kuntzman. {\tt vincent.acary@inria.fr}}%
\and
Maurice Br\'emond\thanks{INRIA Rh\^one--Alpes. {\tt maurice.bremond@inria.fr}}%
% r\'ef\'erence \`a la note partag\'ee
% liste longue pour tests de mise en page
\and Tomasz Koziara\thanks{School of Engineering and Computing Sciences.Durham University U.K. {\tt tomasz.koziara@durham.ac.uk}}
\and Franck P\'erignon\thanks{ LJK Laboratoire Jean Kuntzman. {\tt franck.perignon@imag.fr}}}
%% Ceci apparait sur chaque page paire.
\authorhead{Acary \& Br\'emond \& Koziara \& P\'erignon}
%% titre francais long
\RRtitle{FCLIB: une collection de probl\`emes discrets tridimensionels de contact avec frottement}
%% English title
\RRetitle{FCLIB: a collection of discrete 3D Frictional Contact problems}
%%
\titlehead{FCLIB: a collection of discrete 3D Frictional Contact problems}
%%
% \RRnote{This is a note}
% \RRnote{This is a second note}
%%
\RRresume{Le but de ce travail est de mettre en place une collection de probl\`emes discrets de frottement de Coulomb avec contact unilat\'ral. La collection fournira un environnement standard de test pour les algorithmes de r\'esolution, existants et \`a venir. Dans ce document, on d\'ecrit les probl\`emes math\'ematiques que nous voulons collecter et le contenu de la collection courante.
}
\RRabstract{
The goal of this work is to set up a collection of 3D Frictional Contact (3DFC) problems. The collection will provide a standard framework for testing available and new algorithms for solving discrete frictional contact problems. In this document, we describe the mathematical problems that we want to collect and the contents of the current collection. }
%%
\RRmotcle{frottement de Coulomb, contact unilateral, benchmarks}
\RRkeyword{Coulomb's friction, unilateral contact, benchmarks}
%%
%% \RRprojet{Apics} % cas d'un seul projet
\RRprojet{Bipop}
%%
%% \URLorraine % pour ceux qui sont \`a l'est
%% \URRennes % pour ceux qui sont \`a l'ouest
%% \URRhoneAlpes % pour ceux qui sont dans les montagnes
%% \URRocq % pour ceux qui sont au centre de la France
%% \URFuturs % pour ceux qui sont dans le virtuel
%% \URSophia % pour ceux qui sont au Sud.
%%
%% \RCBordeaux % centre de recherche Bordeaux - Sud Ouest
%% \RCLille % centre de recherche Lille Nord Europe
%% \RCParis % Paris Rocquencourt
%% \RCSaclay % Saclay \^Ile de France
\RCGrenoble % Grenoble - Rh\^one-Alpes
%% \RCNancy % Nancy - Grand Est
%% \RCRennes % Rennes - Bretagne Atlantique
%%\RCSophia % Sophia Antipolis M\'editerran\'ee
%\input{macro.tex}
\def\n{{\hbox{\tiny{N}}}}
\def\t{{\hbox{\tiny{T}}}}
\newcommand{\RR}{\ensuremath{\rm\sf I\!R}}
\newcommand{\NN}{\ensuremath{\rm\sf I\!N}}
% Packages required by doxygen
\usepackage{calc}
\usepackage{./latex/doxygen}
\usepackage[utf8]{inputenc}
%\usepackage{makeidx}
\usepackage{multicol}
\usepackage{multirow}
\usepackage{textcomp}
\usepackage[table]{xcolor}
% Font selection
\usepackage[T1]{fontenc}
%\usepackage{mathptmx}
%\usepackage[scaled=.90]{helvet}
%\usepackage{courier}
\usepackage{sectsty}
% \renewcommand{\familydefault}{\sfdefault}
