1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
|
C
C The following code was excerpted from: angle.f
C
DOUBLE PRECISION FUNCTION ANGLE(XA,YA,XB,YB,XC,YC)
IMPLICIT LOGICAL (A-Z)
DOUBLE PRECISION XA,XB,XC,YA,YB,YC
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Compute the interior angle (in radians) at vertex
C (XB,YB) of the chain formed by the directed edges from
C (XA,YA) to (XB,YB) to (XC,YC) - the interior is to the
C left of the two directed edges.
C
C Input parameters:
C XA,YA, XB,YB, XC,YC - vertex coordinates
C
C Returned function value:
C ANGLE - angle between 0 and 2*PI (PI/2 in degenerate case)
C
DOUBLE PRECISION PI,TOL
COMMON /GCONST/ PI,TOL
SAVE /GCONST/
C
DOUBLE PRECISION T,X1,X2,Y1,Y2
DOUBLE PRECISION SIGNUS
C
X1 = XA - XB
Y1 = YA - YB
X2 = XC - XB
Y2 = YC - YB
T = SQRT((X1**2 + Y1**2)*(X2**2 + Y2**2))
IF (T .EQ. 0.0D0) T = 1.0D0
T = (X1*X2 + Y1*Y2)/T
C
C Eliminate the call to sign to avoid using the fortran math library
C IF (ABS(T) .GT. 1.0D0 - TOL) T = SIGN(1.0D0,T)
C
SIGNUS = -1.0D0
IF (T .GT. 0.0D0) SIGNUS = 1.0D0
C
IF (ABS(T) .GT. 1.0D0 - TOL) T = SIGNUS
ANGLE = ACOS(T)
IF (X2*Y1 - Y2*X1 .LT. 0.0D0) ANGLE = 2.0D0*PI - ANGLE
END
C
C The following code was excerpted from: areapg.f
C
DOUBLE PRECISION FUNCTION AREAPG(NVRT,XC,YC)
IMPLICIT LOGICAL (A-Z)
INTEGER NVRT
DOUBLE PRECISION XC(NVRT),YC(NVRT)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Compute twice the signed area of a simple polygon with
C vertices given in circular (CCW or CW) order.
C
C Input parameters:
C NVRT - number of vertices on the boundary of polygon (>= 3)
C XC(1:NVRT),YC(1:NVRT) - vertex coordinates in CCW or CW order
C
C Returned function value:
C AREAPG - twice the signed area of polygon, positive if CCW
C
INTEGER I
DOUBLE PRECISION SUM
C
SUM = XC(1)*(YC(2) - YC(NVRT)) + XC(NVRT)*(YC(1) - YC(NVRT-1))
DO 10 I = 2,NVRT-1
SUM = SUM + XC(I)*(YC(I+1) - YC(I-1))
10 CONTINUE
AREAPG = SUM
END
C
C The following code was excerpted from: areatr.f
C
DOUBLE PRECISION FUNCTION AREATR(XA,YA,XB,YB,XC,YC)
IMPLICIT LOGICAL (A-Z)
DOUBLE PRECISION XA,XB,XC,YA,YB,YC
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Compute twice the signed area of the triangle with
C vertices (XA,YA), (XB,YB), and (XC,YC) in CCW or CW order.
C
C Input parameters:
C XA,YA, XB,YB, XC,YC - vertex coordinates
C
C Returned function value:
C AREATR - twice the signed area of triangle, positive if CCW
C
AREATR = (XB - XA)*(YC - YA) - (XC - XA)*(YB - YA)
END
C
C The following code was excerpted from: diaedg.f
C
INTEGER FUNCTION DIAEDG(X0,Y0,X1,Y1,X2,Y2,X3,Y3)
IMPLICIT LOGICAL (A-Z)
DOUBLE PRECISION X0,X1,X2,X3,Y0,Y1,Y2,Y3
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Determine whether 02 or 13 is the diagonal edge chosen
C based on the circumcircle criterion, where (X0,Y0), (X1,Y1),
C (X2,Y2), (X3,Y3) are the vertices of a simple quadrilateral
C in counterclockwise order.
