File: RT-fclib.tex

package info (click to toggle)
fclib 3.0.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,604 kB
  • sloc: ansic: 1,640; makefile: 71; sh: 38
file content (673 lines) | stat: -rw-r--r-- 24,659 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
%%
%% This is file `squelette-rr.tex',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% RR.dtx  (with options: `sample')
%% ********************************************************************
%% Copyright (C) 1997-1999 2004 2006-2011 INRIA/APICS/MARELLE by Jose' Grimm
%% This file may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%%    http://www.latex-project.org/lppl.txt
%% and version 1.3 or later is part of all distributions of LaTeX
%% version 2003/12/01 or later.
%% An archive of the software can be found at
%%    ftp://ftp-sop.inria.fr/marelle/RR-INRIA
\PassOptionsToPackage{table}{xcolor}
\documentclass[twoside]{article}
\usepackage{etex}
\usepackage[a4paper]{geometry}
\usepackage{RR}
\usepackage{hyperref}

\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{stmaryrd} 
\usepackage{subeqnarray}
%%\usepackage[frenchb]{babel} % optionnel
%%\RRNo{7003}
\RTNo{444}
%%
%% date de publication du rapport
\RRdate{\today}
%%
%% Cas d'une version deux
%% \RRversion{2}
%% date de publication de la version 2
%% \RRdater{November 2008}
%%
\RRauthor{% les auteurs
 % Premier auteur, avec une note
Vincent Acary\thanks{INRIA Rh\^one--Alpes. LJK Laboratoire Jean Kuntzman. {\tt vincent.acary@inria.fr}}%
\and
Maurice Br\'emond\thanks{INRIA Rh\^one--Alpes. {\tt maurice.bremond@inria.fr}}%
 % r\'ef\'erence \`a la note partag\'ee
 % liste longue pour tests de mise en page
\and Tomasz Koziara\thanks{School of Engineering and Computing Sciences.Durham University U.K. {\tt tomasz.koziara@durham.ac.uk}} 
\and Franck P\'erignon\thanks{ LJK Laboratoire Jean Kuntzman. {\tt franck.perignon@imag.fr}}}
%% Ceci apparait sur chaque page paire.
\authorhead{Acary \& Br\'emond \& Koziara \& P\'erignon}
%% titre francais long
\RRtitle{FCLIB: une collection de probl\`emes discrets tridimensionels de contact avec frottement}
%% English title
\RRetitle{FCLIB: a collection  of discrete 3D Frictional Contact problems}
%%
\titlehead{FCLIB: a collection  of discrete 3D Frictional Contact  problems}
%%
% \RRnote{This is a note}
% \RRnote{This is a second note}
%%
\RRresume{Le but de ce travail est de mettre en place une collection de probl\`emes discrets de frottement de Coulomb avec contact unilat\'ral. La collection fournira un environnement standard de test pour les algorithmes de r\'esolution, existants et \`a venir. Dans ce document, on d\'ecrit les probl\`emes math\'ematiques que nous voulons collecter et le contenu de la collection courante.
}
\RRabstract{
The goal of this work is to set up a collection of 3D Frictional Contact (3DFC) problems. The collection will provide a standard framework for testing available and new algorithms for solving discrete frictional contact problems. In this document, we describe the mathematical problems that we want to collect and the contents of the current collection. }
%%
\RRmotcle{frottement de Coulomb, contact unilateral, benchmarks}
\RRkeyword{Coulomb's friction, unilateral contact, benchmarks}
%%
%% \RRprojet{Apics}  % cas d'un seul projet
\RRprojet{Bipop}
%%
%% \URLorraine % pour ceux qui sont \`a l'est
%% \URRennes  % pour ceux qui sont \`a l'ouest
%% \URRhoneAlpes % pour ceux qui sont dans les montagnes
%% \URRocq % pour ceux qui sont au centre de la France
%% \URFuturs % pour ceux qui sont dans le virtuel
%% \URSophia % pour ceux qui sont au Sud.
%%
%% \RCBordeaux % centre de recherche Bordeaux - Sud Ouest
%% \RCLille % centre de recherche Lille Nord Europe
%% \RCParis % Paris Rocquencourt
%% \RCSaclay % Saclay \^Ile de France
\RCGrenoble % Grenoble - Rh\^one-Alpes
%% \RCNancy % Nancy - Grand Est
%% \RCRennes % Rennes - Bretagne Atlantique
%%\RCSophia % Sophia Antipolis M\'editerran\'ee