% \allsectionsfont{%
% \fontseries{bc}\selectfont%
% \color{darkgray}%
% }
\renewcommand{\DoxyLabelFont}{%
\fontseries{bc}\selectfont%
\color{darkgray}%
}
% % Page & text layout
% \usepackage{geometry}
% \geometry{%
% a4paper,%
% top=2.5cm,%
% bottom=2.5cm,%
% left=2.5cm,%
% right=2.5cm%
% }
% \tolerance=750
% \hfuzz=15pt
% \hbadness=750
% \setlength{\emergencystretch}{15pt}
% \setlength{\parindent}{0cm}
% \setlength{\parskip}{0.2cm}
\makeatletter
% \renewcommand{\paragraph}{%
% \@startsection{paragraph}{4}{0ex}{-1.0ex}{1.0ex}{%
% \normalfont\normalsize\bfseries\SS@parafont%
% }%
% }
\renewcommand{\subparagraph}{%
\@startsection{subparagraph}{5}{0ex}{-1.0ex}{1.0ex}{%
\normalfont\normalsize\bfseries\SS@subparafont%
}%
}
\makeatother
%%
\usepackage{tikz}
\graphicspath{{./figure/},{./latex/}}
\usetikzlibrary{arrows}
\usetikzlibrary{calc}
\begin{document}
%%
%\makeRR % cas d'un rapport de recherche
\makeRT % cas d'un rapport technique.
%% a partir d'ici, chacun fait comme il le souhaite
\section*{Purpose of the document}
The goal of this work is to set up a collection of 3D Frictional Contact (3DFC) problems. The collection will provide a standard framework for testing available and new algorithms for solving discrete frictional contact problems. In this document, we describe the mathematical problems that we want to collect and the contents of the current collection.
\section*{Notation}
Let us denote by the integer $n_c$ the number of contacts. The integer $n$ is the number of degree of freedom of the system and $m = 3 n_c$ the number of unknown variables at contacts.
\begin{figure}[htbp]
\begin{center}
\begin{tikzpicture}[ scale=3,
axis/.style={ ->, >=stealth'},
normal/.style={ thick, ->, >=stealth'},
important line/.style={very thick},
dashed line/.style={dashed, thin},
every node/.style={color=black},
soldot/.style={only marks,mark=*},
holdot/.style={fill=white,only marks,mark=*}
]
% body
\node (BodyA) at (1,-1) {Body A};
\fill[gray!20] (1,0) arc (0:-90:1);
\fill[gray!20] (1,0) arc (90:180:1);
\draw (1,0) arc (90:180:1);
\node (BodyB) at (-1,1) {Body B};
\draw (0,1) arc (0:-90:1);
\fill[gray!20] (0,1) arc (90:180:1);
\fill[gray!20] (0,1) arc (0:-90:1);
% local frame
\def\nlength{0.35};
\coordinate (CA) at ({1.0-sqrt(2)/2.0},{-1.0+sqrt(2)/2.0});
\node[] at (CA) [right] {$\sf C_A$};
\draw[holdot] (CA) circle(0.05em);
\draw[normal] (CA) -- ($(CA)+({-\nlength*sqrt(2)/2.0},{+\nlength*sqrt(2)/2.0 })$) node [right] {$\,\sf N$};
\draw[normal] (CA) -- ($(CA)+({-\nlength*sqrt(2)/2.0},{-\nlength*sqrt(2)/2.0 })$) node [above] {$\sf T_1\quad$};
\draw[dashed line] (BodyA) -- (BodyB);
\draw[holdot] ($(CA)+({\nlength*sqrt(3)/2.0},{0.0})$) circle(0.2em);
\node at ($(CA)+({\nlength*sqrt(3)/2.0},{0.0})$) [right]{$\sf T_2$};
\draw[soldot] ($(CA)+({\nlength*sqrt(3)/2.0},{0.0})$) circle(0.02em);
\coordinate (CB) at ({-1.0+sqrt(2)/2.0},{1.0-sqrt(2)/2.0});
\node at (CB) [above] {$\sf C_B$};
\draw[holdot] (CB) circle(0.05em);
\draw[axis] (CA) -- (CB) node[midway, below left ] {$\sf g_\n$} ;