C
C Input parameters:
C X0,Y0, X1,Y1, X2,Y2, X3,Y3 - vertex coordinates
C
C Returned function value:
C DIAEDG - 1 if diagonal edge 02 is chosen, i.e. 02 is inside
C quadrilateral + vertex 3 is outside circumcircle 012
C -1 if diagonal edge 13 is chosen, i.e. 13 is inside
C quadrilateral + vertex 0 is outside circumcircle 123
C 0 if four vertices are cocircular
C
DOUBLE PRECISION PI,TOL
COMMON /GCONST/ PI,TOL
SAVE /GCONST/
C
DOUBLE PRECISION CA,CB,DX10,DX12,DX30,DX32,DY10,DY12,DY30,DY32
DOUBLE PRECISION S,TOLA,TOLB
C
DX10 = X1 - X0
DY10 = Y1 - Y0
DX12 = X1 - X2
DY12 = Y1 - Y2
DX30 = X3 - X0
DY30 = Y3 - Y0
DX32 = X3 - X2
DY32 = Y3 - Y2
TOLA = TOL*MAX(ABS(DX10),ABS(DY10),ABS(DX30),ABS(DY30))
TOLB = TOL*MAX(ABS(DX12),ABS(DY12),ABS(DX32),ABS(DY32))
CA = DX10*DX30 + DY10*DY30
CB = DX12*DX32 + DY12*DY32
IF (CA .GT. TOLA .AND. CB .GT. TOLB) THEN
DIAEDG = -1
ELSE IF (CA .LT. -TOLA .AND. CB .LT. -TOLB) THEN
DIAEDG = 1
ELSE
TOLA = MAX(TOLA,TOLB)
S = (DX10*DY30 - DX30*DY10)*CB + (DX32*DY12 - DX12*DY32)*CA
IF (S .GT. TOLA) THEN
DIAEDG = -1
ELSE IF (S .LT. -TOLA) THEN
DIAEDG = 1
ELSE
DIAEDG = 0
ENDIF
ENDIF
END
C
C The following code was excerpted from: diam2.f
C
SUBROUTINE DIAM2(NVRT,XC,YC,I1,I2,DIAMSQ)
IMPLICIT LOGICAL (A-Z)
INTEGER I1,I2,NVRT
DOUBLE PRECISION DIAMSQ,XC(NVRT),YC(NVRT)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Find the diameter of a convex polygon with vertices
C given in CCW order and with all interior angles < PI.
C
C Input parameters:
C NVRT - number of vertices on the boundary of convex polygon
C XC(1:NVRT),YC(1:NVRT) - vertex coordinates in CCW order
C
C Output parameters:
C I1,I2 - indices in XC,YC of diameter edge; diameter is from
C (XC(I1),YC(I1)) to (XC(I2),YC(I2))
C DIAMSQ - square of diameter
C
C Abnormal return:
C IERR is set to 200
C
C Routines called:
C AREATR
C
INTEGER IERR
DOUBLE PRECISION PI,TOL
COMMON /GERROR/ IERR
COMMON /GCONST/ PI,TOL
SAVE /GERROR/,/GCONST/
C
INTEGER J,JP1,K,KP1,M
DOUBLE PRECISION AREATR
DOUBLE PRECISION AREA1,AREA2,C1MTOL,C1PTOL,DIST
C
C Find first vertex which is farthest from edge connecting
C vertices with indices NVRT, 1.
C
C1MTOL = 1.0D0 - TOL
C1PTOL = 1.0D0 + TOL
J = NVRT
JP1 = 1
K = 2
AREA1 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K),YC(K))
10 CONTINUE
AREA2 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K+1),YC(K+1))
IF (AREA2 .GT. AREA1*C1PTOL) THEN
AREA1 = AREA2
K = K + 1
GO TO 10
ENDIF
M = K
DIAMSQ = 0.0D0
C
C Find diameter = maximum distance of antipodal pairs.