%\input{macro.tex}

\def\n{{\hbox{\tiny{N}}}}
\def\t{{\hbox{\tiny{T}}}}
\newcommand{\RR}{\ensuremath{\rm\sf I\!R}}
\newcommand{\NN}{\ensuremath{\rm\sf I\!N}}


% Packages required by doxygen
\usepackage{calc}
\usepackage{./latex/doxygen}
\usepackage[utf8]{inputenc}
%\usepackage{makeidx}
\usepackage{multicol}
\usepackage{multirow}
\usepackage{textcomp}
\usepackage[table]{xcolor}

% Font selection
\usepackage[T1]{fontenc}
%\usepackage{mathptmx}
%\usepackage[scaled=.90]{helvet}
%\usepackage{courier}
\usepackage{sectsty}
% \renewcommand{\familydefault}{\sfdefault}
% \allsectionsfont{%
%   \fontseries{bc}\selectfont%
%   \color{darkgray}%
% }
\renewcommand{\DoxyLabelFont}{%
  \fontseries{bc}\selectfont%
  \color{darkgray}%
}

% % Page & text layout
% \usepackage{geometry}
% \geometry{%
%   a4paper,%
%   top=2.5cm,%
%   bottom=2.5cm,%
%   left=2.5cm,%
%   right=2.5cm%
% }
% \tolerance=750
% \hfuzz=15pt
% \hbadness=750
% \setlength{\emergencystretch}{15pt}
% \setlength{\parindent}{0cm}
% \setlength{\parskip}{0.2cm}
\makeatletter
% \renewcommand{\paragraph}{%
%   \@startsection{paragraph}{4}{0ex}{-1.0ex}{1.0ex}{%
%     \normalfont\normalsize\bfseries\SS@parafont%
%   }%
% }
\renewcommand{\subparagraph}{%
  \@startsection{subparagraph}{5}{0ex}{-1.0ex}{1.0ex}{%
    \normalfont\normalsize\bfseries\SS@subparafont%
  }%
}
\makeatother
%%

\usepackage{tikz}
\graphicspath{{./figure/},{./latex/}}
\usetikzlibrary{arrows}
\usetikzlibrary{calc}



\begin{document}
%%
%\makeRR   % cas d'un rapport de recherche
\makeRT % cas d'un rapport technique.
%% a partir d'ici, chacun fait comme il le souhaite

\section*{Purpose of the document}



The goal of this work is to set up a collection of 3D Frictional Contact (3DFC) problems. The collection will provide a standard framework for testing available and new algorithms for solving discrete frictional contact problems.  In this document, we describe the mathematical problems that we want to collect and the contents of the current collection.

\section*{Notation}
Let us denote by the integer $n_c$ the number of contacts. The integer $n$ is the number of degree of freedom of the system and $m = 3 n_c$ the number of unknown variables at contacts.

\begin{figure}[htbp]
  \begin{center}

    \begin{tikzpicture}[ scale=3,
      axis/.style={ ->, >=stealth'},
      normal/.style={ thick, ->, >=stealth'},
      important line/.style={very thick}, 
      dashed line/.style={dashed, thin},
      every node/.style={color=black},
      soldot/.style={only marks,mark=*},
      holdot/.style={fill=white,only marks,mark=*}
      ]
      % body
      \node (BodyA) at (1,-1) {Body A};
      \fill[gray!20] (1,0) arc (0:-90:1);
      \fill[gray!20] (1,0) arc (90:180:1);
      \draw (1,0) arc (90:180:1);

      \node (BodyB) at (-1,1) {Body B};
      \draw (0,1) arc (0:-90:1);
      \fill[gray!20] (0,1) arc (90:180:1);
      \fill[gray!20] (0,1) arc (0:-90:1);

