File: assembler_t.cpp

package info (click to toggle)
fcml 1.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,536 kB
  • sloc: ansic: 57,510; cpp: 21,835; sh: 4,410; lex: 834; makefile: 508; yacc: 317
file content (620 lines) | stat: -rw-r--r-- 21,536 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*
 * FCML - Free Code Manipulation Library.
 * Copyright (C) 2010-2020 Slawomir Wojtasiak
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

/* Test suite initialization. */

#include "assembler_t.hpp"

#include <stdio.h>

#include <fcml_common.hpp>
#include <fcml_assembler.hpp>
#include <fcml_registers.hpp>
#include <fcml_lag_assembler.hpp>
#include <fcml_stateful_assembler.hpp>
#include <fcml_intel_dialect.hpp>
#include <fcml_intel_mnemonics.hpp>

using namespace fcml;
using namespace fcml::intel;

fcml_bool fcml_tf_cpp_assembler_suite_init(void) {
    return FCML_TRUE;
}

fcml_bool fcml_tf_cpp_assembler_suite_cleanup(void) {
    return FCML_TRUE;
}

void fcml_tf_cpp_assemble_instruction_long_form(void) {

    Instruction instruction;

    instruction.setMnemonic(fcml::intel::M_MOV);
    instruction.setHints(FCML_HINT_FAR_POINTER | FCML_HINT_LONG_FORM_POINTER);
    instruction.getCondition().setConditionType(Condition::CONDITION_BE);
    instruction.getCondition().setNegation(FCML_TRUE);
    instruction.setOperandsCount(2);
    instruction.setPrefixes(FCML_PREFIX_LOCK | FCML_PREFIX_REPE);

    instruction[0].setOperandType(Operand::OT_REGISTER);
	instruction[0].getRegister().setReg(FCML_REG_EAX);
	instruction[0].getRegister().setSize(FCML_DS_32);
	instruction[0].getRegister().setType(Register::REG_GPR);
	instruction[1].setOperandType(Operand::OT_ADDRESS);
	instruction[1].getAddress().setAddressForm(Address::AF_OFFSET);
	instruction[1].getAddress().getOffset().setSigned(FCML_TRUE);
	instruction[1].getAddress().getOffset().setInt32(0x401000);
	instruction[1].getAddress().getOffset().setSize(FCML_DS_32);
	instruction[1].getAddress().setSizeOperator(FCML_DS_32);

    fcml_st_instruction instStr;

    TypeConverter::convert( instruction, instStr );

    STF_ASSERT_EQUAL( instStr.mnemonic, M_MOV );
    STF_ASSERT_EQUAL( instStr.hints, FCML_HINT_FAR_POINTER | FCML_HINT_LONG_FORM_POINTER );
    STF_ASSERT_EQUAL( instStr.operands_count, 2 );
    STF_ASSERT_EQUAL( instStr.prefixes, FCML_PREFIX_LOCK | FCML_PREFIX_REPE );
    STF_ASSERT_EQUAL( instStr.condition.condition_type, static_cast<fcml_en_condition_type>( instruction.getCondition().getConditionType() ) );

    STF_ASSERT_EQUAL( FCML_OT_REGISTER, instStr.operands[0].type );
    STF_ASSERT_EQUAL( FCML_REG_EAX, instStr.operands[0].reg.reg );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[0].reg.size );
    STF_ASSERT_EQUAL( FCML_REG_GPR, instStr.operands[0].reg.type );
    STF_ASSERT_EQUAL( FCML_OT_ADDRESS, instStr.operands[1].type );
    STF_ASSERT_EQUAL( FCML_AF_OFFSET, instStr.operands[1].address.address_form );
    STF_ASSERT_EQUAL( FCML_TRUE, instStr.operands[1].address.offset.is_signed );
    STF_ASSERT_EQUAL( 0x401000, instStr.operands[1].address.offset.off32 );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[1].address.offset.size );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[1].address.size_operator );

    TypeConverter::free( instStr );

}

void fcml_tf_cpp_assemble_instruction_short_form(void) {

    Instruction instruction;

    instruction.setMnemonic(FCML_TEXT("mov"));
    instruction.setHints(FCML_HINT_FAR_POINTER | FCML_HINT_LONG_FORM_POINTER);
    instruction.getCondition().setConditionType(Condition::CONDITION_BE);
    instruction.getCondition().setNegation(FCML_TRUE);
    instruction.setOperandsCount(2);
    instruction.setPrefixes(FCML_PREFIX_LOCK | FCML_PREFIX_REPE);

    instruction[0].reg( Register::EAX() );
	instruction[1].off( (fcml_int32_t)0x401000, FCML_DS_32 );

    fcml_st_instruction instStr;