C
AREA1 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K),YC(K))
20 CONTINUE
KP1 = K + 1
IF (KP1 .GT. NVRT) KP1 = 1
AREA2 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(KP1),YC(KP1))
IF (AREA2 .GT. AREA1*C1PTOL) THEN
K = K + 1
AREA1 = AREA2
ELSE IF (AREA2 .LT. AREA1*C1MTOL) THEN
J = JP1
JP1 = J + 1
AREA1 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K),YC(K))
ELSE
K = K + 1
J = JP1
JP1 = J + 1
AREA1 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K),YC(K))
ENDIF
IF (J .GT. M .OR. K .GT. NVRT) THEN
IERR = 200
RETURN
ENDIF
DIST = (XC(J) - XC(K))**2 + (YC(J) - YC(K))**2
IF (DIST .GT. DIAMSQ) THEN
DIAMSQ = DIST
I1 = J
I2 = K
ENDIF
IF (J .NE. M .OR. K .NE. NVRT) GO TO 20
END
C
C The following code was excerpted from: lrline.f
C
INTEGER FUNCTION LRLINE(XU,YU,XV1,YV1,XV2,YV2,DV)
IMPLICIT LOGICAL (A-Z)
DOUBLE PRECISION DV,XU,XV1,XV2,YU,YV1,YV2
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Determine whether a point is to the left of, right of,
C or on a directed line parallel to a line through given points.
C
C Input parameters:
C XU,YU, XV1,YV1, XV2,YV2 - vertex coordinates; the directed
C line is parallel to and at signed distance DV to the
C left of the directed line from (XV1,YV1) to (XV2,YV2);
C (XU,YU) is the vertex for which the position
C relative to the directed line is to be determined
C DV - signed distance (positive for left)
C
C Returned function value:
C LRLINE - +1, 0, or -1 depending on whether (XU,YU) is
C to the right of, on, or left of the directed line
C (0 if line degenerates to a point)
C
DOUBLE PRECISION PI,TOL
COMMON /GCONST/ PI,TOL
SAVE /GCONST/
C
DOUBLE PRECISION DX,DXU,DY,DYU,T,TOLABS
DOUBLE PRECISION SIGNUS
C
DX = XV2 - XV1
DY = YV2 - YV1
DXU = XU - XV1
DYU = YU - YV1
TOLABS = TOL*MAX(ABS(DX),ABS(DY),ABS(DXU),ABS(DYU),ABS(DV))
T = DY*DXU - DX*DYU
IF (DV .NE. 0.0D0) T = T + DV*SQRT(DX**2 + DY**2)
C
C Eliminate the call to sign to avoid using the fortran math library
C LRLINE = INT(SIGN(1.0D0,T))
C
SIGNUS = -1.0D0
IF (T .GT. 0.0D0) SIGNUS = 1.0D0
C
LRLINE = INT(SIGNUS)
IF (ABS(T) .LE. TOLABS) LRLINE = 0
END
C
C The following code was excerpted from: shrnk2.f
C
SUBROUTINE SHRNK2(NVRT,XC,YC,SDIST,NSHR,XS,YS,IEDGE)
IMPLICIT LOGICAL (A-Z)
INTEGER NSHR,NVRT
INTEGER IEDGE(0:NVRT)
DOUBLE PRECISION SDIST(0:NVRT-1)
DOUBLE PRECISION XC(0:NVRT),YC(0:NVRT),XS(0:NVRT),YS(0:NVRT)
C
C Purpose: Shrink a convex polygon, with vertices given in CCW
C order and with all interior angles < PI, by distance SDIST(I)
C for Ith edge, I = 0,...,NVRT-1.
