1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
PROBLEM mechanical MESH spinning-disk-parallel-solid-half$1.msh
# MKS
E = 200e9
nu = 0.3
rho = 7800
omega = 1000 * 2*pi/60
f_x(x,y,z) = rho * omega^2* x
f_y(x,y,z) = rho * omega^2* y
# BC symmetry symmetry radial
penalty_weight = 100*E
BC symmetry1 symmetry
BC symmetry2 symmetry
BC symmetry3 symmetry
SOLVE_PROBLEM
# non-dimensional numerical projection
sigma_h(r) = sigmay(r,0,0) / (rho*omega^2/8)
sigma_r(r) = sigmax(r,0,0) / (rho*omega^2/8)
# analytical solution
INCLUDE spinning-disk-dimensions.geo
S_h(r) = ((3+nu)*R^2 - (1+3*nu)*r^2)
S_r(r) = (3+nu) * (R^2 - r^2)
# WRITE_MESH spinning-disk-parallel-solid-half$1.vtk VECTOR u v w sigma
# profiles along r
# PRINT_FUNCTION S_h sigma_h S_r sigma_r MIN 0 MAX R NSTEPS 20 FILE spinning-disk-parallel-solid-half$1.dat
# integral errors
error_h = sqrt(integral((S_h(r)-sigma_h(r))^2, r, 0, R)) / R;
error_r = sqrt(integral((S_r(r)-sigma_r(r))^2, r, 0, R)) / R;
PRINT error_h+error_r
|