1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
# Copyrights (C)
# for this R-port:
# 1999 - 2007, Diethelm Wuertz, GPL
# Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
# info@rmetrics.org
# www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
# see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
# see Rmetrics's copyright file
################################################################################
# FUNCTION: ELLIPTICAL COPULAE PARAMETER FITTING:
# ellipticalCopulaSim Simulates bivariate elliptical copula
# ellipticalCopulaFit Fits the paramter of an elliptical copula
################################################################################
################################################################################
# FUNCTION: ELLIPTICAL COPULAE PARAMETER FITTING:
# ellipticalCopulaSim Simulates bivariate elliptical copula
# ellipticalCopulaFit Fits the paramter of an elliptical copula
ellipticalCopulaSim =
function (n, rho = 0.75, param = NULL, type = c("norm", "cauchy", "t"))
{ # A function implemented by Diethelm Wuertz
# Description:
# Simulates bivariate elliptical Copula
# Match Arguments:
type = match.arg(type)
# "norm" Random Deviates:
if (type == "norm") {
ans = .rnormCopula(n = n, rho = rho)
}
# "cauchy" Random Deviates:
if (type == "cauchy") {
ans = .rcauchyCopula(n = n, rho = rho)
}
# "t" Random Deviates:
if (type == "t") {
if (is.null(param)) {
param = c(nu = 4)
} else {
param = c(nu = param[1])
}
ans = .rtCopula(n = n, rho = rho, nu = param)
}
# "logistic" Random Deviates:
# NOT YET IMPLEMENTED ...
# "laplace" Random Deviates:
# NOT YET IMPLEMENTED ...
# "kotz" Random Deviates:
# NOT YET IMPLEMENTED ...
# "epower" Random Deviates:
# NOT YET IMPLEMENTED ...
# Control:
control = list(rho = rho, param = param, type = type)
attr(ans, "control") = unlist(control)
# Return Value:
ans
}
# ------------------------------------------------------------------------------
ellipticalCopulaFit =
function(u, v = NULL, type = c("norm", "cauchy", "t"), ...)
{ # A function implemented by Diethelm Wuertz
# Description:
# Fits the paramter of an elliptical copula
# Note:
# The upper limit for nu is 100
# FUNCTION:
# Match Arguments:
type = match.arg(type)
# Settings:
U = u
V = v
if (is.list(u)) {
u = u[[1]]
v = u[[2]]
}
if (is.matrix(u)) {
U = u[, 1]
V = u[, 2]
}
U <<- u
V <<- v
# Estimate Rho from Kendall's tau for all types of Copula:
tau = cor(x = U, y = V, method = "kendall") #[1, 2]
Rho = rho = sin((pi*tau/2))
# Estimate "norm" Copula:
if (type == "norm") {
fun = function(x) {
-mean( log(.dnormCopula(u = U, v = V, rho = x)) )
}
fit = nlminb(start = rho, objective = fun, lower = -1, upper = 1, ...)
}
# Estimate "cauchy" Copula:
if (type == "cauchy") {
fun = function(x) {
-mean( log(.dcauchyCopula(u = U, v = V, rho = x)) )
}
fit = nlminb(start = rho, objective = fun, lower = -1, upper = 1, ...)
}
# Estimate "t" Copula:
if (type == "t") {
fun = function(x) {
-mean( log(.dtCopula(u = U, v = V, rho = x[1], nu = x[2])) )
}
fit = nlminb(start = c(rho = rho, nu = 4), objective = fun,
lower = c(-1, 1), upper = c(1, Inf), ...)
fit$Nu = 4
}
# Estimate "logistic" Copula:
if (type == "logistic") {
# NOT YET IMPLEMENTED ...
fun = function(x) {
-mean( log(dellipticalCopula(u = U, v = V, ...)) )
}
fit = nlminb(start = c(), objective = fun,
lower = c(rho = -1, NA), upper = c(rho = 1, NA), ...)
}
# Estimate "laplace" Copula:
if (type == "laplace") {
# NOT YET IMPLEMENTED ...
fun = function(x) {
-mean( log(dellipticalCopula(u = U, v = V, ...)) )
}
fit = nlminb(start = c(), objective = fun,
lower = c(rho = -1, NA), upper = c(rho = 1, NA), ...)
}
# Estimate "kotz" Copula:
if (type == "kotz") {
# NOT YET IMPLEMENTED ...
fun = function(x) {
-mean( log(dellipticalCopula(u = U, v = V, ...)) )
}
fit = nlminb(start = c(), objective = fun,
lower = c(rho = -1, NA), upper = c(rho = 1, NA), ...)
}
# Estimate "epower" Copula:
if (type == "epower") {
# NOT YET IMPLEMENTED ...
fun = function(x) {
-mean( log(dellipticalCopula(u = U, v = V, ...)) )
}
fit = nlminb(start = c(), objective = fun,
lower = c(rho = -1, NA), upper = c(rho = 1, NA), ...)
}
# Keep Start Value:
# fit$Rho = Rho
# Return Value:
fit
}
################################################################################
|