C
C Input parameters:
C NVRT - number of vertices on the boundary of convex polygon
C XC(0:NVRT),YC(0:NVRT) - vertex coordinates in CCW order;
C (XC(0),YC(0)) = (XC(NVRT),YC(NVRT))
C SDIST(0:NVRT-1) - nonnegative shrink distances for edges
C
C Output parameters:
C NSHR - number of vertices on boundary of shrunken polygon;
C 0 if shrunken polygon is empty else 3 <= NSHR <= NVRT
C XS(0:NSHR),YS(0:NSHR) - coordinates of shrunken polygon in CCW
C order if NSHR > 0; (XS(0),YS(0)) = (XS(NSHR),YS(NSHR))
C IEDGE(0:NVRT) - indices of edges of shrunken polygon in
C range from 0 to NVRT-1
C
C Abnormal return:
C IERR is set to 202
C
C Routines called:
C LRLINE, XLINE
C
INTEGER IERR
DOUBLE PRECISION PI,TOL
COMMON /GERROR/ IERR
COMMON /GCONST/ PI,TOL
SAVE /GERROR/,/GCONST/
C
INTEGER LRLINE
INTEGER I,J,K,LR
DOUBLE PRECISION ALPHA,PI2,THETA
LOGICAL FIRST,PARALL
C
PI2 = 2.0D0*PI
ALPHA = ATAN2(YC(1)-YC(0),XC(1)-XC(0))
CALL XLINE(XC(0),YC(0),XC(1),YC(1),XC(1),YC(1),XC(2),YC(2),
$ SDIST(0),SDIST(1),XS(1),YS(1),PARALL)
IF (PARALL) THEN
IERR = 202
GO TO 90
ENDIF
IEDGE(0) = 0
IEDGE(1) = 1
I = 2
J = 0
NSHR = 1
FIRST = .TRUE.
C
C First while loop processes edges subtending angle <= PI
C with respect to first edge.
C
10 CONTINUE
THETA = ATAN2(YC(I+1)-YC(I),XC(I+1)-XC(I)) - ALPHA
IF (THETA .LT. 0.0D0) THETA = THETA + PI2
IF (THETA .GT. PI + TOL) GO TO 40
20 CONTINUE
LR = LRLINE(XS(NSHR),YS(NSHR),XC(I),YC(I),XC(I+1),YC(I+1),
$ SDIST(I))
IF (LR .LT. 0) GO TO 30
NSHR = NSHR - 1
IF (NSHR .GE. 1) GO TO 20
30 CONTINUE
IF (NSHR .LT. 1 .AND. ABS(THETA - PI) .LE. TOL) GO TO 90
K = IEDGE(NSHR)
NSHR = NSHR + 1
CALL XLINE(XC(K),YC(K),XC(K+1),YC(K+1),XC(I),YC(I),XC(I+1),
$ YC(I+1),SDIST(K),SDIST(I),XS(NSHR),YS(NSHR),PARALL)
IF (PARALL) THEN
IERR = 202
GO TO 90
ENDIF
IEDGE(NSHR) = I
I = I + 1
GO TO 10
C
C Second while loop processes remaining edges.
C
40 CONTINUE
IF (FIRST) THEN
FIRST = .FALSE.
GO TO 50
ENDIF
LR = LRLINE(XS(J),YS(J),XC(I),YC(I),XC(I+1),YC(I+1),SDIST(I))
IF (LR .LE. 0) GO TO 70
50 CONTINUE
IF (NSHR .LE. J) GO TO 90
LR = LRLINE(XS(NSHR),YS(NSHR),XC(I),YC(I),XC(I+1),
$ YC(I+1),SDIST(I))
IF (LR .GE. 0) THEN
NSHR = NSHR - 1
GO TO 50
ENDIF
K = IEDGE(NSHR)
NSHR = NSHR + 1
CALL XLINE(XC(K),YC(K),XC(K+1),YC(K+1),XC(I),YC(I),XC(I+1),
$ YC(I+1),SDIST(K),SDIST(I),XS(NSHR),YS(NSHR),PARALL)
IF (PARALL) THEN
IERR = 202
GO TO 90
ENDIF
IEDGE(NSHR) = I
60 CONTINUE
LR = LRLINE(XS(J+1),YS(J+1),XC(I),YC(I),XC(I+1),YC(I+1),
$ SDIST(I))
IF (LR .GE. 0) THEN
J = J + 1
GO TO 60
ENDIF
K = IEDGE(J)
CALL XLINE(XC(K),YC(K),XC(K+1),YC(K+1),XC(I),YC(I),XC(I+1),
$ YC(I+1),SDIST(K),SDIST(I),XS(J),YS(J),PARALL)
IF (PARALL) THEN
IERR = 202
GO TO 90
ENDIF
XS(NSHR+1) = XS(J)
YS(NSHR+1) = YS(J)
IEDGE(NSHR+1) = IEDGE(J)
70 CONTINUE
I = I + 1
IF (I .LT. NVRT) GO TO 40
C
IF (J .GT. 0) THEN
DO 80 I = 0,NSHR+1-J
XS(I) = XS(I+J)
YS(I) = YS(I+J)
IEDGE(I) = IEDGE(I+J)
80 CONTINUE
ENDIF
NSHR = NSHR + 1 - J
RETURN
C
90 CONTINUE
NSHR = 0
RETURN
END
C
C The following code was excerpted from: width2.f
C
SUBROUTINE WIDTH2(NVRT,XC,YC,I1,I2,WIDSQ)
IMPLICIT LOGICAL (A-Z)
INTEGER I1,I2,NVRT
DOUBLE PRECISION WIDSQ,XC(NVRT),YC(NVRT)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Find the width (minimum breadth) of a convex polygon with
C vertices given in CCW order and with all interior angles < PI.