% \draw[axis] (0,-0.4) -- (0,0.4) node(yline)[right] {$\sgn(x)$};
% % lines
% \draw[important line] (-0.4,-0.3) -- (0. ,-.3);
% \draw[important line] (0.0,0.3) --(.4,.3) ;
% \coordinate (O) at (0.0, 0.05);
% \draw[fill] (O) circle (0.03em);
% \draw (0.0,0.05) node[right]{$a$};
% \draw (0.0,0.3) node[left]{$1$};
% \draw (0.0,-0.3) node[right]{$-1$};
% \draw[holdot] (0.0,0.3) circle (0.03em);
% \draw[holdot] (0.0,-.3) circle (0.03em);
\end{tikzpicture}
\end{center}
\caption{Local frame at contact}
\label{Fig:localframe}
\end{figure}
For each contact $\alpha \in \{1,\ldots n_c\}$, the local velocity is denoted by $u^\alpha \in \RR^3$. Its normal part is denoted by $u_\n^{\alpha}\in \RR$ and its tangential part $u_\t\in\RR^2$ (see Figure~\ref{Fig:localframe})
\begin{equation}
\label{eq:contactvelocity}
u^\alpha =\left[
\begin{array}{c}
u^\alpha_{\n} \\
u^\alpha_{\t}
\end{array}\right].
\end{equation}
The vector $u$ collects all the local velocities at each contact
\begin{equation}
\label{eq:normal-collect}
u = [[u^\alpha]^T, \alpha = 1\ldots n_c]^T,
\end{equation}
respectively for the normal part $u_\n$
\begin{equation}
\label{eq:normal}
u_\n = [ u^\alpha_{\n}, \alpha = 1\ldots n_c]^T,
\end{equation}
and its tangential a part as
\begin{equation}
\label{eq:tangent}
u_\t = [ [u^\alpha_{\t}]^T, \alpha = 1\ldots n_c]^T.
\end{equation}
For a contact $\alpha $ and a friction coefficient $\mu$, the modified local velocity, denoted by $\hat u^\alpha $, is defined by
\begin{equation}
\label{eq:modified}
\hat u^\alpha = u^\alpha +\left[
\begin{array}{c}
\mu \|u^\alpha_\t\| \\
0 \\
0
\end{array}\right].
\end{equation}
The vector $\hat u$ collects all the modified local velocity at each contact
\begin{equation}
\label{eq:normal-modified}
\hat u = [[\hat u^\alpha]^T, \alpha = 1\ldots n_c]^T.
\end{equation}
For each contact $\alpha$, the reaction vector $r^\alpha\in \RR^3$ is also decomposed in its normal part $r_\n^{\alpha}\in \RR$ and its tangential part $r_\t\in\RR^2$ as
\begin{equation}
\label{eq:contactreaction}
r^\alpha = \left[
\begin{array}{c}
r^\alpha_{\n} \\
r^\alpha_{\t}
\end{array}\right].
\end{equation}
The Coulomb friction cone for a contact $\alpha$ is defined by
\begin{equation}
\label{eq:CCC}
K_{\mu^\alpha}^{\alpha} = \{r^\alpha, \|r^\alpha_\t \| \leq \mu^\alpha |r^\alpha_\n| \}
\end{equation}
and the set $K^{\alpha,\star}_{\mu^\alpha}$ is its dual. The set $K_{\mu}$ is the cartesian product of Coulomb's friction cone at each contact,
\begin{equation}
\label{eq:CC}
K_{\mu} = \prod_{\alpha=1\ldots n_c} K_{\mu^\alpha}^{\alpha}
\end{equation}
For more details, we refer to\cite{Acary.Brogliato2008}.
\clearpage
\section{Linear discrete problems with Coulomb's friction and unilateral contact}
In this section, we formulate basic discrete frictional contact problems considering a finite number $n$ of degrees of freedom together with a discrete linear dynamics and possibly some bilateral constraints. We assume that a finite set of $n_c$ contact points and their associated local frames has been defined.
