File: timoshenko.c

package info (click to toggle)
felt 3.06-9
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 17,512 kB
  • ctags: 7,946
  • sloc: ansic: 85,476; fortran: 3,614; yacc: 2,803; lex: 1,178; makefile: 305; sh: 302
file content (773 lines) | stat: -rw-r--r-- 25,665 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*
    This file is part of the FElt finite element analysis package.
    Copyright (C) 1993-2000 Jason I. Gobat and Darren C. Atkinson

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

/************************************************************************
 * File:	timoshenko.c						*
 *									*
 * Description:	This file contains the definition structure and		*
 *		stiffness function for a Timoshenko beam element.	*
 ************************************************************************/

# include <math.h>
# include "allocate.h"
# include "fe.h"
# include "error.h"
# include "misc.h"

	/*	
         * Here's the definition structure.  This is a very simple
         * implementation, 2 nodes, possible effect on 3 global DOF
         * per node.  We need to prototype the setup and stress functions
         * thing so we can use them in the definition declaration.
	 */

int timoshenkoEltSetup ( );
int timoshenkoEltStress ( );

struct definition timoshenkoDefinition = {
    "timoshenko",
    timoshenkoEltSetup,
    timoshenkoEltStress,
    Linear, 			/* The shape of this element		   */
    2, 				/* 2 nodes per element			   */
    2, 				/* 2 nodes define the shape (it's a line!) */
    2, 				/* 2 magnitudes in each stress structure   */
    3, 				/* 3 global DOF / node			   */
   {0, 1, 2, 6, 0, 0, 0},      	/* DOF 1 is Tx, DOF 2 is Ty DOF 3 is Rz .. */
    1				/* retain stiffness after assembling	   */
};

	/*
	 * We'll declare these three functions as static because other
	 * people might use these same names for their element.  The
	 * static declaration makes them private to this file.
	 * There is nothing magical about them.  They could be called
	 * anything, your element may not use any local functions,
	 * etc., etc.  It's all a matter of preference and style. 
	 */

static Matrix LocalK ( );
static Matrix TransformMatrix ( );
static Matrix LumpedMassMatrix ( );
static Matrix ConsistentMassMatrix ( );
static int    EquivNodalForces ( );

	/*
	 * The element setup function (the one that the general
	 * routines actually call to define element -> K for
	 * Timoshenko beams).  We'll break it up a little more
	 * for our own internal purposes and call some functions
	 * of our own to actually fill out the guts of the thing.
	 */

int timoshenkoEltSetup (element, mass_mode, tangent)
    Element	   element;
    char	   mass_mode;
    int	           tangent;
{
    int 	   count;	/* a count of errors encountered	   */
    Matrix	   T;		/* transform matrix			   */
    Matrix	   khat;	/* local coordinate stiffness matrix	   */
    Matrix         mhat; 	/* local coordinate mass matrix		   */
	
	/*
	 * Since we're nice and we like to do as much error checking
	 * as possible, we'll also check to make sure that all necessary
	 * material properties are set for this element
	 */

    count = 0;
    if (element -> material -> E == 0.0) {
        error ("timoshenko element %d has 0.0 for Young's modulus (E)",
               element -> number);
        count++;
    }
    if (element -> material -> Ix == 0.0) {
        error ("timoshenko element %d has 0.0 for moment of inertia (Ix)",
               element -> number);
        count++;
    }
    if (element -> material -> G == 0.0) {
        error ("timoshenko element %d has 0.0 for bulk modulus (G)",
               element -> number);
        count++;
    }
    if (element -> material -> A == 0.0) {
        error ("timoshenko element %d has 0.0 for cross-section area (A)",
               element -> number);
        count++;
    }
   
	/*
	 * nu and kappa are somewhat special because we have to have
	 * at least one.  If we have nu we'll use it to estimate
	 * element -> kappa according to Cowper's (1966) approximation.
	 * If we have kappa we will of course always use it.  If
	 * we have neither, it's an error
	 */

    if (element -> material -> kappa == 0.0) {
        if (element -> material -> nu == 0.0) {
            error ("timoshenko element %d has 0.0 for Poisson's ratio (nu)",
                   element -> number);
            count++;
        }
        else {
            element -> material -> kappa = 
                 10.0*(1.0 + element -> material -> nu)/
                 (12.0 + 11.0*element -> material -> nu);
        }
    }