C
C Input parameters:
C NVRT - number of vertices on the boundary of convex polygon
C XC(1:NVRT),YC(1:NVRT) - vertex coordinates in CCW order
C
C Output parameters:
C I1,I2 - indices in XC,YC such that width is from vertex
C (XC(I1),YC(I1)) to line joining (XC(I2),YC(I2)) and
C (XC(I2+1),YC(I2+1)), where index NVRT+1 is same as 1
C WIDSQ - square of width
C
C Abnormal return:
C IERR is set to 201
C
C Routines called:
C AREATR
C
INTEGER IERR
DOUBLE PRECISION PI,TOL
COMMON /GERROR/ IERR
COMMON /GCONST/ PI,TOL
SAVE /GERROR/,/GCONST/
C
INTEGER A,B,C,J,JP1,K,KP1,M
DOUBLE PRECISION AREATR
DOUBLE PRECISION AREA1,AREA2,C1MTOL,C1PTOL,DIST,DX,DY
C
C Find first vertex which is farthest from edge connecting
C vertices with indices NVRT, 1.
C
C1MTOL = 1.0D0 - TOL
C1PTOL = 1.0D0 + TOL
J = NVRT
JP1 = 1
K = 2
AREA1 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K),YC(K))
10 CONTINUE
AREA2 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K+1),YC(K+1))
IF (AREA2 .GT. AREA1*C1PTOL) THEN
AREA1 = AREA2
K = K + 1
GO TO 10
ENDIF
M = K
WIDSQ = 0.0D0
C
C Find width = min distance of antipodal edge-vertex pairs.
C
AREA1 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K),YC(K))
20 CONTINUE
KP1 = K + 1
IF (KP1 .GT. NVRT) KP1 = 1
AREA2 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(KP1),YC(KP1))
IF (AREA2 .GT. AREA1*C1PTOL) THEN
A = J
B = K
K = K + 1
C = K
IF (C .GT. NVRT) C = 1
AREA1 = AREA2
ELSE IF (AREA2 .LT. AREA1*C1MTOL) THEN
A = K
B = J
C = JP1
J = JP1
JP1 = J + 1
AREA1 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K),YC(K))
ELSE
A = K
B = J
C = JP1
K = K + 1
J = JP1
JP1 = J + 1
AREA1 = AREATR(XC(J),YC(J),XC(JP1),YC(JP1),XC(K),YC(K))
ENDIF
IF (J .GT. M .OR. K .GT. NVRT) THEN
IERR = 201
RETURN
ENDIF
DX = XC(C) - XC(B)
DY = YC(C) - YC(B)
DIST = ((YC(A) - YC(B))*DX - (XC(A) - XC(B))*DY)**2/
$ (DX**2 + DY**2)
IF (DIST .LT. WIDSQ .OR. WIDSQ .LE. 0.0D0) THEN
WIDSQ = DIST
I1 = A
I2 = B
ENDIF
IF (J .NE. M .OR. K .NE. NVRT) GO TO 20
END
C
C The following code was excerpted from: xedge.f
C
SUBROUTINE XEDGE(MODE,XV1,YV1,XV2,YV2,XW1,YW1,XW2,YW2,XU,YU,
$ INTSCT)
IMPLICIT LOGICAL (A-Z)
INTEGER MODE
DOUBLE PRECISION XU,XV1,XV2,XW1,XW2,YU,YV1,YV2,YW1,YW2
LOGICAL INTSCT
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Determine whether two edges or a ray and an edge
C intersect and return the intersection point if they do.