\newtheorem{definition}{Definition}
\begin{definition}[Frictional contact problem (3DFC)]\index{mFC3D}
Given
\begin{itemize}
\item a symmetric positive semi--definite matrix ${W} \in \RR^{m \times m}$
\item a vector $ {q} \in \RR^m$,
\item a vector of coefficients of friction $\mu \in \RR^{n_c}$
\end{itemize}
the 3DFC problem, denoted by $\mathrm{3DFC}(W,q,\mu)$, consists in finding two vectors $u\in\RR^m$ and $r\in \RR^m$ such that
\begin{equation}\label{eq:3dfc}
\begin{cases}
\hat u = W r + q +\left[
\left[\begin{array}{c}
\mu^\alpha \|u^\alpha_\t\|\\
0 \\
0
\end{array}\right]^T, \alpha = 1 \ldots n_c
\right]^T \\ \\
K^\star_{\mu} \ni {\hat u} \perp r \in K_{\mu}
\end{cases}
\end{equation}
\qed
\end{definition}
\begin{definition}[Global 3DFrictional contact problem (G3DFC)]\index{G3DFC}
Given
\begin{itemize}
\item a symmetric positive definite matrix ${M} \in \RR^{n \times n}$
\item a vector $ {f} \in \RR^n$,
\item a matrix ${H} \in \RR^{n \times m}$
\item a vector $w \in \RR^{m}$,
\item a vector of coefficients of friction $\mu \in \RR^{n_c}$
\end{itemize}
the Global 3DFC problem, denoted by $\mathrm{G3DFC}(M,H,f,w,\mu)$, consists in finding three vectors $ {v} \in \RR^n$, $u\in\RR^m$ and $r\in \RR^m$ such that
\begin{equation}\label{eq:Gfc3d}
\begin{cases}
M v = {H} {r} + {f} \\[1mm]
\hat u = H^T v + w +\left[
\left[\begin{array}{c}
\mu^\alpha \|u^\alpha_\t\|\\
0 \\
0
\end{array}\right]^T, \alpha = 1 \ldots n_c
\right]^T \\[1mm]
K^\star_{\mu} \ni {\hat u} \perp r \in K_{\mu}
\end{cases}
\end{equation}
\qed
\end{definition}
\begin{definition}[Global Mixed Frictional contact problem (GM3DFC)]\index{GN3DFC}
Given
\begin{itemize}
\item a symmetric positive definite matrix ${M} \in \RR^{n \times n}$
\item a vector $ {f} \in \RR^n$,
\item a matrix ${H} \in \RR^{n \times m}$
\item a matrix ${G} \in \RR^{n \times p}$
\item a vector $w \in \RR^{m}$,
\item a vector $b \in \RR^{p}$,
\item a vector of coefficients of friction $\mu \in \RR^{n_c}$
\end{itemize}
the Global Mixed 3DFC problem, denoted by $\mathrm{GM3DFC}(M,H,G,w,b,\mu)$, consists in finding four vectors $ {v} \in \RR^n$, $u\in\RR^m$, $r\in \RR^m$ and $\lambda \in \RR^p$ such that
\begin{equation}\label{eq:gmfc3d}
\begin{cases}
M v = {H} {r} + G\lambda + {f} \\[1mm]
G^T v +b =0 \\[1mm]
\hat u = H^T v + w +\left[
\left[\begin{array}{c}
\mu \|u^\alpha_\t\|\\
0 \\
0
\end{array}\right]^T, \alpha = 1 \ldots n_c
\right]^T \\[1mm]
K^\star_{\mu} \ni {\hat u} \perp r \in K_{\mu}
\end{cases}
\end{equation}
\qed
\end{definition}
\begin{definition}[Mixed 3DFrictional contact problem (M3DFC)]\index{M3DFC}
Given
\begin{itemize}
\item a positive semi--definite matrix ${W} \in \RR^{m \times m}$
\item a matrix ${V} \in \RR^{m \times p}$
\item a matrix ${R} \in \RR^{p \times p}$
\item a vector $q \in \RR^{m}$,
\item a vector $s \in \RR^{p}$,
\item a vector of coefficients of friction $\mu \in \RR^{n_c}$
\end{itemize}
the Mixed 3DFC problem, denoted by $\mathrm{M3DFC}(R,V,W,q,s,\mu)$ , consists in finding three vectors $u\in\RR^m$, $r\in \RR^m$ and $\lambda \in \RR^p$ such that