      % local frame
      \def\nlength{0.35};
      \coordinate (CA)  at  ({1.0-sqrt(2)/2.0},{-1.0+sqrt(2)/2.0});
      \node[] at  (CA) [right] {$\sf C_A$};
      \draw[holdot]  (CA) circle(0.05em);
      \draw[normal] (CA) -- ($(CA)+({-\nlength*sqrt(2)/2.0},{+\nlength*sqrt(2)/2.0 })$) node [right] {$\,\sf N$};
      \draw[normal] (CA) -- ($(CA)+({-\nlength*sqrt(2)/2.0},{-\nlength*sqrt(2)/2.0 })$) node [above] {$\sf T_1\quad$};
      \draw[dashed line] (BodyA) -- (BodyB);
      \draw[holdot] ($(CA)+({\nlength*sqrt(3)/2.0},{0.0})$) circle(0.2em);
      \node at ($(CA)+({\nlength*sqrt(3)/2.0},{0.0})$) [right]{$\sf T_2$};
      \draw[soldot] ($(CA)+({\nlength*sqrt(3)/2.0},{0.0})$) circle(0.02em);
      
      \coordinate (CB)  at  ({-1.0+sqrt(2)/2.0},{1.0-sqrt(2)/2.0});
      \node at  (CB) [above] {$\sf C_B$};
      \draw[holdot]  (CB) circle(0.05em);

      \draw[axis] (CA) -- (CB) node[midway, below left ] {$\sf g_\n$} ;

      % \draw[axis] (0,-0.4) -- (0,0.4) node(yline)[right] {$\sgn(x)$};
      % % lines
      % \draw[important line] (-0.4,-0.3) -- (0.   ,-.3);
      % \draw[important line] (0.0,0.3) --(.4,.3)  ;
      % \coordinate (O) at (0.0, 0.05);
      % \draw[fill] (O) circle (0.03em);
      % \draw (0.0,0.05) node[right]{$a$};
      % \draw (0.0,0.3) node[left]{$1$};
      % \draw (0.0,-0.3) node[right]{$-1$};
      % \draw[holdot] (0.0,0.3) circle (0.03em);
      % \draw[holdot] (0.0,-.3) circle (0.03em);
    \end{tikzpicture}    
  \end{center}
    \caption{Local frame at contact}
    \label{Fig:localframe}
\end{figure}
  
For each contact $\alpha \in \{1,\ldots n_c\}$, the  local velocity  is denoted by $u^\alpha \in \RR^3$. Its normal part  is denoted by $u_\n^{\alpha}\in \RR$ and its tangential part $u_\t\in\RR^2$ (see Figure~\ref{Fig:localframe})
\begin{equation}
  \label{eq:contactvelocity}
  u^\alpha =\left[
  \begin{array}{c}
    u^\alpha_{\n} \\
    u^\alpha_{\t}   
  \end{array}\right].
\end{equation}
The vector $u$ collects all the local velocities at each contact
\begin{equation}
  \label{eq:normal-collect}
  u = [[u^\alpha]^T, \alpha = 1\ldots n_c]^T,
\end{equation}
respectively for the normal part $u_\n$
\begin{equation}
  \label{eq:normal}
  u_\n = [ u^\alpha_{\n}, \alpha = 1\ldots n_c]^T,
\end{equation}
and its tangential a part as 
\begin{equation}
  \label{eq:tangent}
  u_\t = [ [u^\alpha_{\t}]^T, \alpha = 1\ldots n_c]^T.
\end{equation}
For a contact $\alpha $ and a friction coefficient $\mu$, the modified local velocity, denoted by $\hat u^\alpha $, is defined by
\begin{equation}
  \label{eq:modified}
  \hat u^\alpha = u^\alpha +\left[
  \begin{array}{c}
    \mu \|u^\alpha_\t\| \\
    0 \\
    0
  \end{array}\right].
\end{equation}
The vector $\hat u$ collects all the modified local velocity at each contact
\begin{equation}
  \label{eq:normal-modified}
  \hat u = [[\hat u^\alpha]^T, \alpha = 1\ldots n_c]^T.
\end{equation}