    TypeConverter::convert( instruction, instStr );

    STF_ASSERT_STRING_EQUAL( instStr.mnemonic, FCML_TEXT("mov") );
    STF_ASSERT_EQUAL( instStr.hints, FCML_HINT_FAR_POINTER | FCML_HINT_LONG_FORM_POINTER );
    STF_ASSERT_EQUAL( instStr.operands_count, 2 );
    STF_ASSERT_EQUAL( instStr.prefixes, FCML_PREFIX_LOCK | FCML_PREFIX_REPE );
    STF_ASSERT_EQUAL( instStr.condition.condition_type, static_cast<fcml_en_condition_type>( instruction.getCondition().getConditionType() ) );

    STF_ASSERT_EQUAL( FCML_OT_REGISTER, instStr.operands[0].type );
    STF_ASSERT_EQUAL( FCML_REG_EAX, instStr.operands[0].reg.reg );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[0].reg.size );
    STF_ASSERT_EQUAL( FCML_REG_GPR, instStr.operands[0].reg.type );
    STF_ASSERT_EQUAL( FCML_OT_ADDRESS, instStr.operands[1].type );
    STF_ASSERT_EQUAL( FCML_AF_OFFSET, instStr.operands[1].address.address_form );
    STF_ASSERT_EQUAL( FCML_TRUE, instStr.operands[1].address.offset.is_signed );
    STF_ASSERT_EQUAL( 0x401000, instStr.operands[1].address.offset.off32 );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[1].address.offset.size );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[1].address.size_operator );

    TypeConverter::free( instStr );

}

void fcml_tf_cpp_assemble_instruction_builder_short(void) {

    Instruction instruction;

    // Long form, don't be afraid short alternatives are presented below.
    instruction = IB::inst(_FT("mov")).farPtr().longFormPtr().lock().repe().reg( Register::EAX() ).off( (fcml_int32_t)0x401000, FCML_DS_32 ).build();

    fcml_st_instruction instStr;

    TypeConverter::convert( instruction, instStr );

    STF_ASSERT_STRING_EQUAL( instStr.mnemonic, FCML_TEXT("mov") );
    STF_ASSERT_EQUAL( instStr.hints, FCML_HINT_FAR_POINTER | FCML_HINT_LONG_FORM_POINTER );
    STF_ASSERT_EQUAL( instStr.operands_count, 2 );
    STF_ASSERT_EQUAL( instStr.prefixes, FCML_PREFIX_LOCK | FCML_PREFIX_REPE );
    STF_ASSERT_EQUAL( instStr.condition.condition_type, static_cast<fcml_en_condition_type>( instruction.getCondition().getConditionType() ) );

    STF_ASSERT_EQUAL( FCML_OT_REGISTER, instStr.operands[0].type );
    STF_ASSERT_EQUAL( FCML_REG_EAX, instStr.operands[0].reg.reg );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[0].reg.size );
    STF_ASSERT_EQUAL( FCML_REG_GPR, instStr.operands[0].reg.type );
    STF_ASSERT_EQUAL( FCML_OT_ADDRESS, instStr.operands[1].type );
    STF_ASSERT_EQUAL( FCML_AF_OFFSET, instStr.operands[1].address.address_form );
    STF_ASSERT_EQUAL( FCML_TRUE, instStr.operands[1].address.offset.is_signed );
    STF_ASSERT_EQUAL( 0x401000, instStr.operands[1].address.offset.off32 );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[1].address.offset.size );
    STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[1].address.size_operator );

    TypeConverter::free( instStr );

}

void fcml_tf_util_check_instruction( Instruction &instruction ) {

	fcml_st_instruction instStr;

	TypeConverter::convert( instruction, instStr );

	STF_ASSERT_STRING_EQUAL( instStr.mnemonic, FCML_TEXT("mov") );
	STF_ASSERT_EQUAL( instStr.hints, 0 );
	STF_ASSERT_EQUAL( instStr.operands_count, 2 );
	STF_ASSERT_EQUAL( instStr.prefixes, 0 );
	STF_ASSERT_EQUAL( instStr.condition.condition_type, static_cast<fcml_en_condition_type>( instruction.getCondition().getConditionType() ) );