	/*
	 * if we've had any errors there is no point in continuing
	 */

    if (count)
        return count;

	/*
	 * get the local stiffness matrix and the transform matrix.
	 * we never allocated any memory for these two because the
	 * functions that we are calling will do that.
	 */

    khat = LocalK (element);
    if (khat == NullMatrix)
       return 1;
 
    T = TransformMatrix (element);

	/*
	 * We can form the element stiffness matrix now through
	 * some simple matrix multiplications.  I like to create
	 * it first just for clarity and to make sure the allocation
	 * went OK (the multiply routine could do it for me, but ...).
 	 * The multiply function here just saves us having to allocate
	 * some temporary space and actually transposing the transform
	 * matrix, it will simply carry out k = T(trans) * K * T
	 */

    if (element -> K == NullMatrix)
       element -> K = CreateMatrix (6,6);

    MultiplyAtBA (element -> K, T, khat);

	/*
	 * Things can get a little tricky here; we'll check if there
	 * are any distributed loads - if there are we need to resolve
	 * them and modify this element's node's equivalent nodal forces.
	 * If not we're home free and we can bail.  In this case I have
	 * relegated all the distributed load handling to a separate
	 * little module.
	 */

    if (element -> numdistributed > 0) {
        count = EquivNodalForces (element, T, NULL, 1);

        if (count)
            return count;
    }
	
	/* 
	 * there's also the possibility that some of this element's nodes
	 * have a hinged DOF ... that's easy to deal with we have a
	 * convenience routine to do all the checking and modifying for us.
	 */

    ResolveHingeConditions (element);

	/*
	 * check to see if we need to form a mass matrix
	 */

    if (mass_mode) {
        if (mass_mode == 'c')
           mhat = ConsistentMassMatrix (element);
        else if (mass_mode == 'l')
           mhat = LumpedMassMatrix (element);
        else
           mhat = NullMatrix;

        if (mhat == NullMatrix)
           return 1;

        if (element -> M == NullMatrix)
           element -> M = CreateMatrix (6,6);

        MultiplyAtBA (element -> M, T, mhat);
    }

	/*
	 * we made it here, everything must have worked!
	 */

    return 0;
}

	/*
	 * The element stress function that actually gets called
	 * to fill in the element's stress structures.  I realize
	 * that a lot of this seems awfully inefficient ... beam type
	 * elements are a bit of an anomaly because they need their
	 * stiffness matrix back and a bunch of local<->global transforms.
	 */

int timoshenkoEltStress (element)
    Element	    element;
{
    unsigned	    i;			/* loop index			 */
    int		    count;		/* count of errors		 */
    static Vector   dlocal = NULL;	/* local nodal displacements	 */
    static Vector   d;			/* global nodal displacements	 */
    static Vector   f;  		/* actual internal forces	 */
    Vector	    equiv;		/* equivalent nodal forces	 */
    Matrix	    T;			/* transform matrix		 */
    static Matrix   khat;		/* local stiffness matrix	 */
    static Matrix   Tt;			/* transpose of transform	 */

	/*
	 * our usual trick to set-up the matrices and vectors that
	 * we need memory for, but that are really just local to this function.
	 */

    if (dlocal == NULL) {
        dlocal = CreateVector (4);
        d = CreateVector (6);
        f = CreateVector (4);
        khat = CreateMatrix (4,4);
        Tt = CreateMatrix (6,4);
    }
        
	/*
	 * set the number of points where we will calculate stresses.
	 * In this case it's two (one at each end).
	 */

    element -> ninteg = 2;

    	/*
	 * Fill out a vector with the element's nodal displacements.
	 * These are in global coordinates of course.  We need to
	 * do a transformation to get them into local coordinates.
	 */

    VectorData (d) [1] = element -> node[1] -> dx[Tx];
    VectorData (d) [2] = element -> node[1] -> dx[Ty];
    VectorData (d) [3] = element -> node[1] -> dx[Rz];
    VectorData (d) [4] = element -> node[1] -> dx[Tx];
    VectorData (d) [5] = element -> node[2] -> dx[Ty];
    VectorData (d) [6] = element -> node[2] -> dx[Rz];

    T = TransformMatrix (element);

    MultiplyMatrices (dlocal, T, d);
   