For each contact $\alpha$, the reaction vector $r^\alpha\in \RR^3$ is also decomposed in its normal part $r_\n^{\alpha}\in \RR$ and its tangential part $r_\t\in\RR^2$ as
\begin{equation}
  \label{eq:contactreaction}
  r^\alpha = \left[
  \begin{array}{c}
    r^\alpha_{\n} \\
    r^\alpha_{\t}   
  \end{array}\right].
\end{equation}
The Coulomb friction cone for a  contact $\alpha$ is defined by 
\begin{equation}
  \label{eq:CCC}
  K_{\mu^\alpha}^{\alpha}  = \{r^\alpha, \|r^\alpha_\t \| \leq \mu^\alpha |r^\alpha_\n| \}
\end{equation}
and the set $K^{\alpha,\star}_{\mu^\alpha}$ is its dual. The set $K_{\mu}$ is the cartesian product of Coulomb's friction cone at each contact,
\begin{equation}
  \label{eq:CC}
  K_{\mu} = \prod_{\alpha=1\ldots n_c} K_{\mu^\alpha}^{\alpha} 
\end{equation}
For more details, we refer to\cite{Acary.Brogliato2008}.

\clearpage
\section{Linear discrete problems with Coulomb's friction and unilateral contact}
In this section, we formulate basic discrete frictional contact problems considering a finite number $n$ of degrees of freedom  together with a discrete linear dynamics and possibly some bilateral constraints. We assume that a finite set of $n_c$ contact points and their associated local frames has been defined.

\newtheorem{definition}{Definition}

\begin{definition}[Frictional contact problem (3DFC)]\index{mFC3D}
  Given
  \begin{itemize}
    \item a symmetric positive semi--definite  matrix ${W} \in \RR^{m \times m}$
    \item a vector $ {q} \in \RR^m$,
    \item a vector of coefficients of friction $\mu \in \RR^{n_c}$
  \end{itemize}
 the  3DFC problem, denoted by $\mathrm{3DFC}(W,q,\mu)$, consists in finding two vectors $u\in\RR^m$ and $r\in \RR^m$ such that
\begin{equation}\label{eq:3dfc}
  \begin{cases}
    \hat u = W r + q +\left[
      \left[\begin{array}{c}
          \mu^\alpha \|u^\alpha_\t\|\\
          0 \\
          0
        \end{array}\right]^T, \alpha = 1 \ldots n_c
    \right]^T \\ \\
    K^\star_{\mu} \ni {\hat u} \perp r \in K_{\mu}
  \end{cases}
\end{equation}
\qed
\end{definition}

\begin{definition}[Global 3DFrictional contact  problem (G3DFC)]\index{G3DFC}
  Given
  \begin{itemize}
    \item a symmetric positive definite matrix ${M} \in \RR^{n \times n}$
    \item a vector $ {f} \in \RR^n$,
    \item a matrix  ${H} \in \RR^{n \times m}$
    \item a vector $w \in \RR^{m}$,
    \item a vector of coefficients of friction $\mu \in \RR^{n_c}$
  \end{itemize}
 the Global 3DFC problem, denoted by $\mathrm{G3DFC}(M,H,f,w,\mu)$, consists in finding three vectors $ {v} \in \RR^n$, $u\in\RR^m$ and $r\in \RR^m$  such that
\begin{equation}\label{eq:Gfc3d}
  \begin{cases}
    M v = {H} {r} + {f} \\[1mm]
    \hat u = H^T v + w +\left[
      \left[\begin{array}{c}
        \mu^\alpha \|u^\alpha_\t\|\\
        0 \\
        0
      \end{array}\right]^T, \alpha = 1 \ldots n_c
\right]^T \\[1mm]
    K^\star_{\mu} \ni {\hat u} \perp r \in K_{\mu}
  \end{cases}
\end{equation}
\qed
\end{definition}




\begin{definition}[Global  Mixed Frictional contact problem (GM3DFC)]\index{GN3DFC}
  Given
  \begin{itemize}
    \item a symmetric positive definite matrix ${M} \in \RR^{n \times n}$
    \item a vector $ {f} \in \RR^n$,
    \item a matrix  ${H} \in \RR^{n \times m}$
    \item a matrix  ${G} \in \RR^{n \times p}$
     \item a vector $w \in \RR^{m}$,
     \item a vector $b \in \RR^{p}$,
    \item a vector of coefficients of friction $\mu \in \RR^{n_c}$
  \end{itemize}
 the Global Mixed 3DFC problem, denoted by $\mathrm{GM3DFC}(M,H,G,w,b,\mu)$, consists in finding four vectors $ {v} \in \RR^n$, $u\in\RR^m$, $r\in \RR^m$ and $\lambda \in \RR^p$ such that
\begin{equation}\label{eq:gmfc3d}
  \begin{cases}
    M v = {H} {r} + G\lambda + {f} \\[1mm]
    G^T v +b =0 \\[1mm]
    \hat u = H^T v + w +\left[
      \left[\begin{array}{c}
        \mu \|u^\alpha_\t\|\\
        0 \\
        0
      \end{array}\right]^T, \alpha = 1 \ldots n_c
\right]^T \\[1mm]
    K^\star_{\mu} \ni {\hat u} \perp r \in K_{\mu}
  \end{cases}
\end{equation}
\qed
\end{definition}