	STF_ASSERT_EQUAL( FCML_OT_ADDRESS, instStr.operands[0].type );
	STF_ASSERT_EQUAL( FCML_AF_COMBINED, instStr.operands[0].address.address_form );
	STF_ASSERT_EQUAL( FCML_REG_EAX, instStr.operands[0].address.effective_address.base.reg );
	STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[0].address.effective_address.base.size );
	STF_ASSERT_EQUAL( FCML_REG_GPR, instStr.operands[0].address.effective_address.base.type );
	STF_ASSERT_EQUAL( FCML_FALSE, instStr.operands[0].address.effective_address.base.x64_exp );
	STF_ASSERT_EQUAL( FCML_DS_8, instStr.operands[0].address.size_operator );

	STF_ASSERT_EQUAL( FCML_OT_REGISTER, instStr.operands[1].type );
	STF_ASSERT_EQUAL( FCML_REG_ECX, instStr.operands[1].reg.reg );
	STF_ASSERT_EQUAL( FCML_DS_32, instStr.operands[1].reg.size );
	STF_ASSERT_EQUAL( FCML_REG_GPR, instStr.operands[1].reg.type );

	TypeConverter::free( instStr );

}

void fcml_tf_cpp_assemble_instruction_builder_shortest(void) {

    Instruction instruction;

    instruction = IB(M_MOV).eff( EAX, 8 ).reg( ECX ).build();

    fcml_tf_util_check_instruction( instruction );

    instruction = IB::inst(M_MOV).eff( EAX, 8 ).reg( ECX ).build();

	fcml_tf_util_check_instruction( instruction );

	instruction = IB::inst(M_MOV).eff( EAX, 8 ).reg( ECX );

	fcml_tf_util_check_instruction( instruction );

	instruction = IB(M_MOV).eff( EAX, 8 ).reg( ECX );

	instruction = IB(M_MOV) << OB::eff( EAX, 8 ) << OB::reg( ECX );

	fcml_tf_util_check_instruction( instruction );

	instruction = IB(M_MOV) << OB::effb( EAX ) << OB::reg( ECX );

	fcml_tf_util_check_instruction( instruction );

}

void fcml_tf_cpp_assemble_instruction_builder_hints_prefixes(void) {

	Instruction instruction;

	instruction = IB(M_MOV) << IB::LOCK() << IB::REP() << IB::INDIRECT_PTR() << IB::NEAR_PTR() << OB::effb( EAX ) << OB::reg( ECX );

	STF_ASSERT( instruction.getMnemonic() == fcml_cstring(FCML_TEXT("mov")) );
	STF_ASSERT( instruction.getMnemonic() == M_MOV );
	STF_ASSERT_EQUAL( instruction.getPrefixes(), FCML_PREFIX_LOCK | FCML_PREFIX_REP );
	STF_ASSERT( instruction.isLock() );
	STF_ASSERT( instruction.isRep() );
	STF_ASSERT_EQUAL( instruction.getHints(), FCML_HINT_INDIRECT_POINTER | FCML_HINT_NEAR_POINTER );
	STF_ASSERT( instruction.isIndirectPointer() );
	STF_ASSERT( instruction.isNearPointer() );
}

fcml_bool fcml_tf_cmp_instruction( const AssembledInstruction *assembledInstruction, fcml_uint8_t *instruction, fcml_usize len ) {
	if( !assembledInstruction ) {
		return FCML_FALSE;
	}
	if( assembledInstruction->getCodeLength() == len ) {
		for( fcml_usize i = 0; i < len; i++ ) {
			if( assembledInstruction->getCode()[i] != instruction[i] ) {
				return FCML_FALSE;
			}
		}
		return FCML_TRUE;
	}
	return FCML_FALSE;
}

const fcml_string fcml_iarr_lag_assembler_code_src[] = {
	"start:      mov ebx, 1",
	"loop_big:   inc ebx",
	"            cmp ebx, 10",
	"            je  finish",
	"loop_small: mov eax, 1",
	"increment:  inc eax",
	"            cmp eax, 10",
	"            je  finish_small",
	"            jmp increment",
	"finish_small:",
	"            jmp loop_big",
	"finish:     ret",
	NULL
};

const fcml_uint8_t fcml_iarr_lag_assembler_code_bin[] = {
	0xBB, 0x01, 0x00, 0x00, 0x00,
	0x43,
	0x83, 0xFB, 0x0A,
	0x74, 0x0F,
	0xB8, 0x01, 0x00, 0x00, 0x00,
	0x40,
	0x83, 0xF8, 0x0A,
	0x74, 0x02,
	0xEB, 0xF8,
	0xEB, 0xEB,
	0xC3
};