    	/*
	 * We already have the element stiffness matrix because we
	 * set element -> retainK = 1 in the definition structure.  This
	 * means that the global stiffness assembly routine didn't
	 * trash element -> K after it was done with it and we can
	 * use it again.  We will have to transform it back to local
	 * coordinates, however.
	 */

    TransposeMatrix (Tt, T);

    MultiplyAtBA (khat, Tt, element -> K);

	/*
	 * we can get the internal force vector through a simple
	 * matrix multiplication.
	 */

    MultiplyMatrices (f, khat, dlocal);

	/*
	 * Of course, we may need to modify that for equiv nodal forces
	 */

    if (element -> numdistributed > 0) {
        count = EquivNodalForces (element, NULL, &equiv, 2);
        if (count)
            return count;

        for (i = 1; i <= 4; i++)
            VectorData (f) [i] -= VectorData (equiv) [i];
    }

	/*
	 * set-up some memory for the stress structure and for the values
	 * in the stress structure.  We'll just use a quicky little
	 * convenience routine to do it for us.  It's important to
	 * set element -> ninteg before we call this function.
	 */

    SetupStressMemory (element);

	/*
	 * establish the location of the stresses and the magnitudes
	 * of the stresses at each point.  This particular loop
	 * only works because there are two stress points and two
	 * stress values at each point.
	 */


    for (i = 1; i <= 2; i++) {
        element -> stress[i] -> x = element -> node[i] -> x;
        element -> stress[i] -> y = element -> node[i] -> y;

        element -> stress[1] -> values[i] = VectorData (f)[i];
        element -> stress[2] -> values[i] = VectorData (f)[i+2];
    }
    
    return 0; 
}
   
	/* 
	 * Our own function to define the stiffness matrix in
	 * local coordinates.
	 */

static Matrix LocalK (element)
    Element	  element;
{
    static Matrix k = NULL;	/* the local stiffness matrix	       */
    double	  L;		/* the element length		       */
    double	  phi;		/* bending stiffness / shear stiffness */
    double	  factor;	/* common factor in stiffness matrix   */

    	/*
	 * Our same old trick to make sure we only allocate this memory
	 * once and then use it over and over again each time we need to
	 * create an element of this kind.
	 */

    if (k == NULL) 
        k = CreateMatrix (4,4);

    L = ElementLength (element, 2);
    if (L <= TINY) {
        error ("length of element %d is zero to machine precision",
               element -> number);
        return NullMatrix;
    }   

    phi = 12.0/(L*L)*(element -> material -> E*element -> material -> Ix/
                      (element -> material -> kappa*
                       element -> material -> G*element -> material -> A));

    	/*
	 * We know how the integration works out for the stiffness
	 * matrix so we're just going to fill it out an entry at
	 * a time.  For some element types this wouldn't be possible and
	 * we would do some integrating right here to fill in k.
	 * Also, because this is a symmetric matrix we'll just
	 * fill in everything above the diagonal and then use MirrorMatrix
	 */

   MatrixData (k) [1][1] = 12.0;
   MatrixData (k) [1][2] = 6.0*L;
   MatrixData (k) [1][3] = -12.0;
   MatrixData (k) [1][4] = 6.0*L;
   MatrixData (k) [2][2] = (4.0 + phi)*L*L;
   MatrixData (k) [2][3] = -6.0*L;
   MatrixData (k) [2][4] = (2.0 - phi)*L*L;
   MatrixData (k) [3][3] = 12.0;
   MatrixData (k) [3][4] = -6*L;
   MatrixData (k) [4][4] = (4.0 + phi)*L*L;

   MirrorMatrix (k);

	/*
	 * the above numbers aren't quite right, we've got a term out
	 * front of the matrix that we need to scale the entire
	 * matrix by
	 */

   factor = (element -> material -> E*element -> material -> Ix)/
            ((1.0 +phi)*L*L*L);

   ScaleMatrix (k, k, factor, 0.0);

	/*
	 * that's all for this part
	 */

   return k;
}

	/* 
	 * much like the local K function above all we do here is fill in
	 * the mass matrix - this function fills it out for consistent
	 * mass, the following function is used if the user wanted a lumped
	 * mass
	 */

static Matrix ConsistentMassMatrix (element)
    Element	   element;
{
    static Matrix m = NULL;       /* the local stiffness matrix	          */
    double	  L;		  /* the element length		          */
    double	  phi;		  /* bending stiffness / shear stiffness  */
    double        phi2;           /* phi squared		          */
    double	  const1;	  /* constant term for rotational mass    */
    double	  const2;	  /* constant term for translational mass */

    if (m == NULL) 
        m = CreateMatrix (4, 4);

