1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
This is a tutorial and gallery demonstrating =feedgnuplot= usage. The
[[https://github.com/dkogan/feedgnuplot/][documentation]] provides a complete reference, and [[https://github.com/dkogan/feedgnuplot/#recipes][application-specific usage
examples]]. The capabilities of gnuplot itself are demonstrated at [[http://www.gnuplot.info/demo/][its demo page]].
* Tutorial
First, a trivial plot: let's plot a sinusoid
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE 'say sin($_/5.)' | \
feedgnuplot
#+END_SRC
#+RESULTS:
[[file:guide-1.svg]]
This was a trivial plot, and was trivially-easy to make: we gave the tool one
column of data with no specific instructions, and we got a plot.
The interpretation of the input data is controlled by two arguments: =--domain=
and =--dataid=. Here we passed neither, so each line of input is interpreted as
=y0 y1 y2...= with sequential integers (0, 1, 2, ...) used for the =x=
coordinate. Let's pass in more than one =y= per line to plot a sine and a cosine
together:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
say "$c $s"' | \
feedgnuplot --lines --points
#+END_SRC
#+RESULTS:
[[file:guide-2.svg]]
Here I also passed =--lines --points= to make more legible plots.
Note that, the lines may have different numbers of points. To plot the cosine
from every line, but the sine from every 5th line:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
if($.%5) { say "$c"; }
else { say "$c $s"; }' | \
feedgnuplot --lines --points
#+END_SRC
#+RESULTS:
[[file:guide-3.svg]]
Each =y= is referred to as a "dataset" or "curve" in the code and documentation.
With =--domain=, the =x= values are read from the data instead of simply
encoding line numbers: each line of input is interpreted as =x y0 y1 y2...=.
Let's plot =sin(theta)= vs. =cos(theta)=, i.e. a circle:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
say "$c $s"' | \
feedgnuplot --lines --points --domain
#+END_SRC
#+RESULTS:
[[file:guide-4.svg]]
Hmmm. We asked for a circle, but this looks more like an ellipse. Why? Because
gnuplot is autoscaling the =x= and =y= axes independently to fill the plot window.
We can scale the axes /together/ by passing =--square=, and we get a circle:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
say "$c $s"' | \
feedgnuplot --lines --points --domain --square
#+END_SRC
#+RESULTS:
[[file:guide-5.svg]]
Again, we can have multiple =y= in each line, and each line may have a different
number of =y=. Let's plot a circle /and/ an ellipse, sampled more coarsely:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
if($.%5) { say "$c $s"; }
else { $s2 = $s/2;
say "$c $s $s2"; }' | \
feedgnuplot --lines --points --domain --square
#+END_SRC
#+RESULTS:
[[file:guide-6.svg]]
We just plotted something where each point is represented by 2 values: =x= and
=y=. When making 2D plots, this is the most common case, but others are
possible. What if we want to color-code our points using another column of data?
We feed in the new column, and we tell =feedgnuplot= that we now have /3/ values
per point (the tuple size), and we tell =gnuplot= how we want this plot to be
made. Color-coding by the angle, in degrees:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$thdeg = $_/100.*360.;
$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
say "$c $s $thdeg";' | \
feedgnuplot --domain --square \
--tuplesizeall 3 \
--styleall 'with linespoints palette'
#+END_SRC
#+RESULTS:
[[file:guide-7.svg]]
Here we said that /all/ the datasets have 3 values per point. And that /all/ the
datasets should be plotted with that particular style. The styles are strings
that are passed on to =gnuplot= verbatim. So the full power of =gnuplot= is
available, and there's nothing =feedgnuplot=-specific to learn. =gnuplot= has
plenty of documentation about styling details.
The above =--styleall= argument may be identically replaced with a shorthand:
#+BEGIN_EXAMPLE
--with 'points palette'
#+END_EXAMPLE
Note that the =--lines --points= specify the /default/ style only, so these
options do nothing here, and if we want lines /and/ points, we ask for those in
the style:
#+BEGIN_EXAMPLE
--with 'linespoints palette'
#+END_EXAMPLE
The styles and tuple sizes can be different for each dataset. For instance, to
apply the colors only to the circle (dataset 0), leaving the ellipse (dataset 1)
with the default tuple size and style:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$thdeg = $_/100.*360.;
$th = $_/100.*2.*3.14159;
$s=sin($th); $c=cos($th);
if($.%5) { say "$c $s $thdeg" }
else { $s2 = $s/2;
say "$c $s $thdeg $s2"; }' | \
feedgnuplot --lines --points --domain --square \
--tuplesize 0 3 \
--style 0 'with points palette' \
--legend 0 'circle' \
--legend 1 'ellipse'
#+END_SRC
#+RESULTS:
[[file:guide-8.svg]]
Here we also asked for dataset labels to make it clear to the viewer what's
what.