const fcml_string fcml_iarr_lag_assembler_code_src_error[] = {
	"start:      mov ebx, 1",
	"loop_big:   inc ebx",
	"            cmp ebx, 10",
	"            je  finish_xxxxxx", // Unknown symbol.
	"loop_small: mov eax, 1",
	"increment:  inc eax",
	"            cmp eax, 10",
	"            je  finish_small",
	"            jmp increment",
	"finish_small:",
	"            jmp loop_big",
	"finish:     ret",
	NULL
};

const fcml_string fcml_iarr_lag_assembler_code_src_error_1[] = {
	"start:      mov ebx, 1",
	"loop_big:   inc eb, p][]s ddx", // Syntax error.
	"            cmp ebx, 10",
	"            je  finish", // Unknown symbol.
	"loop_small: mov eax, 1",
	"increment:  inc eax",
	"            cmp eax, 10",
	"            je  finish_small",
	"            jmp increment",
	"finish_small:",
	"            jmp loop_big",
	"finish:     ret",
	NULL
};


void fcml_tf_cpp_multi_pass_assemble(void) {

	fcml_ceh_error error;

	try {

		IntelDialect dialect;

		MultiPassAssemblerContext ctx( EntryPoint::OM_32_BIT, 0x401000 );

		MultiPassAssemblerResult result;

		MultiPassAssembler assembler(dialect);

		error = assembler.assemble( ctx, fcml_iarr_lag_assembler_code_src, result );

		STF_ASSERT_EQUAL( error, FCML_CEH_GEC_NO_ERROR );

		if( !error ) {

			fcml_int i = 0;
			CodeIterator it = result.getCodeIterator();
			while( it.hasNext() ) {
				fcml_uint8_t codeByte = it.next();
				if( codeByte != fcml_iarr_lag_assembler_code_bin[i++] ) {
					STF_FAIL( "Assembled code is not the same." );
				}
			}

			if( i != sizeof( fcml_iarr_lag_assembler_code_bin ) ) {
				STF_FAIL( "Assembled code is not the same." );
			}

		}

	} catch( BaseException &exc ) {
		STF_FAIL("Exception while assembling the code.");
	}

}

void fcml_tf_cpp_multi_pass_assemble_error(void) {

	try {

		IntelDialect dialect;

		MultiPassAssemblerContext ctx( EntryPoint::OM_32_BIT, 0x401000 );

		MultiPassAssemblerResult result;

		MultiPassAssembler assembler(dialect);

		try {
			assembler.assemble( ctx, fcml_iarr_lag_assembler_code_src_error, result );
			STF_FAIL( "Should fail!" );
		} catch( AssemblingFailedException &exc ) {
			// Undefined symbol, see the assembled source code.
			STF_ASSERT_EQUAL( exc.getMsg(), fcml_cstring( FCML_TEXT( "Assembling failed: Undefined symbol: finish_xxxxxx." ) ) );
			STF_ASSERT_EQUAL( exc.getError(), FCML_CEH_GEC_UNDEFINED_SYMBOL );
			STF_ASSERT( true ); // OK.
		}


	} catch( BaseException &exc ) {
		STF_FAIL("Exception while assembling the code.");
	}

}

void fcml_tf_cpp_multi_pass_assemble_error_1(void) {

	try {

		IntelDialect dialect;

		MultiPassAssemblerContext ctx( EntryPoint::OM_32_BIT, 0x401000 );

		MultiPassAssemblerResult result;

		MultiPassAssembler assembler(dialect);

		try {
			assembler.assemble( ctx, fcml_iarr_lag_assembler_code_src_error_1, result );
			STF_FAIL( "Should fail!" );
		} catch( AssemblingFailedException &exc ) {
			// Undefined symbol, see the assembled source code.
			STF_ASSERT_EQUAL( exc.getMsg(), fcml_cstring( FCML_TEXT( "Assembling failed: syntax error" ) ) );
			STF_ASSERT_EQUAL( exc.getError(), FCML_CEH_GEC_INVALID_INPUT );
			STF_ASSERT( true ); // OK.
		}

	} catch( BaseException &exc ) {
		STF_FAIL("Exception while assembling the code.");
	}

}

void fcml_tf_cpp_assemble(void) {

	fcml_ceh_error error;

	try {

		IntelDialect dialect;

