1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
\name{EllipticalModelling}
\alias{EllipticalModelling}
\alias{ellipticalCopulaSim}
\alias{ellipticalCopulaFit}
\title{Bivariate Elliptical Copulae}
\description{
A collection and description of functions to investigate
bivariate elliptical copulae.
\cr
Elliptical Copulae Functions:
\tabular{ll}{
\code{ellipticalCopulaSim} \tab simulates an elliptical copula, \cr
\code{ellipticalCopulaFit} \tab fits the parameters of an elliptical copula. }
}
\usage{
ellipticalCopulaSim(n, rho = 0.75, param = NULL, type = c("norm", "cauchy", "t"))
ellipticalCopulaFit(u, v, type = c("norm", "cauchy", "t"), \dots)
}
\arguments{
\item{n}{
[rellipticalCopula][ellipticalCopulaSim] - \cr
the number of random deviates to be generated, an integer value.
}
\item{rho}{
[*ellipticalCopula] - \cr
is the numeric value setting the correlation strength, ranging
between minus one and one.
}
\item{param}{
[*ellipticalCopula][gfunc] - \cr
additional distributional parameters: for the Sudent-t distribution
this is "nu", for the Kotz distribution this is "r", and for the
Exponential Power distribution these are "r" and "s". If the
argument \code{param=NULL} then default values are taken. These are
for the Student-t \code{param=c(nu=4))}, for the Kotz distribution
\code{param=c(r=1))}, and for the exponential power distribution
\code{param=c(r=1,s=1)}. Note, that the Kotz and exponential power
copulae are independent of \code{r}, and that \code{r} only enters
the generator, the density, the probability and the quantile
functions.
}
\item{type}{
[*ellipticalCopula][gfunc] - \cr
the type of the elliptical copula. A character string selected
from: "norm", "cauchy", "t", "logistic", "laplace", "kotz",
or "epower".
[*ellipticalSlider] - \cr
a character string which indicates what kind of plot should be
displayed, either a perspective plot if \code{type="persp"}, the
default value, or a contour plot if \code{type="contour"}.
}
\item{u, v}{
[*ellipticalCopula] - \cr
two numeric values or vectors of the same length at which
the copula will be computed. If \code{u} is a list then the
the \code{\$x} and \code{\$y} elements will be used as \code{u}
and \code{v}. If \code{u} is a two column matrix then the
first column will be used as \code{u} and the the second
as \code{v}. If \code{u} is an integer value greater than one,
say \code{N}, than the values for all points on the
\code{[(0:N)/N]^2} grid spanning the unit square will be returned.
}
\item{\dots}{
[ellipticalCopulaFit] - \cr
arguments passed to the optimization function \code{nlminb}.
}
}
\value{
\bold{Copula Functions:}
\cr\cr
The functions \code{[rpd]ellipticalCopula} return a numeric vector
of random variates, probabilities, or densities for the specified
copula computed at grid coordinates \code{u}|\code{v}.
\cr
The functions \code{[rpd]ellipticalSlider} display an interactive
graph of an perspective copula plot either for random variates,
probabilities or densities. Alternatively, an image underlayed
contour plot can be shown.
\cr
\bold{Copula Dependence Measures:}
\cr\cr
The functions \code{ellipticalTau} and \code{ellipticalRho} return
a numericc value for Kendall's Tau and Spearman's Rho.
\cr
\bold{Copula Tail Coefficient:}
\cr\cr
The function \code{ellipticalTailCoeff} returns the coefficient of
tail dependence for a specified copula. The function
\code{ellipticalTailPlot} displays a whole plot for the upper or
alternatively for the lower tail dependence as a function of
\code{u} for a set of nine \code{rho} values.
\cr
\bold{Copula Generator Function:}
\cr\cr
The function \code{gfunc} computes the generator function for the
specified copula, by default the normal copula. If the argument
\code{x} is missing, then the normalization constand lambda will
be returned, otherwise if \code{x} is specified the values for the
function \emph{g(x)} will be freturned. The selected type of copula
is added to the output as an attribute named \code{"control"}.
The function \code{gfuncSlider} allows to display interactively
the generator function, the marginal density, the marginal
probability, and the contours of the the bivariate density.
\cr
\bold{Copula Simulation and Parameter Fitting:}
\cr\cr
The function \code{ellipticalCopulaSim} returns a numeric two-column
matrix with randomly generated variates for the specified copula.
\cr
The function \code{ellipticalCopulaFit} returns a fit to empirical
data for the specified copula. The returned object is a list with
elements from the function \code{nlminb}.
}
\author{
Diethelm Wuertz for the Rmetrics \R-port.
}
\examples{
\dontrun{
## [rp]ellipticalCopula -
# Default Normal Copula:
rellipticalCopula(10)
pellipticalCopula(10)
## [rp]ellipticalCopula -
# Student-t Copula Probability and Density:
u = grid2d(x = (0:25)/25)
pellipticalCopula(u, rho = 0.75, param = 4,
type = "t", output = "list")
d = dellipticalCopula(u, rho = 0.75, param = 4,
type = "t", output = "list")
persp(d, theta = -40, phi = 30, col = "steelblue")
## ellipticalTau -
## ellipticalRho -
# Dependence Measures:
ellipticalTau(rho = -0.5)
ellipticalRho(rho = 0.75, type = "logistic", subdivisions = 100)
## ellipticalTailCoeff -
# Student-t Tail Coefficient:
ellipticalTailCoeff(rho = 0.25, param = 3, type = "t")
## gfunc -
# Generator Function:
plot(gfunc(x = 0:10), main = "Generator Function")
## ellipticalCopulaSim -
## ellipticalCopulaSim -
# Simualtion and Parameter Fitting:
rv = ellipticalCopulaSim(n = 100, rho = 0.75)
ellipticalCopulaFit(rv)
}
}
\keyword{models}
|