The other significant option involved in the interpretation of data is
=--dataid=. This labels each dataset in the data, so instead of referring to
dataset =0=, you could refer to dataset =circle=. With =--domain --dataid=, each
line of input is interpreted as =x id0 y0 id1 y1...=, with the number of =y= in
each dataset reflecting the tuple size. Naturally, =--dataid= without =--domain=
is identical, except without the leading =x=. The previous plot can be
reproduced with =--dataid=:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$thdeg = $_/100.*360.;
$th = $_/100.*2.*3.14159;
$s=sin($th); $c=cos($th);
if($.%5) { say "$c circle $s $thdeg" }
else { $s2 = $s/2;
say "$c circle $s $thdeg ellipse $s2"; }' | \
feedgnuplot --lines --points --domain --dataid --square \
--tuplesize circle 3 \
--style circle 'with points palette' \
--autolegend
#+END_SRC
#+RESULTS:
[[file:guide-9.svg]]
Note that instead of labelling the datasets explicitly, we passed =--autolegend=
to use the ID as the label for each dataset. This works without =--dataid= also,
but the IDs are then the unhelpful sequential integers.
Instead of identifying columns using explicit IDs inside the data stream (as
with =--dataid=), it's possible to read [[https://www.github.com/dkogan/vnlog][vnlog]] data, which contains a single
header line identifying the columns. For instance:
#+BEGIN_SRC sh :results file link :exports both
( echo '# th';
seq 100 | perl -nE 'say $_/100.*2.*3.14159;' ) | \
vnl-filter -p 'c=cos(th),s=sin(th),th_deg=th*180./3.14159,s2=sin(th)/2' | \
feedgnuplot --lines --points --domain --vnl --square \
--tuplesize s 3 \
--style s 'with points palette' \
--legend s circle \
--legend s2 ellipse
#+END_SRC
#+RESULTS:
[[file:guide-10.svg]]
* Gallery
This is a good overview of the syntax and of the data interpretation. Let's demo
some fancy plots to serve as a cookbook.
Since the actual plotting is handled by =gnuplot=, its documentation and [[http://www.gnuplot.info/demo/][demos]]
are the primary reference on how to do stuff.
** Line, point sizes, thicknesses, styles
Most often, we're plotting lines or points. The most common styling keywords
are:
- =pt= (or equivalently =pointtype=)
- =ps= (or equivalently =pointsize=)
- =lt= (or equivalently =linetype=)
- =lw= (or equivalently =linewidth=)
- =lc= (or equivalently =linecolor=)
- =dt= (or equivalently =dashtype=)
For details about these and all other styles, see the =gnuplot= documentation.
For instance, the first little bit of the docs about the different line widths:
#+BEGIN_SRC sh :results output verbatim :exports both
gnuplot -e 'help linewidth' | head -n 20
#+END_SRC
#+RESULTS:
#+begin_example
Each terminal has a default set of line and point types, which can be seen
by using the command `test`. `set style line` defines a set of line types
and widths and point types and sizes so that you can refer to them later by
an index instead of repeating all the information at each invocation.
Syntax:
set style line <index> default
set style line <index> {{linetype | lt} <line_type> | <colorspec>}
{{linecolor | lc} <colorspec>}
{{linewidth | lw} <line_width>}
{{pointtype | pt} <point_type>}
{{pointsize | ps} <point_size>}
{{pointinterval | pi} <interval>}
{{pointnumber | pn} <max_symbols>}
{{dashtype | dt} <dashtype>}
{palette}
unset style line
show style line
`default` sets all line style parameters to those of the linetype with
#+end_example
gnuplot has a =test= command, which produces a demo of the various available
styles. This documentation uses the =svg= terminal (what gnuplot calls a
backend). So for the =svg= terminal, the various styles look like this:
#+begin_src gnuplot :results file link :exports both :file gnuplot-terminal-test.svg
test
#+end_src
#+RESULTS:
[[file:gnuplot-terminal-test.svg]]
So for instance if you plot =--with 'linespoints pt 4 dt 2 lc 7'= you'll get a
red dashed line with square points. By default you'd be using one of the
interactive graphical terminals (=x11= or =qt=), which would have largely
similar styling.