	/*
	 * the constants that we'll need, including the constant terms
	 * in front of the rotational (first terms) and translational
	 * (second terms) portions of the matrix.
	 */

    L = ElementLength (element, 2);
    phi = 12.0/(L*L)*(element -> material -> E*element -> material -> Ix/
                      (element -> material -> kappa*
                       element -> material -> G*element -> material -> A));
    phi2 = phi*phi;
    const1 = element -> material -> rho * element -> material -> Ix /
             (30.0*(1.0 + phi)*(1.0 + phi)*L);
    const2 = element -> material -> rho * element -> material -> A * L /
             (210.0*(1.0 + phi)*(1.0 + phi));

	/*
	 * fill out the top half of the mass matrix (no need to 
	 * explicitly integrate of course)
	 */

   MatrixData (m) [1][1] = 36.0*const1 + (70.0*phi2 + 147.0*phi + 78)*const2;
   MatrixData (m) [1][2] = -L*(15.0*phi - 3.0)*const1 + 
                           (35.0*phi2 + 77.0*phi + 44.0)*L/4.0*const2;
   MatrixData (m) [1][3] = -36.0*const1 + (35.0*phi2 + 63.0*phi + 27.0)*const2;
   MatrixData (m) [1][4] = -L*(15.0*phi - 3.0)*const1 - 
                           (35.0*phi2 + 63.0*phi + 26.0)*L/4.0*const2;
   MatrixData (m) [2][2] = (10.0*phi2 + 5.0*phi + 4)*L*L*const1 +
                           (7.0*phi2 + 14.0*phi + 8.0)*L*L/4.0*const2;
   MatrixData (m) [2][3] = -MatrixData (m) [1][4];
   MatrixData (m) [2][4] = (5.0*phi2 - 5.0*phi - 1.0)*L*L*const1 -
                           (7.0*phi2 + 14.0*phi + 6.0)*L*L/4.0*const2;
   MatrixData (m) [3][3] = 36.0*const1 + (70.0*phi2 + 147.0*phi + 78.0)*const2;
   MatrixData (m) [3][4] = -MatrixData (m) [1][2];
   MatrixData (m) [4][4] = (10.0*phi2 + 5.0*phi + 4.0)*L*L*const1 +
                           (7.0*phi2 + 14.0*phi + 8.0)*L*L/4.0*const2;

	/*	
	 * complete it by mirroring
	 */

   MirrorMatrix (m);

	/*
	 * and we're done;
	 */

   return m;
}

static Matrix LumpedMassMatrix (element)
    Element	   element;
{
    static Matrix m = NULL;       /* the local stiffness matrix	 */
    double	  factor ;	  /* constant term		 */
    double	  I_factor;
    double	  L;

    if (m == NULL) {
        m = CreateMatrix (4, 4);
        ZeroMatrix (m);
    }

    L = ElementLength (element, 2);
    factor = L * element -> material -> rho * element -> material -> A / 2;
    I_factor = factor*L*L/12.0;

    MatrixData (m) [1][1] = factor;
    MatrixData (m) [2][2] = I_factor;
    MatrixData (m) [3][3] = factor;
    MatrixData (m) [4][4] = I_factor;

    return m;
}

	/*
	 * a simple little function to compute the transform matrix
	 * for a simple 2d beam element with no axial DOF.
	 * This should be a convenience routine, but none of the other
	 * elements actually use this one because they are more complicated.
	 */

static Matrix TransformMatrix (element)
    Element	   element;
{
    double         s,c; 	/* direction cosines			*/
    static Matrix  T = NULL; 	/* transform matrix to return		*/
    double	   L;		/* element length			*/

	/*
	 * no surprise here, we only want to allocate memory for this
	 * guy once!
	 */

    if (T == NULL) 
       T = CreateMatrix (4,6);

	/*
	 * This is a pretty sparse matrix so we'll just zero it out
	 * then fill in the few relevant entries. 
	 */

    ZeroMatrix (T);

    L = ElementLength (element, 2);
    c = (element -> node[2] -> x - element -> node[1] -> x) / L;
    s = (element -> node[2] -> y - element -> node[1] -> y) / L;