\begin{equation}\label{eq:mfc3d}
\begin{cases}
V^T {r} + R \lambda + s = 0 \\[1mm]
\hat u = W {r} + V\lambda + q +\left[
\left[\begin{array}{c}
\mu^\alpha \|u^\alpha_\t\|\\
0 \\
0
\end{array}\right]^T, \alpha = 1 \ldots n_c
\right]^T \\[1mm]
K^\star_{\mu} \ni {\hat u} \perp r \in K_{\mu}
\end{cases}
\end{equation}
\qed
\end{definition}
\paragraph{Remark}
Note that the previous problems may be an instance of quasi-static problems: the matrix $M$ plays the role of the stiffness matrix and the vector $u$ is a position or a displacement. All the problems can also be an problem in terms of acceleration and forces that we find in event--driven schemes.
%\section{Measuring errors}
\section{Details on the implementation}
\paragraph{File format}
The proposed file format for storing and managing data is the HDF5 data format\\
\url{http://www.hdfgroup.org/HDF5}
\noindent The data name should be defined as close as possible to the definition of this document.
\paragraph{Matrix storage}
Several matrix storages are considered :
\begin{enumerate}
\item dense format
\item sparse format : row compressed format, column compressed and triplet (see the description in~\cite{Davis:2006:DMS:1196434}).
\end{enumerate}
The storage of dense matrices is in column major mode (FORTRAN mode). For the sparse matrices, we use the sparse toolkit developed by T. Davis~\cite{Davis:2006:DMS:1196434}.
\paragraph{C implementation}
A C implementation is proposed for reading and writing each of 3DFC problems into HDF5 files. Some details of the C implementation are given in Appendix. More details can be found at \url{http://fclib.gforge.inria.fr}.
\section{Additional description of the problems}
The following additional information should be added in a reference document and in the HDF5 file.
\begin{itemize}
\item \verb?TITLE? : a title for the problem
\item \verb?DESCRIPTION? : the field of application. Short description on how the problem is generated.
\item \verb?MATRIX_INFO? : the sparsity and the conditioning of the matrices.
\item \verb?MATH_INFO? : existence, uniqueness of solutions.
\item \ldots
\end{itemize}
\noindent The following data can be optionally added in the HDF5 file
\begin{itemize}
\item \verb?SOLUTION? : a reference solution
\item \verb?INITIAL_GUESS? : an initial guess
\item \ldots
\end{itemize}
\clearpage
\section{List of problems in FCLIB. version 0.2}
\def\ssep{1.5mm}
\begin{itemize}
\item Hanging chain with initial velocity at the tip (see Section~\ref{Sec:Chain}).
\item 100 capsules dropped into a box (see Section~\ref{Sec:Capsules}).
\item 50 boxes stacked under gravity (see Section~\ref{Sec:BoxesStack}).
\item A tower of Kaplas (see Section~\ref{Sec:Kaplas}).
\end{itemize}
For each example, several configurations are available. Each problem is described in a file (HDF5 format) and mainly characterized by the number of degrees of freedom, the number of contacts and the formulation for the contact problem.
