File: spinning-disk-parallel-solid-half.fee

package info (click to toggle)
feenox 1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,068 kB
  • sloc: ansic: 28,856; sh: 7,201; makefile: 556; python: 554; xml: 500
file content (40 lines) | stat: -rw-r--r-- 948 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
PROBLEM mechanical MESH spinning-disk-parallel-solid-half$1.msh

# MKS
E = 200e9
nu = 0.3
rho = 7800

omega = 1000 * 2*pi/60
f_x(x,y,z) = rho * omega^2* x
f_y(x,y,z) = rho * omega^2* y

# BC symmetry symmetry radial

penalty_weight = 100*E
BC symmetry1 symmetry
BC symmetry2 symmetry
BC symmetry3 symmetry

SOLVE_PROBLEM

# non-dimensional numerical projection
sigma_h(r) = sigmay(r,0,0) / (rho*omega^2/8)
sigma_r(r) = sigmax(r,0,0) / (rho*omega^2/8)

# analytical solution
INCLUDE spinning-disk-dimensions.geo
S_h(r) = ((3+nu)*R^2 - (1+3*nu)*r^2)
S_r(r) = (3+nu) * (R^2 - r^2)


# WRITE_MESH spinning-disk-parallel-solid-half$1.vtk VECTOR u v w   sigma

# profiles along r
# PRINT_FUNCTION S_h sigma_h S_r sigma_r MIN 0 MAX R NSTEPS 20 FILE spinning-disk-parallel-solid-half$1.dat

# integral errors
error_h = sqrt(integral((S_h(r)-sigma_h(r))^2, r, 0, R)) / R;
error_r = sqrt(integral((S_r(r)-sigma_r(r))^2, r, 0, R)) / R;

PRINT error_h+error_r