\begin{definition}[Mixed 3DFrictional contact  problem (M3DFC)]\index{M3DFC}
  Given
  \begin{itemize}
    \item a positive semi--definite matrix  ${W} \in \RR^{m \times m}$
    \item a matrix  ${V} \in \RR^{m \times p}$
    \item a matrix  ${R} \in \RR^{p \times p}$
     \item a vector $q \in \RR^{m}$,
     \item a vector $s \in \RR^{p}$,
    \item a vector of coefficients of friction $\mu \in \RR^{n_c}$
  \end{itemize}
 the  Mixed 3DFC problem, denoted by $\mathrm{M3DFC}(R,V,W,q,s,\mu)$ , consists in finding three vectors $u\in\RR^m$, $r\in \RR^m$ and $\lambda \in \RR^p$  such that
\begin{equation}\label{eq:mfc3d}
  \begin{cases}
    V^T {r} + R \lambda + s = 0 \\[1mm]
    \hat u = W {r}    + V\lambda  + q +\left[
      \left[\begin{array}{c}
        \mu^\alpha \|u^\alpha_\t\|\\
        0 \\
        0
      \end{array}\right]^T, \alpha = 1 \ldots n_c
\right]^T \\[1mm]
   K^\star_{\mu} \ni {\hat u} \perp r \in K_{\mu}
  \end{cases}
\end{equation}
\qed
\end{definition}

\paragraph{Remark}
Note that the previous problems may be an instance of quasi-static problems: the matrix $M$ plays the role of the stiffness matrix and the vector $u$ is a position or a displacement. All the problems can also be an problem in terms of acceleration and forces that we find in event--driven schemes.

%\section{Measuring errors}

\section{Details on the  implementation}

\paragraph{File format}

The proposed file format for storing and managing data is the HDF5 data format\\
 \url{http://www.hdfgroup.org/HDF5}


\noindent The data name should be defined as close as possible to the definition of this document.

\paragraph{Matrix storage}
Several matrix storages are considered :
\begin{enumerate}
\item dense format
\item sparse format : row compressed format, column compressed and triplet (see the description in~\cite{Davis:2006:DMS:1196434}).
\end{enumerate}
The storage of dense matrices is in column major mode (FORTRAN mode). For the sparse matrices, we use the sparse toolkit developed by T. Davis~\cite{Davis:2006:DMS:1196434}.

\paragraph{C implementation}

A C implementation is proposed for reading and writing each of 3DFC problems into HDF5 files. Some details of the C implementation are given in Appendix. More details can be found at \url{http://fclib.gforge.inria.fr}.




\section{Additional  description of the problems}

The following additional information should be added in a reference document and in the HDF5 file.


\begin{itemize}
\item \verb?TITLE? : a title for the problem
\item \verb?DESCRIPTION? : the field of application. Short description on how the problem is generated.
\item \verb?MATRIX_INFO? : the sparsity and the conditioning of the matrices.
\item \verb?MATH_INFO? : existence, uniqueness of solutions.
\item \ldots
\end{itemize}

\noindent The following data can be optionally added in the HDF5 file
\begin{itemize}
\item \verb?SOLUTION? : a reference solution
\item \verb?INITIAL_GUESS? : an initial guess
\item \ldots
\end{itemize}

\clearpage


\section{List of problems in FCLIB.  version 0.2}
\def\ssep{1.5mm}

\begin{itemize}
\item Hanging chain with initial velocity at the tip (see Section~\ref{Sec:Chain}).
\item 100 capsules dropped into a box (see Section~\ref{Sec:Capsules}).
\item 50 boxes stacked under gravity (see Section~\ref{Sec:BoxesStack}).
\item A tower of Kaplas (see Section~\ref{Sec:Kaplas}).
\end{itemize}

For each example, several configurations are available. Each problem is described in a file (HDF5 format) and mainly characterized by the number of degrees of freedom, the number of contacts and the formulation for the contact problem.