\clearpage
\subsection{Hanging chain with initial velocity at the tip.}
\label{Sec:Chain}
{\tt
\centering
\begin{tabular}{p{0.3\linewidth}p{0.65\linewidth}}
\hline \\
Authors & V. Acary, M. Br\'emond. (INRIA Rh\^one--Alpes) \\
Date & 10/02/2014\\
Software & Siconos\\ \\
\hline \\
\end{tabular}}
This set of $1514$ problems has been generated by Siconos with the help of Bullet contact detection library. It simulates an hanging chain with initial velocity at the tip. The chain is composed of $11$ elements with the same geometry given by a unique mesh. The mass of each component is $1$kg for a length of $13.7$m and a thickness of $7.6$m . The initial velocity at the tip is $50$mm/s.
The script that generates this example can be obtained from the Siconos development team. On Figure~\ref{fig:Chain-distrib}, the distribution of the number of contacts, the number of d.o.f and the ratio number of contacts unknowns/number of d.o.f are illustrated.
\begin{minipage}{0.29\linewidth}
\includegraphics[width=1.0\textwidth]{Chains}
\end{minipage}
\begin{minipage}{0.49\linewidth}
\begin{tabular}{|p{0.7\textwidth}|c|}
coefficient of friction & $0.3$ \\[\ssep]
number of problems & 1514 \\[\ssep]
number of degrees of freedom & [48:60] \\[\ssep]
number of contacts & [8:28] \\[\ssep]
required accuracy & $10^{-8}$
\end{tabular}
\end{minipage}
\begin{figure}[htbp]
\centering
\includegraphics[width=0.7\textwidth]{distrib-Chain.pdf}
\caption{distribution of the number of contacts, the number of d.o.f and their ratio}
\label{fig:Chain-distrib}
\end{figure}
\clearpage
\subsection{100 capsules dropped into a box.}
\label{Sec:Capsules}
{\tt
\centering
\begin{tabular}{p{0.3\linewidth}p{0.65\linewidth}}
\hline \\
Authors & V. Acary, M. Br\'emond. (INRIA Rh\^one--Alpes) \\
Date & 10/02/2014\\
Software & Siconos\\ \\
\hline \\
\end{tabular}}
This set of $1514$ problems has been generated by Siconos with the help of Bullet contact detection library. It simulates $100$ capsules dropped into a box. The Mass of each capsule is $1$kg and length is $5$m. The radius is $1$m.
The script that generates this example can be obtained from the Siconos development team. On Figure~\ref{fig:Capsules-distrib}, the distribution of the number of contacts, the number of d.o.f and the ratio number of contacts unknowns/number of d.o.f are illustrated.
\begin{minipage}{0.49\linewidth}
\includegraphics[width=1.0\textwidth]{Capsules}
\end{minipage}
\begin{minipage}{0.49\linewidth}
\begin{tabular}{|p{0.7\textwidth}|c|}
coefficient of friction & $0.7$ \\[\ssep]
number of problems & 1705 \\[\ssep]
number of degrees of freedom & [6:600] \\[\ssep]
number of contacts & [0:300]\\[\ssep]
required accuracy & $10^{-8}$
\end{tabular}
\end{minipage}
\begin{figure}[htbp]
\centering
\includegraphics[width=0.7\textwidth]{distrib-Capsules.pdf}
\caption{distribution of the number of contacts, the number of d.o.f and their ratio}
\label{fig:Capsules-distrib}
\end{figure}
\clearpage
\subsection{50 boxes stacked under gravity}
\label{Sec:BoxesStack}
{\tt
\centering
\begin{tabular}{p{0.3\linewidth}p{0.65\linewidth}}
\hline \\
Authors & V. Acary, M. Br\'emond. (INRIA Rh\^one--Alpes) \\
Date & 10/02/2014\\
Software & Siconos\\ \\
\hline \\
\end{tabular}}
This set of $1514$ problems has been generated by Siconos with the help of Bullet contact detection library. It simulates 50 boxes stacked under gravity. The mass of the box is $1$kg and the size is $2\times 2$m.