Let's make a plot with some variable colors and point sizes:
#+BEGIN_SRC sh :results file link :exports both
seq -10 10 | \
perl -nE '$, = " ";
say "parabola", $_*$_, abs($_)/2, $_*50;
say "line", $_*3. + 30.;' | \
feedgnuplot --dataid \
--tuplesize parabola 4 \
--style parabola 'with points pointtype 7 pointsize variable palette' \
--style line 'with lines lw 3 lc "red" dashtype 2' \
--set 'cbrange [-600:600]'
#+END_SRC
#+RESULTS:
[[file:guide-11.svg]]
Here we used =--set= to set the range of the colorbar. =--set= (and =--unset=)
map to the gnuplot =set= (and =--unset=) command.
** Error bars
As before, the =gnuplot= documentation has the styling details:
#+BEGIN_SRC sh :results none :exports code
gnuplot -e 'help xerrorbars'
gnuplot -e 'help yerrorbars'
gnuplot -e 'help xyerrorbars'
#+END_SRC
For brevity, I'm not including the contents of those help pages here. These tell
us how to specify errorbars: how many columns to pass in, what they mean, etc.
Example:
#+BEGIN_SRC sh :results file link :exports both
seq -10 10 | \
perl -nE '$, = " ";
chomp;
$x = $_;
$y = $x*$x * 10 + 20;
say $x+1, "parabola", $y;
say $x+1, "parabola_symmetric_xyerrorbars", $y, $x*$x/80, $x*$x/4;
say $x, "parabola_unsymmetric_xyerrorbars", $y, $x-$x*$x/80, $x+$x*$x/40, $y-$x*$x/4, $y+$x*$x/8;
say $x, "line_unsymmetric_yerrorbars", $x*20+500, 40;' | \
feedgnuplot --domain --dataid \
--tuplesize parabola 2 \
--style parabola "with lines" \
--tuplesize parabola_symmetric_xyerrorbars 4 \
--style parabola_symmetric_xyerrorbars "with xyerrorbars" \
--legend parabola_symmetric_xyerrorbars "using the 'x y xdelta ydelta' style" \
--tuplesize parabola_unsymmetric_xyerrorbars 6 \
--style parabola_unsymmetric_xyerrorbars "with xyerrorbars" \
--legend parabola_unsymmetric_xyerrorbars "using the 'x y xlow xhigh ylow yhigh' style" \
--tuplesize line_unsymmetric_yerrorbars 3 \
--style line_unsymmetric_yerrorbars "with yerrorbars" \
--legend line_unsymmetric_yerrorbars "using the 'x y ydelta' style" \
--xmin -10 --xmax 10 \
--set 'key box opaque'
#+END_SRC
#+RESULTS:
[[file:guide-12.svg]]
** Polar coordinates
See
#+BEGIN_SRC sh :results none :exports code
gnuplot -e 'help polar'
#+END_SRC
Let's plot a simple =rho = theta= spiral:
#+BEGIN_SRC sh :results file link :exports both
seq 100 | \
perl -nE '$x = $_/10; \
say "$x $x"' | \
feedgnuplot --domain \
--with 'lines' \
--set 'polar' \
--square
#+END_SRC
#+RESULTS:
[[file:guide-13.svg]]
** Timestamps
=feedgnuplot= can interpret data given as timestamps in an arbitrary format
parseable with =strftime()=. Unlike everything else in =feedgnuplot=, these
timestamps /may/ contain whitespace. For instance:
#+BEGIN_SRC sh :results file link :exports both
seq 5 | gawk '{print strftime("%d %b %Y %T",1382249107+$1,1),$1}' | \
feedgnuplot --domain \
--lines --points \
--timefmt '%d %b %Y %H:%M:%S' \
--xmin '20 Oct 2013 06:05:00' \
--xmax '20 Oct 2013 06:05:20'
#+END_SRC
#+RESULTS:
[[file:guide-14.svg]]
=--timefmt= controls how to parse the /input/. The formatting of the /output/ is
auto-selected by gnuplot, and sometimes we want to control it. To show the hour
and minute and seconds on the x axis:
#+BEGIN_SRC sh :results file link :exports both
seq 5 | gawk '{print strftime("%d %b %Y %T",1382249107+$1,1),$1}' | \
feedgnuplot --domain \
--lines --points \
--timefmt '%d %b %Y %H:%M:%S' \
--xmin '20 Oct 2013 06:05:00' \
--xmax '20 Oct 2013 06:05:20' \
--set 'format x "%H:%M:%S"'
#+END_SRC
#+RESULTS:
[[file:guide-15.svg]]
** Labels
Docs:
#+BEGIN_SRC sh :results none :exports code
gnuplot -e 'help labels'
gnuplot -e 'help set label'
#+END_SRC
Basic example:
#+BEGIN_SRC sh :results file link :exports both
echo \
"1 1 aaa
2 3 bbb
4 5 ccc" | \
feedgnuplot --domain \
--with 'labels' \
--tuplesizeall 3 \
--xmin 0 --xmax 5 \
--ymin 0 --ymax 6 \
--unset grid
#+END_SRC
#+RESULTS:
[[file:guide-16.svg]]
More complex example (varied orientations and colors):
#+BEGIN_SRC sh :results file link :exports both
echo \
"1 1 aaa 0 10
2 3 bbb 30 18
4 5 ccc 90 20" | \
feedgnuplot --domain \
--with 'labels rotate variable textcolor palette' \
--tuplesizeall 5 \
--xmin 0 --xmax 5 \
--ymin 0 --ymax 6 \
--unset grid
#+END_SRC
#+RESULTS:
[[file:guide-17.svg]]
** 3D plots
We can plot in 3D by passing =--3d=. When plotting interactively, you can use
the mouse to rotate the plot, and look at it from different directions.