		AssemblerContext ctx( EntryPoint::OM_32_BIT, 0x401000 );

		AssemblerResult result;

		Assembler assembler(dialect);

		Instruction instruction = IB(M_MOV) << OB::reg(EAX) << OB::offd( 0x40302010 );

		error = assembler.assemble( ctx, instruction, result );
		STF_ASSERT_EQUAL( error, FCML_CEH_GEC_NO_ERROR );

		if( !error ) {
			fcml_uint8_t inst[] = {0xA1, 0x10, 0x20, 0x30, 0x40};
			STF_ASSERT( fcml_tf_cmp_instruction( result.getChosenInstruction(), inst, 5 ) );

			// Checks access to the constant assembled instruction.
			const AssembledInstruction chosenInstruction = *result.getChosenInstruction();
			const fcml_uint8_t *buffer = chosenInstruction.getCode();
			STF_ASSERT_PTR_NOT_NULL( buffer );
			fcml_usize len = chosenInstruction.getCodeLength();
			STF_ASSERT_EQUAL( len, 5 );
			const ErrorContainer &errors = chosenInstruction.getWarningContainer();
			STF_ASSERT_EQUAL( errors.getSize(), 0 );
			try {
			    errors.getFirstError();
			    STF_FAIL("Container is empty.");
			} catch( IllegalStateException &exc ) {
			    STF_ASSERT( true );
			}
            STF_ASSERT("" == errors.getFirstErrorMessage() );
		}

	} catch( BaseException &exc ) {
		STF_FAIL("Exception while assembling the code.");
	}

}

/* A 64-bit GDB dump used as an example.
Dump of assembler code for function main(int, char**):
0x0000000000404ddc <+0>:     55              push   %rbp
0x0000000000404ddd <+1>:     48 89 e5        mov    %rsp,%rbp
0x0000000000404de0 <+4>:     48 83 ec 20     sub    $0x20,%rsp
0x0000000000404de4 <+8>:     89 7d ec        mov    %edi,-0x14(%rbp)
0x0000000000404de7 <+11>:    48 89 75 e0     mov    %rsi,-0x20(%rbp)
0x0000000000404deb <+15>:    be 60 d2 62 00  mov    $0x62d260,%esi
0x0000000000404df0 <+20>:    bf e8 db 41 00  mov    $0x41dbe8,%edi
0x0000000000404df5 <+25>:    e8 1f 89 01 00  callq  0x41d719
*/

fcml_uint8_t fcml_iarr_stateful_assembler_result_expected[] = {
    0x55,
    0x48, 0x8b, 0xec, // (It's just a different way to encode "mov %rsp,%rbp", everything is OK.)
    0x48, 0x83, 0xec, 0x20,
    0x89, 0x7d, 0xec,
    0x48, 0x89, 0x75, 0xe0,
    0xbe, 0x60, 0xd2, 0x62, 0x00,
    0xbf, 0xe8, 0xdb, 0x41, 0x00,
    0xe8, 0x1f, 0x89, 0x01, 0x00
};

/* Tests CodeBuffer helper class. */
void fcml_tf_cpp_assemble_statefull_assembler(void) {

    try {

        // Only because Intel mnemonics had been already included.
        IntelDialect dialect;

        AssemblerContext ctx( EntryPoint::OM_64_BIT, 0x404ddc );

        Assembler assembler(dialect);

        StatefulAssembler sasm(assembler, ctx);

        sasm << M_PUSH << OB::reg(RBP);
        sasm << M_MOV  << OB::reg(RBP) << OB::reg(RSP);
        // Check direct use of the immediate and register operands.
        sasm << M_SUB  << RSP << 0x20;
        sasm << M_MOV  << OB::effd(RBP,-0x14) << OB::reg(EDI);
        sasm << M_MOV  << OB::effq(RBP,-0x20) << OB::reg(RSI);
        sasm << M_MOV  << OB::reg(ESI) << OB::imm(0x62d260);
        // And using plain methods.
        sasm.inst(M_MOV).op(EDI).op(0x41dbe8);
        // Flush instruction builder immediately.
        sasm << M_CALL << InstructionHint::DIRECT_POINTER() << OB::offq(0x41d719) << StatefulAssembler::FLUSH();

        fcml_uint8_t *result_bytes = fcml_iarr_stateful_assembler_result_expected;

        bool failed = false;