\clearpage
\subsection{Hanging chain with initial velocity at the tip.}
\label{Sec:Chain}
{\tt
  \centering
  \begin{tabular}{p{0.3\linewidth}p{0.65\linewidth}}
    \hline \\
    Authors & V. Acary, M. Br\'emond. (INRIA Rh\^one--Alpes) \\
    Date & 10/02/2014\\
    Software & Siconos\\ \\
    \hline \\
  \end{tabular}}

This set of $1514$ problems has been generated by Siconos with the help of Bullet contact detection library. It simulates an hanging chain with initial velocity at the tip. The chain is composed of $11$ elements with the same geometry given by a unique mesh.  The mass of each component is $1$kg for a length of $13.7$m and a thickness of $7.6$m . The initial velocity at the tip is $50$mm/s.

The script that generates this example can be obtained from the Siconos development team. On Figure~\ref{fig:Chain-distrib}, the distribution of the number of contacts, the number of d.o.f and the ratio number of contacts unknowns/number of d.o.f are illustrated.

\begin{minipage}{0.29\linewidth}
  \includegraphics[width=1.0\textwidth]{Chains}
\end{minipage}
\begin{minipage}{0.49\linewidth}
  \begin{tabular}{|p{0.7\textwidth}|c|}
    coefficient of friction & $0.3$ \\[\ssep]
    number of problems & 1514 \\[\ssep]
    number of degrees of freedom & [48:60] \\[\ssep]
    number of contacts & [8:28] \\[\ssep]
    required accuracy   & $10^{-8}$    
  \end{tabular}
\end{minipage}
\begin{figure}[htbp]
  \centering
  \includegraphics[width=0.7\textwidth]{distrib-Chain.pdf}
  \caption{distribution of the number of contacts, the number of d.o.f and their ratio}
  \label{fig:Chain-distrib}
\end{figure}

\clearpage
\subsection{100 capsules dropped into a box.}
\label{Sec:Capsules}
{\tt
  \centering
  \begin{tabular}{p{0.3\linewidth}p{0.65\linewidth}}
    \hline \\
    Authors & V. Acary, M. Br\'emond. (INRIA Rh\^one--Alpes) \\
    Date & 10/02/2014\\
    Software & Siconos\\ \\
    \hline \\
  \end{tabular}}

This set of $1514$ problems has been generated by Siconos with the help of Bullet contact detection library. It simulates $100$ capsules dropped into a box. The Mass of each capsule is $1$kg and length is $5$m. The radius is $1$m.

The script that generates this example can be obtained from the Siconos development team. On Figure~\ref{fig:Capsules-distrib}, the distribution of the number of contacts, the number of d.o.f and the ratio number of contacts unknowns/number of d.o.f are illustrated.

  \begin{minipage}{0.49\linewidth}
    \includegraphics[width=1.0\textwidth]{Capsules}
  \end{minipage}  
  \begin{minipage}{0.49\linewidth}
    \begin{tabular}{|p{0.7\textwidth}|c|}
      coefficient of friction & $0.7$ \\[\ssep]
      number of problems & 1705 \\[\ssep]
      number of degrees of freedom & [6:600] \\[\ssep]
      number of contacts &  [0:300]\\[\ssep]
      required accuracy   & $10^{-8}$    
    \end{tabular}
  \end{minipage}
\begin{figure}[htbp]
  \centering
  
  \includegraphics[width=0.7\textwidth]{distrib-Capsules.pdf}


  \caption{distribution of the number of contacts, the number of d.o.f and their ratio}
  \label{fig:Capsules-distrib}
\end{figure}


\clearpage
\subsection{50 boxes stacked under gravity}
\label{Sec:BoxesStack}
{\tt
  \centering
  \begin{tabular}{p{0.3\linewidth}p{0.65\linewidth}}
    \hline \\
    Authors & V. Acary, M. Br\'emond. (INRIA Rh\^one--Alpes) \\
    Date & 10/02/2014\\
    Software & Siconos\\ \\
    \hline \\
  \end{tabular}}