Otherwise, the viewing angle can be set with =--set 'view ...'=. See
#+BEGIN_SRC sh :results none :exports code
gnuplot -e 'help set view'
#+END_SRC
Unlike 2D plots, 3D plots have a 2-dimensional domain, and =--domain= is
/required/. So each line is interpreted =x y z0 z1 z2...=.
A double-helix with variable color and variable pointsize
#+BEGIN_SRC sh :results file link :exports both
seq 200 | \
perl -nE '$, = " ";
$th = $_/10;
$z = $_/40;
$c = cos($th);
$s = sin($th);
$size = 0.5 + abs($c);
$color = $z;
say $c, $s, 0, $z, $size, $color;
say -$c, -$s, 1, $z, $size, $color;' | \
feedgnuplot --domain --dataid --3d \
--with 'points pointsize variable pointtype 7 palette' \
--tuplesizeall 5 \
--title "Double helix" \
--squarexy
#+END_SRC
#+RESULTS:
[[file:guide-18.svg]]
** Histograms
=gnuplot= (and =feedgnuplot=) has support for histograms. So we can give it
data, and have it bin it for us. Pre-sorting the data is unnecessary. Let's look
at the central limit theorem: we look at the distribution of sums of 10 uniform
samples in [-1,1]: it should be normal-ish. And let's draw the expected perfect
PDF on top (as an equation, evaluated by =gnuplot=).
#+BEGIN_SRC sh :results file link :exports both
N=20000;
Nsum=10;
binwidth=.1;
seq $N | \
perl -nE '$Nsum = '$Nsum';
$var = '$Nsum' / 3.;
$s = 0; for $i (1..$Nsum) { $s += rand()*2-1; }
say $s/sqrt($var);' | \
feedgnuplot --histo 0 --binwidth $binwidth \
--equation-above "($N * sqrt(2.*pi) * erf($binwidth/(2.*sqrt(2.)))) * \
exp(-(x*x)/(2.)) / \
sqrt(2.*pi) title \"Limit gaussian\" with lines lw 2"
#+END_SRC
#+RESULTS:
[[file:guide-19.svg]]
If we want multiple histograms drawn on top of one another, the styling should
be adjusted so that they both remain visible. Let's vary the size of the sum,
and look at the effects: bigger sums should be more gaussian-like:
#+BEGIN_SRC sh :results file link :exports both
N=20000;
binwidth=.1;
for Nsum in 1 2 3; do
seq $N | \
perl -nE '$, = " ";
$Nsum = '$Nsum';
$var = '$Nsum' / 3.;
$s = 0; for $i (1..$Nsum) { $s += rand()*2-1; }
say $Nsum,$s/sqrt($var);';
done | \
feedgnuplot --dataid --histo 1,2,3 --binwidth $binwidth \
--autolegend \
--style 1 'with boxes fill transparent solid 0.3 border lt -1' \
--style 2 'with boxes fill transparent pattern 4 border lt -1' \
--style 3 'with boxes fill transparent pattern 5 border lt -1' \
--equation-above "($N * sqrt(2.*pi) * erf($binwidth/(2.*sqrt(2.)))) * \
exp(-(x*x)/(2.)) / \
sqrt(2.*pi) title \"Limit gaussian\" with lines lw 2"
#+END_SRC
#+RESULTS:
[[file:guide-20.svg]]
** Time-based histograms
It is possible to combine time data with histograms. For instance, let's say we
monitored something, and came up with a dataset that contains timestamps when
some event occurred. Let's make a histogram of this data to get a larger sense
of when the issue happened:
#+BEGIN_SRC sh :results file link :exports both
cat <<EOF | \
feedgnuplot --timefmt '%Y-%m-%d--%H:%M:%S' --histogram 0 --binwidth 120 \
--set 'format x "%H:%M:%S"'
2021-07-21--17:33:22
2021-07-21--17:33:23
2021-07-21--17:33:28
2021-07-21--17:37:13
2021-07-21--17:39:01
2021-07-21--17:44:17
2021-07-21--17:44:22
2021-07-21--17:44:37
2021-07-21--17:44:44
2021-07-21--17:44:49
2021-07-21--17:53:12
2021-07-21--17:53:57
EOF
#+END_SRC
#+RESULTS:
[[file:guide-21.svg]]
** Labeled bar charts
=feedgnuplot= supports bar charts to be drawn with labels appearing in the data.