        CodeIterator it = sasm.getCodeIterator();
        while( it.hasNext() ) {
            fcml_uint8_t b = it.next();
            if( *result_bytes++ != b ) {
                failed = true;
                break;
            }
        }

        if( failed ) {
            STF_FAIL( "Assembled code and result differs." );
        } else {
            STF_ASSERT( true );
        }

    } catch( BaseException &exc ) {
        STF_FAIL("Exception while assembling the code.");
    }

}

/* Tests CodeBuffer helper class. */
void fcml_tf_cpp_assemble_stateful_assembler_with_parser(void) {

    try {

        // Only because Intel mnemonics had been already included.
        IntelDialect dialect;

        AssemblerContext ctx( EntryPoint::OM_64_BIT, 0x404ddc );

        Assembler assembler(dialect);

        StatefulAssembler sasm(assembler, ctx, true);

        // Enable symbols support.
        sasm.getParserConfig().setDisableSymbolsDeclaration(false);

        // By the way, check if symbols works as expected.
        SymbolTable st;
        st.add( _FT("_start"), 0x41d719 );
        sasm.setSymbolTable( &st );

        sasm << _FT( "push rbp" );
        sasm << _FT( "mov rbp, rsp" );
        sasm << _FT( "sub rsp, 0x20" );
        sasm << _FT( "_label: mov dword [rbp-0x14], edi" );
        sasm << _FT( "mov qword [rbp-0x20], rsi" );
        sasm << _FT( "mov esi, 0x62d260" );
        sasm << _FT( "mov edi, 0x41dbe8" );
        sasm << _FT( "call _start" );

        Symbol symbol = st.get( _FT("_label") );
        const Symbol symbolConst = symbol;
        STF_ASSERT( !symbolConst.isEmpty() );
        STF_ASSERT_EQUAL( symbolConst.getValue(), 0x404de4 );

        const SymbolTable &stConst = st;

        fcml_int64_t label = stConst.get( _FT("_label") );
        STF_ASSERT_EQUAL( label, 0x404de4 );

        // Check if generated code is the same as expected one.

        fcml_uint8_t *result_bytes = fcml_iarr_stateful_assembler_result_expected;

        bool failed = false;

        CodeIterator it = sasm.getCodeIterator();
        while( it.hasNext() ) {
            fcml_uint8_t b = it.next();
            if( *result_bytes++ != b ) {
                failed = true;
                break;
            }
        }

        if( failed ) {
            STF_FAIL( "Assembled code and result differs." );
        } else {
            STF_ASSERT( true );
        }

        std::vector<AssembledInstruction>& instructions = sasm.getAssembledInstructions();
        STF_ASSERT_EQUAL( instructions.size(), 8 );

    } catch( BaseException &exc ) {
        STF_FAIL("Exception while assembling the code.");
    }

}

fcml_stf_test_case fcml_ti_cpp_assembler[] = {
    { "fcml_tf_cpp_assemble_instruction_long_form", fcml_tf_cpp_assemble_instruction_long_form },
    { "fcml_tf_cpp_assemble_instruction_short_form", fcml_tf_cpp_assemble_instruction_short_form },
    { "fcml_tf_cpp_assemble_instruction_builder_short", fcml_tf_cpp_assemble_instruction_builder_short },
    { "fcml_tf_cpp_assemble_instruction_builder_shortest", fcml_tf_cpp_assemble_instruction_builder_shortest },
    { "fcml_tf_cpp_assemble_instruction_builder_hints_prefixes", fcml_tf_cpp_assemble_instruction_builder_hints_prefixes },
    { "fcml_tf_cpp_multi_pass_assemble", fcml_tf_cpp_multi_pass_assemble },
    { "fcml_tf_cpp_multi_pass_assemble_error", fcml_tf_cpp_multi_pass_assemble_error },
    { "fcml_tf_cpp_multi_pass_assemble_error_1", fcml_tf_cpp_multi_pass_assemble_error_1 },
    { "fcml_tf_cpp_assemble", fcml_tf_cpp_assemble },
    { "fcml_tf_cpp_assemble_statefull_assembler", fcml_tf_cpp_assemble_statefull_assembler },
    { "fcml_tf_cpp_assemble_stateful_assembler_with_parser", fcml_tf_cpp_assemble_stateful_assembler_with_parser },
    FCML_STF_NULL_TEST
};

fcml_stf_test_suite fcml_si_cpp_assembler = {
    "suite-fcml-cpp-assembler", fcml_tf_cpp_assembler_suite_init, fcml_tf_cpp_assembler_suite_cleanup, fcml_ti_cpp_assembler
};