    MatrixData (T) [1][1] = -s;
    MatrixData (T) [1][2] = c;
    MatrixData (T) [2][3] = 1.0;
    MatrixData (T) [3][4] = -s;
    MatrixData (T) [3][5] = c;
    MatrixData (T) [4][6] = 1.0;

    return T;
}

	/*
  	 * We need to compute the equivalent nodal load
  	 * vector here. Just for convenience we are going to call 
	 * this function in two different ways (mode=1 and mode=2).
	 * The first way is for the element stiffness function
	 * which just wants to get the forces applied to the 
	 * element's nodes.  The second is for the stress routine
	 * which actually needs the equiv force vector in local coordinates.
	 * There are lots of ways to handle all these cases;
	 * see the Bernoulli beam elements for example. In mode 1,
	 * eq_stress can be NULL, in mode 2, T can be NULL.
	 */

static int EquivNodalForces (element, T, eq_stress, mode)
    Element	   element;
    Matrix	   T;			/* passing it in saves a few FLOPs */ 
    Vector	   *eq_stress;		/* vector pointer to set in mode 2 */
    int		   mode;		/* mode of operation		   */
{
    static Vector  equiv = NULL;	/* the equiv vector in local coord */
    static Vector  eq_global;		/* equiv in global coordinates     */
    double	   wa, wb;		/* values of load at nodes	   */
    double	   L;			/* the element length		   */
    unsigned	   i,j;			/* some loop conuters		   */
    double	   factor;		/* constant factor for sloped load */
    double	   phi;			/* bending / shear stiffness	   */
    int		   count;		/* error count			   */
    static Matrix  Tt;			/* transpose of transform matrixi  */

    if (equiv == NULL) {
        equiv     = CreateVector (4);
        eq_global = CreateVector (6);
        Tt	  = CreateMatrix (6,4);
    }

    ZeroMatrix (equiv);

    count = 0;
    wa = wb = 0; /* gcc -Wall */

	/*
	 * Again, we want to do as much error checking and descriptive
	 * error reporting as possible.  Seem like overkill?  It probably
	 * is, but it's not hurting anybody either :-)
	 */

    if (element -> numdistributed > 2) {
       error ("Timoshenko beam element %d has more than 2 distributed loads",
              element -> number);
       count++;
    }

    L = ElementLength (element, 2);
    if (L <= TINY) {
        error ("length of element %d is zero to machine precision",
               element -> number);
        count++;
    }   

    for (i = 1; i <= element -> numdistributed; i++) {
        if (element -> distributed[i] -> nvalues != 2) {
            error ("Timoshenko beam element %d must have 2 values for load",
                   element -> number);
            count++;
        }

	/*
	 * We only want to deal with loads in the perpendicular (LocalY)
	 * direction ... this is a very simple instantiation of this
	 * element after all.
	 */

        if (element -> distributed[i] -> direction != LocalY &&
            element -> distributed[i] -> direction != Perpendicular) {
        
            error ("invalid direction for element %d distributed load",
                   element -> number);
            count++;
        }
              
	/*
	 * make sure that the user isn't try to apply part of this
	 * load to a non-existent node (some local node other than
	 * number 1 or 2)
	 */

        for (j = 1 ;j <= element -> distributed[i] -> nvalues; j++) {
            if (element -> distributed[i] -> value[j].node < 1 ||
                element -> distributed[i] -> value[j].node > 2) {

                error ("invalid node numbering for elt %d distributed load %s",
                       element -> number, element -> distributed[i] -> name);
                count++;
            }
        }

        if (element -> distributed[i] -> value[1].node ==
            element -> distributed[i] -> value[2].node) {

            error ("incorrect node numbering for elt %d distributed load %s",
                   element -> number, element -> distributed[i] -> name);
            count++;
        }
    }

	/* 
	 * Have we had any errors? If so bail out.
 	 */

    if (count) 
        return count;

    phi = 12.0/(L*L)*(element -> material -> E*element -> material -> Ix/
                      (element -> material -> kappa*
                       element -> material -> G*element -> material -> A));