C
C Input parameters:
C MODE - 0 for two edges, 1 (or nonzero) for a ray and an edge
C XV1,YV1, XV2,YV2, XW1,YW1, XW2,YW2 - vertex coordinates;
C an edge (ray) is from (XV1,YV1) to (thru) (XV2,YV2);
C an edge joins vertices (XW1,YW1) and (XW2,YW2)
C
C Output parameters:
C XU,YU - coordinates of the point of intersection iff INTSCT
C is .TRUE.
C INTSCT - .TRUE. if the edges/ray are nondegenerate, not
C parallel, and intersect, .FALSE. otherwise
C
DOUBLE PRECISION PI,TOL
COMMON /GCONST/ PI,TOL
SAVE /GCONST/
C
DOUBLE PRECISION DENOM,DXV,DXW,DYV,DYW,T,TOLABS
C
INTSCT = .FALSE.
DXV = XV2 - XV1
DYV = YV2 - YV1
DXW = XW2 - XW1
DYW = YW2 - YW1
TOLABS = TOL*MAX(ABS(DXV),ABS(DYV),ABS(DXW),ABS(DYW))
DENOM = DYV*DXW - DXV*DYW
IF (ABS(DENOM) .LE. TOLABS) RETURN
T = (DYV*(XV1 - XW1) - DXV*(YV1 - YW1))/DENOM
IF (T .LT. -TOL .OR. T .GT. 1.0D0 + TOL) RETURN
XU = XW1 + T*DXW
YU = YW1 + T*DYW
IF (ABS(DXV) .GE. ABS(DYV)) THEN
T = (XU - XV1)/DXV
ELSE
T = (YU - YV1)/DYV
ENDIF
IF (MODE .EQ. 0) THEN
IF (T .GE. -TOL .AND. T .LE. 1.0D0 + TOL) INTSCT = .TRUE.
ELSE
IF (T .GE. -TOL) INTSCT = .TRUE.
ENDIF
END
C
C The following code was excerpted from: xline.f
C
SUBROUTINE XLINE(XV1,YV1,XV2,YV2,XW1,YW1,XW2,YW2,DV,DW,
$ XU,YU,PARALL)
IMPLICIT LOGICAL (A-Z)
DOUBLE PRECISION DV,DW,XU,XV1,XV2,XW1,XW2,YU,YV1,YV2,YW1,YW2
LOGICAL PARALL
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Determine the intersection point of two lines parallel
C to lines through given points.
C
C Input parameters:
C XV1,YV1, XV2,YV2, XW1,YW1, XW2,YW2 - vertex coordinates;
C first line is parallel to and at signed distance DV to
C left of directed line from (XV1,YV1) to (XV2,YV2);
C second line is parallel to and at signed distance DW to
C left of directed line from (XW1,YW1) to (XW2,YW2)
C DV,DW - signed distances (positive for left)
C
C Output parameters:
C XU,YU - coordinates of the point of intersection iff PARALL
C is .FALSE.
C PARALL - .TRUE. if the lines are parallel or two points for a
C line are identical, .FALSE. otherwise
C
DOUBLE PRECISION PI,TOL
COMMON /GCONST/ PI,TOL
SAVE /GCONST/
C
DOUBLE PRECISION A11,A12,A21,A22,B1,B2,DET,TOLABS
C
PARALL = .TRUE.
A11 = YV2 - YV1
A12 = XV1 - XV2
A21 = YW2 - YW1
A22 = XW1 - XW2
TOLABS = TOL*MAX(ABS(A11),ABS(A12),ABS(A21),ABS(A22))
DET = A11*A22 - A21*A12
IF (ABS(DET) .LE. TOLABS) RETURN
B1 = XV1*A11 + YV1*A12
IF (DV .NE. 0.0D0) B1 = B1 - DV*SQRT(A11**2 + A12**2)
B2 = XW1*A21 + YW1*A22
IF (DW .NE. 0.0D0) B2 = B2 - DW*SQRT(A21**2 + A22**2)
XU = (B1*A22 - B2*A12)/DET
YU = (B2*A11 - B1*A21)/DET
PARALL = .FALSE.
END
|