This set of $1514$ problems has been generated by Siconos with the help of Bullet contact detection library. It simulates 50 boxes stacked under gravity. The mass of the box is $1$kg and the size is $2\times 2$m.
The script that generates this example can be obtained from the Siconos development team. On Figure~\ref{fig:BoxesStack-distrib}, the distribution of the number of contacts, the number of d.o.f and the ratio number of contacts unknowns/number of d.o.f are illustrated.

  \begin{minipage}{0.14\linewidth}
    \includegraphics[width=1.0\textwidth]{BoxesStack}
  \end{minipage}
  \begin{minipage}{0.25\linewidth}
    \includegraphics[width=1.0\textwidth]{BoxesStack2}
  \end{minipage}
  \begin{minipage}{0.49\linewidth}
    \begin{tabular}{|p{0.7\textwidth}|c|}
      coefficient of friction &  0.7\\[\ssep]
      number of problems &  1159 \\[\ssep]
      number of degrees of freedom & [6:300] \\[\ssep]
      number of contacts &  [0:200]\\[\ssep]
      required accuracy   & $10^{-8}$
    \end{tabular}
  \end{minipage}

\begin{figure}[htbp]
  \centering
  
  \includegraphics[width=0.7\textwidth]{distrib-BoxesStack1.pdf}


  \caption{distribution of the number of contacts, the number of d.o.f and their ratio}
  \label{fig:BoxesStack-distrib}
\end{figure}
\clearpage
\subsection{A tower of Kaplas}
\label{Sec:Kaplas}
{\tt
  \centering
  \begin{tabular}{p{0.3\linewidth}p{0.65\linewidth}}
    \hline \\
    Authors & V. Acary, M. Br\'emond. (INRIA Rh\^one--Alpes) \\
    Date & 10/02/2014\\
    Software & Siconos\\ \\
    \hline \\
  \end{tabular}}

This set of $201$ problems has been generated by Siconos with the help of Bullet contact detection library. It simulates a tower of $144$ kaplas of dimension $11.4\times 2.348\times 0.78267$cm. The mass of each is $1$kg. The script that generates this example can be obtained from the Siconos development team. On Figure~\ref{fig:BoxesStack-distrib}, the distribution of the number of contacts, the number of d.o.f and the ratio number of contacts unknowns/number of d.o.f are illustrated.

  \begin{minipage}{0.50\linewidth}
    \includegraphics[width=1.0\textwidth]{KaplasTower}
  \end{minipage}
  \begin{minipage}{0.49\linewidth}
    \begin{tabular}{|p{0.7\textwidth}|c|}
      coefficient of friction &  0.3\\[\ssep]
      number of problems &  201 \\[\ssep]
      number of degrees of freedom & [72:864] \\[\ssep]
      number of contacts &  [0:950]\\[\ssep]
      required accuracy   & $10^{-8}$
    \end{tabular}
  \end{minipage}


\begin{figure}[htbp]
  \centering
  \includegraphics[width=0.7\textwidth]{distrib-KaplasTower.pdf}
  \caption{distribution of the number of contacts, the number of d.o.f and their ratio}
  \label{fig:KaplasTower-distrib}
\end{figure}



\clearpage
\bibliographystyle{plain}
\bibliography{biblio}
\clearpage
\appendix
%--- Begin generated contents ---
% \section{Introduction}
% \label{index}\hypertarget{index}{}\input{./latex/index}
% \section{Download}
% \label{download}
% \hypertarget{download}{}
% \input{./latex/download}
% \section{Contact us}
% \label{contact}
% \hypertarget{contact}{}
% \input{./latex/contact}
% \section{Related Publications}
% \label{publications}
% \hypertarget{publications}{}
% \input{./latex/publications}
\section{Class Index}
\input{./latex/annotated}
% \section{File Index}
% \input{./latex/files}
\section{Class Documentation}
\input{./latex/structcs__dmperm__results}
\input{./latex/structcs__numeric}
\input{./latex/structcs__sparse}
\input{./latex/structcs__symbolic}
\input{./latex/structfclib__global}
\input{./latex/structfclib__info}
\input{./latex/structfclib__local}
\input{./latex/structfclib__matrix}
\input{./latex/structfclib__matrix__info}
\input{./latex/structfclib__solution}

\end{document}
\endinput


%%
%% End of file `squelette-rr.tex'.