	/*
	 * loop over all of the applied distributed loads, superposing
	 * the effects of each
	 */

    for (i = 1 ; i <= element -> numdistributed ; i++) {

	/*
	 * First we have to sort out what order the load values
	 * were supplied in.  We need to get it so that wa is
	 * the value on element node 1 and wb is the value on 
	 * element node 2.
	 */

        if (element -> distributed[i] -> value[1].node == 1) {
            wa = element -> distributed[i] -> value[1].magnitude;
            wb = element -> distributed[i] -> value[2].magnitude;
        }
        else if (element -> distributed[i] -> value[1].node == 2) {
            wb = element -> distributed[i] -> value[1].magnitude;
            wa = element -> distributed[i] -> value[2].magnitude;
        }

	/*
	 * Again, since we know how the integration turns out, we'll
	 * just go head and plug straight into the entries in the equiv
	 * vector.  The order of entries in equiv is Fy1,Mz1,Fy2,Mz2.
	 * There are three cases we need to deal with.  The first is 
	 * a uniform load.  The second two are sloped loads which we'll
	 * treat as the superposition of the uniform case and a case
	 * in which the load can be treated as q(x) = q0*(1 - x/L)
	 * (i.e., a load which goes from q0 to 0)
	 */

        if (wa == wb) {				/* uniform distributed load   */
            VectorData (equiv) [1] += wa*L/2.0;
            VectorData (equiv) [3] += wa*L/2.0;
            VectorData (equiv) [2] += wa*L*L/12.0;
            VectorData (equiv) [4] += -wa*L*L/12.0;
        }
        else if (fabs(wa) > fabs(wb)) {		/* load sloping node 1-node 2 */
            factor = (wa - wb)*L/120.0/(1.0 + phi);
            VectorData (equiv) [1] += wb*L/2.0 + factor*(42.0 + 40.0*phi);
            VectorData (equiv) [3] += wb*L/2.0 + factor*(18.0 + 20.0*phi);
            VectorData (equiv) [2] += wb*L*L/12.0 + factor*(6.0 + 5.0*phi)*L;
            VectorData (equiv) [4] += -wb*L*L/12.0 - factor*(4.0 + 5.0*phi)*L;
        }
	else if (fabs (wa) < fabs (wb)) {	/* load sloping node 2-node 1 */
            factor = (wb - wa)*L/120.0/(1.0 + phi);
            VectorData (equiv) [1] += wa*L/2.0 + factor*(18.0 + 20.0*phi);
            VectorData (equiv) [3] += wa*L/2.0 + factor*(42.0 + 40.0*phi);
            VectorData (equiv) [2] += wa*L*L/12.0 + factor*(4.0 + 5.0*phi)*L;
            VectorData (equiv) [4] += -wa*L*L/12.0 - factor*(6.0 + 5.0*phi)*L;
        } 
    }

	/*
	 * if this is mode 2, we're done, just hand the equiv vector 
	 * back by setting eq_stress.
	 */

    if (mode == 2) {
        *eq_stress = equiv;
        return 0;
    }

	/* 
	 * We have the load vector in local coordinates now.  
	 * All of this is taken care of by a convenience routine.
	 * What it is doing is checking if the eq_force array has been 
	 * allocated for this element's nodes.  If it hasn't it will set
	 * it up.  If it has it will do nothing and simply return
	 * to us.  It has to allocate space for six doubles (even
	 * though we will only ever use two entries for Timoshenko
	 * elements) because other element types may try to insert
	 * something into this array in different locations. Also,
	 * remember that we will access it as a standard array, 
	 * it's not a Vector or Matrix type.
	 */

    SetEquivalentForceMemory (element);

	/*
	 * The equiv vector has four things in it.  We need to transform
	 * these to global coordinate and then add them 
	 * incrementally into the eq_force [] array on the nodes
	 * because some other element may have also already added 
	 * something onto this node.  Note the use of Tx, Ty and Rz
	 * to access the eq_force array.  These are just enumerated
	 * so that they expand to 2 and 6 ... no real magic there, it
	 * is just little more intuitive to look at.
 	 */

    TransposeMatrix (Tt, T);
    MultiplyMatrices (eq_global, Tt, equiv);
    element -> node[1] -> eq_force[Tx] += VectorData (eq_global) [1];
    element -> node[1] -> eq_force[Ty] += VectorData (eq_global) [2];
    element -> node[1] -> eq_force[Rz] += VectorData (eq_global) [3];
    element -> node[2] -> eq_force[Tx] += VectorData (eq_global) [4];
    element -> node[2] -> eq_force[Ty] += VectorData (eq_global) [5];
    element -> node[2] -> eq_force[Rz] += VectorData (eq_global) [6];

    return 0;
}