File: EllipticalModelling.Rd

package info (click to toggle)
fcopulae 260.72-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 712 kB
  • ctags: 5
  • sloc: makefile: 13
file content (195 lines) | stat: -rwxr-xr-x 6,287 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
\name{EllipticalModelling}

\alias{EllipticalModelling}


\alias{ellipticalCopulaSim}
\alias{ellipticalCopulaFit}


\title{Bivariate Elliptical Copulae}


\description{
    
    A collection and description of functions to investigate 
    bivariate elliptical copulae. 
    \cr
    
    Elliptical Copulae Functions:
    
    \tabular{ll}{
    \code{ellipticalCopulaSim} \tab simulates an elliptical copula, \cr
    \code{ellipticalCopulaFit} \tab fits the parameters of an elliptical copula. }
    
}


\usage{    
ellipticalCopulaSim(n, rho = 0.75, param = NULL, type = c("norm", "cauchy", "t"))
ellipticalCopulaFit(u, v, type = c("norm", "cauchy", "t"), \dots)
}


\arguments{
  
    \item{n}{
        [rellipticalCopula][ellipticalCopulaSim] - \cr         
        the number of random deviates to be generated, an integer value.
        }
    \item{rho}{
        [*ellipticalCopula] - \cr
        is the numeric value setting the correlation strength, ranging
        between minus one and one.
        }
    \item{param}{
        [*ellipticalCopula][gfunc] - \cr
        additional distributional parameters: for the Sudent-t distribution
        this is "nu", for the Kotz distribution this is "r", and for the
        Exponential Power distribution these are "r" and "s". If the
        argument \code{param=NULL} then default values are taken. These are
        for the Student-t \code{param=c(nu=4))}, for the Kotz distribution
        \code{param=c(r=1))}, and for the exponential power distribution
        \code{param=c(r=1,s=1)}. Note, that the Kotz and exponential power
        copulae are independent of \code{r}, and that \code{r} only enters
        the generator, the density, the probability and the quantile 
        functions.
        }
    \item{type}{
        [*ellipticalCopula][gfunc] - \cr
        the type of the elliptical copula. A character string selected 
        from: "norm", "cauchy", "t", "logistic", "laplace", "kotz", 
        or "epower".
        [*ellipticalSlider] - \cr
        a character string which indicates what kind of plot should be 
        displayed, either a perspective plot if \code{type="persp"}, the
        default value, or a contour plot if \code{type="contour"}.
        }
    \item{u, v}{
        [*ellipticalCopula] - \cr
        two numeric values or vectors of the same length at which
        the copula will be computed. If \code{u} is a list then the
        the \code{\$x} and \code{\$y} elements will be used as \code{u} 
        and \code{v}. If \code{u} is a two column matrix then the 
        first column will be used as \code{u} and the the second 
        as \code{v}. If \code{u} is an integer value greater than one,
        say \code{N}, than the values for all points on the 
        \code{[(0:N)/N]^2} grid spanning the unit square will be returned.
        }
    \item{\dots}{
        [ellipticalCopulaFit] - \cr
        arguments passed to the optimization function \code{nlminb}.
        }
    
}


\value{
        
    \bold{Copula Functions:}
    \cr\cr
    
    The functions \code{[rpd]ellipticalCopula} return a numeric vector
    of random variates, probabilities, or densities for the specified 
    copula computed at grid coordinates \code{u}|\code{v}.
    \cr
    
    The functions \code{[rpd]ellipticalSlider} display an interactive
    graph of an perspective copula plot either for random variates,
    probabilities or densities. Alternatively, an image underlayed
    contour plot can be shown.
    \cr
    
    \bold{Copula Dependence Measures:}
    \cr\cr
    
    The functions \code{ellipticalTau} and \code{ellipticalRho} return
    a numericc value for Kendall's Tau and Spearman's Rho.
    \cr
    
    \bold{Copula Tail Coefficient:}
    \cr\cr
    
    The function \code{ellipticalTailCoeff} returns the coefficient of
    tail dependence for a specified copula. The function 
    \code{ellipticalTailPlot} displays a whole plot for the upper or
    alternatively for the lower tail dependence as a function of 
    \code{u} for a set of nine \code{rho} values.
    \cr
    
    \bold{Copula Generator Function:}
    \cr\cr
    
    The function \code{gfunc} computes the generator function for the
    specified copula, by default the normal copula. If the argument
    \code{x} is missing, then the normalization constand lambda will
    be returned, otherwise if \code{x} is specified the values for the
    function \emph{g(x)} will be freturned. The selected type of copula
    is added to the output as an attribute named \code{"control"}. 
    The function \code{gfuncSlider} allows to display interactively 
    the generator function, the marginal density, the marginal 
    probability, and the contours of the the bivariate density.
    \cr
    
    \bold{Copula Simulation and Parameter Fitting:}
    \cr\cr
    
    The function \code{ellipticalCopulaSim} returns a numeric two-column
    matrix with randomly generated variates for the specified copula.
    \cr
    
    The function \code{ellipticalCopulaFit} returns a fit to empirical
    data for the specified copula. The returned object is a list with
    elements from the function \code{nlminb}.
        
}


\author{

    Diethelm Wuertz for the Rmetrics \R-port.
    
}


\examples{
\dontrun{
## [rp]ellipticalCopula -
   # Default Normal Copula:
   rellipticalCopula(10)
   pellipticalCopula(10)

## [rp]ellipticalCopula -   
   # Student-t Copula Probability and Density:
   u = grid2d(x = (0:25)/25)
   pellipticalCopula(u, rho = 0.75, param = 4, 
     type = "t", output = "list")
   d = dellipticalCopula(u, rho = 0.75, param = 4, 
     type = "t", output = "list")   
   persp(d, theta = -40, phi = 30, col = "steelblue")
   
## ellipticalTau -
## ellipticalRho -
   # Dependence Measures:
   ellipticalTau(rho = -0.5)
   ellipticalRho(rho = 0.75, type = "logistic", subdivisions = 100)
   
## ellipticalTailCoeff -
   # Student-t Tail Coefficient:
   ellipticalTailCoeff(rho = 0.25, param = 3, type = "t")

## gfunc -
   # Generator Function:
   plot(gfunc(x = 0:10), main = "Generator Function")
   
## ellipticalCopulaSim -
## ellipticalCopulaSim -
   # Simualtion and Parameter Fitting:
   rv = ellipticalCopulaSim(n = 100, rho = 0.75)
   ellipticalCopulaFit(rv)
}  
}


\keyword{models}