The script that generates this example can be obtained from the Siconos development team. On Figure~\ref{fig:BoxesStack-distrib}, the distribution of the number of contacts, the number of d.o.f and the ratio number of contacts unknowns/number of d.o.f are illustrated.
\begin{minipage}{0.14\linewidth}
\includegraphics[width=1.0\textwidth]{BoxesStack}
\end{minipage}
\begin{minipage}{0.25\linewidth}
\includegraphics[width=1.0\textwidth]{BoxesStack2}
\end{minipage}
\begin{minipage}{0.49\linewidth}
\begin{tabular}{|p{0.7\textwidth}|c|}
coefficient of friction & 0.7\\[\ssep]
number of problems & 1159 \\[\ssep]
number of degrees of freedom & [6:300] \\[\ssep]
number of contacts & [0:200]\\[\ssep]
required accuracy & $10^{-8}$
\end{tabular}
\end{minipage}
\begin{figure}[htbp]
\centering
\includegraphics[width=0.7\textwidth]{distrib-BoxesStack1.pdf}
\caption{distribution of the number of contacts, the number of d.o.f and their ratio}
\label{fig:BoxesStack-distrib}
\end{figure}
\clearpage
\subsection{A tower of Kaplas}
\label{Sec:Kaplas}
{\tt
\centering
\begin{tabular}{p{0.3\linewidth}p{0.65\linewidth}}
\hline \\
Authors & V. Acary, M. Br\'emond. (INRIA Rh\^one--Alpes) \\
Date & 10/02/2014\\
Software & Siconos\\ \\
\hline \\
\end{tabular}}
This set of $201$ problems has been generated by Siconos with the help of Bullet contact detection library. It simulates a tower of $144$ kaplas of dimension $11.4\times 2.348\times 0.78267$cm. The mass of each is $1$kg. The script that generates this example can be obtained from the Siconos development team. On Figure~\ref{fig:BoxesStack-distrib}, the distribution of the number of contacts, the number of d.o.f and the ratio number of contacts unknowns/number of d.o.f are illustrated.
\begin{minipage}{0.50\linewidth}
\includegraphics[width=1.0\textwidth]{KaplasTower}
\end{minipage}
\begin{minipage}{0.49\linewidth}
\begin{tabular}{|p{0.7\textwidth}|c|}
coefficient of friction & 0.3\\[\ssep]
number of problems & 201 \\[\ssep]
number of degrees of freedom & [72:864] \\[\ssep]
number of contacts & [0:950]\\[\ssep]
required accuracy & $10^{-8}$
\end{tabular}
\end{minipage}
\begin{figure}[htbp]
\centering
\includegraphics[width=0.7\textwidth]{distrib-KaplasTower.pdf}
\caption{distribution of the number of contacts, the number of d.o.f and their ratio}
\label{fig:KaplasTower-distrib}
\end{figure}
\clearpage
\bibliographystyle{plain}
\bibliography{biblio}
\clearpage
\appendix
%--- Begin generated contents ---
% \section{Introduction}
% \label{index}\hypertarget{index}{}\input{./latex/index}
% \section{Download}
% \label{download}
% \hypertarget{download}{}
% \input{./latex/download}
% \section{Contact us}
% \label{contact}
% \hypertarget{contact}{}
% \input{./latex/contact}
% \section{Related Publications}
% \label{publications}
% \hypertarget{publications}{}
% \input{./latex/publications}
\section{Class Index}
\input{./latex/annotated}
% \section{File Index}
% \input{./latex/files}
\section{Class Documentation}
\input{./latex/structcs__dmperm__results}
\input{./latex/structcs__numeric}
\input{./latex/structcs__sparse}
\input{./latex/structcs__symbolic}
\input{./latex/structfclib__global}
\input{./latex/structfclib__info}
\input{./latex/structfclib__local}
\input{./latex/structfclib__matrix}
\input{./latex/structfclib__matrix__info}
\input{./latex/structfclib__solution}
\end{document}
\endinput
%%
%% End of file `squelette-rr.tex'.
|