These aren't "histograms", where gnuplot bins the data for us, but rather the
data is given to us, ready to plot. We pass =--xticlabels= to indicate that the
x-axis tic labels come from the data. This changes the interpretation of the
input: with =--domain=, each line begins with =x label ....=. Without
=--domain=, each line begins with =label ...=. Clearly, the labels may not
contain whitespace. This does /not/ affect the tuple size.
Basic example without =--domain=:
#+BEGIN_SRC sh :results file link :exports both
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
vnl-filter -p label,a,b | \
feedgnuplot --vnl \
--xticlabels \
--style a 'with boxes fill pattern 4 border lt -1' \
--style b 'with boxes fill pattern 5 border lt -1' \
--ymin 0 --unset grid
#+END_SRC
#+RESULTS:
[[file:guide-22.svg]]
We can also pass =--domain= to read the =x= positions from the data also:
#+BEGIN_SRC sh :results file link :exports both
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
feedgnuplot --vnl --domain \
--xticlabels \
--style a 'with boxes fill pattern 4 border lt -1' \
--style b 'with boxes fill pattern 5 border lt -1' \
--ymin 0 --unset grid
#+END_SRC
#+RESULTS:
[[file:guide-23.svg]]
And we can use gnuplot's clustering capabilities:
#+BEGIN_SRC sh :results file link :exports both
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
vnl-filter -p label,a,b | \
feedgnuplot --vnl \
--xticlabels \
--set 'style data histogram' \
--set 'style histogram cluster gap 2' \
--set 'style fill solid border lt -1' \
--autolegend \
--ymin 0 --unset grid
#+END_SRC
#+RESULTS:
[[file:guide-24.svg]]
Or we can vertically stack the bars in each cluster:
#+BEGIN_SRC sh :results file link :exports both
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
vnl-filter -p label,a,b | \
feedgnuplot --vnl \
--xticlabels \
--set 'style data histogram' \
--set 'style histogram rowstacked' \
--set 'boxwidth 0.8' \
--set 'style fill solid border lt -1' \
--autolegend \
--ymin 0 --unset grid
#+END_SRC
#+RESULTS:
[[file:guide-25.svg]]
Using =--xticlabels= to plot bars is probably the most common usage, but
=--xticlabels= means /only/ that we read the x-axis tic labels from the data, so
we can plot anything. For instance:
#+BEGIN_SRC sh :results file link :exports both
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
feedgnuplot --vnl --domain \
--xticlabels \
--tuplesizeall 3 \
--with 'points pt 7 ps 2 palette' \
--xmin 4 --xmax 12 \
--ymin 0 --ymax 6 \
--unset grid
#+END_SRC
#+RESULTS:
[[file:guide-26.svg]]
** Vector fields
Documentation in gnuplot available like this:
#+BEGIN_SRC sh :results none :exports code
gnuplot -e 'help vectors'
#+END_SRC
The docs say that in 2D we want 4 columns: =x, y, xdelta, ydelta= and in 3D we
want 6 columns: =x, y, z, xdelta, ydelta, zdelta=. And we can have a variable
arrowstyle. A vector field in 2D:
#+BEGIN_SRC sh :results file link :exports both
perl -E '$, = " ";
for $x (-5..5) { for $y (-5..5) {
$r = sqrt($x*$x + $y*$y);
say $x, $y, $y/sqrt($r+0.1)*0.5, -$x/sqrt($r+0.1)*0.5;
} }' | \
feedgnuplot --domain \
--tuplesizeall 4 \
--with 'vectors filled head' \
--square
#+END_SRC
#+RESULTS:
[[file:guide-27.svg]]
|