File: decomp2d.f

package info (click to toggle)
felt 3.06-9
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 17,512 kB
  • ctags: 7,946
  • sloc: ansic: 85,476; fortran: 3,614; yacc: 2,803; lex: 1,178; makefile: 305; sh: 302
file content (1508 lines) | stat: -rw-r--r-- 48,791 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
C
C     The following code was excerpted from: cvdec2.f
C
      SUBROUTINE CVDEC2(ANGSPC,ANGTOL,NVC,NPOLG,NVERT,MAXVC,MAXHV,MAXPV,
     $   MAXIW,MAXWK,VCL,REGNUM,HVL,PVL,IANG,IWK,WK)
      IMPLICIT LOGICAL (A-Z)
      INTEGER MAXHV,MAXIW,MAXPV,MAXVC,MAXWK,NPOLG,NVC,NVERT
      INTEGER HVL(MAXHV),IWK(MAXIW),PVL(4,MAXPV),REGNUM(MAXHV)
      DOUBLE PRECISION ANGSPC,ANGTOL,IANG(MAXPV),VCL(2,MAXVC),WK(MAXWK)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Decompose general polygonal region (which is decomposed
C        into simple polygons on input) into convex polygons using
C        vertex coordinate list, head vertex list, and polygon vertex
C        list data structures.
C
C     Input parameters:
C        ANGSPC - angle spacing parameter in radians used in controlling
C              vertices to be considered as an endpoint of a separator
C        ANGTOL - angle tolerance parameter in radians used in accepting
C              separator(s)
C        NVC - number of vertex coordinates or positions used in VCL
C              array
C        NPOLG - number of polygonal subregions or positions used in
C              HVL array
C        NVERT - number of polygon vertices or positions used in PVL
C              array
C        MAXVC - maximum size available for VCL array, should be >=
C              number of vertex coordinates required for decomposition 
C        MAXHV - maximum size available for HVL, REGNUM arrays, should
C              be >= number of polygons required for decomposition
C        MAXPV - maximum size available for PVL, IANG arrays; should be
C              >= number of polygon vertices required for decomposition
C        MAXIW - maximum size available for IWK array; should be about
C              3 times maximum number of vertices in any polygon
C        MAXWK - maximum size available for WK array; should be about
C              5 times maximum number of vertices in any polygon
C        VCL(1:2,1:NVC) - vertex coordinate list
C        REGNUM(1:NPOLG) - region numbers
C        HVL(1:NPOLG) - head vertex list
C        PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C              interior angles; see routine DSPGDC for more details
C        [Note: The data structures should be as output from routine
C              SPDEC2.]
C
C     Updated parameters:
C        NVC,NPOLG,NVERT,VCL,REGNUM,HVL,PVL,IANG
C
C     Working parameters:
C        IWK(1:MAXIW) - integer work array
C        WK(1:MAXWK) - double precision work array
C
C     Abnormal return:
C        IERR is set to 3, 4, 5, 6, 7, 206, 207, 208, 209, 210, or 212
C
C     Routines called:
C        INSED2, RESVRT
C
      INTEGER IERR
      DOUBLE PRECISION PI,TOL
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      SAVE /GERROR/,/GCONST/
C
      INTEGER V,W1,W2
      DOUBLE PRECISION PIPTOL
C
C     For each reflex vertex, resolve it with one or two separators
C     and update VCL, HVL, PVL, IANG.
C
      PIPTOL = PI + TOL
      V = 1
   10 CONTINUE
      IF (V .GT. NVERT) RETURN
	 IF (IANG(V) .GT. PIPTOL) THEN
            CALL RESVRT(V,ANGSPC,ANGTOL,NVC,NVERT,MAXVC,MAXPV,MAXIW,
     $         MAXWK,VCL,PVL,IANG,W1,W2,IWK,WK)
	    IF (IERR .NE. 0) RETURN
	    CALL INSED2(V,W1,NPOLG,NVERT,MAXHV,MAXPV,VCL,REGNUM,HVL,
     $         PVL,IANG)
	    IF (IERR .NE. 0) RETURN
            IF (W2 .GT. 0) CALL INSED2(V,W2,NPOLG,NVERT,MAXHV,MAXPV,
     $         VCL,REGNUM,HVL,PVL,IANG)
	    IF (IERR .NE. 0) RETURN
         ENDIF
      V = V + 1
      GO TO 10
      END
C
C     The following code was excerpted from: dsmcpr.f
C
      SUBROUTINE DSMCPR(NHOLE,NVBC,VCL,MAXHV,MAXPV,MAXHO,NVC,NPOLG,
     $   NVERT,NHOLA,REGNUM,HVL,PVL,IANG,HOLV)
      IMPLICIT LOGICAL (A-Z)
      INTEGER MAXHO,MAXHV,MAXPV,NHOLA,NHOLE,NPOLG,NVC,NVERT
      INTEGER HVL(NHOLE+1),HOLV(MAXHO),NVBC(NHOLE+1),PVL(4,MAXPV)
      INTEGER REGNUM(1)
      DOUBLE PRECISION IANG(MAXPV),VCL(2,*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Initialize the polygonal decomposition data structure
C        given a multiply-connected polygonal region with 1 outer
C        boundary curve and 0 or more inner boundary curves of holes.
C
C     Input parameters:
C        NHOLE - number of holes in region
C        NVBC(1:NHOLE+1) - number of vertices per boundary curve; first
C              boundary curve is the outer boundary of the region
C        VCL(1:2,1:NVC) - vertex coordinates of boundary curves in CCW
C              order; NVC = NVBC(1) + ... + NVBC(NHOLE+1); positions 1
C              to NVBC(1) of VCL contain the vertex coordinates of the
C              outer boundary in CCW order; positions NVBC(1)+1 to
C              NVBC(1)+NVBC(2) contain the vertex coordinates of the
C              first hole boundary in CCW order, etc.
C        MAXHV - maximum size available for HVL, REGNUM arrays, should
C              be >= NHOLE + 1
C        MAXPV - maximum size available for PVL, IANG arrays; should be
C               >= NVC
C        MAXHO - maximum size available for HOLV array; should be
C               >= NHOLE*2
C
C     Output parameters:
C        NVC - number of vertex coordinates, set to sum of NVBC(I)
C        NPOLG - number of polygonal subregions, set to 1
C        NVERT - number of vertices in PVL, set to NVC
C        NHOLA - number of attached holes, set to 0
C        REGNUM(1:1) - region number of only subregion, set to 1
C        [Note: Above 4 parameters are for consistency with DSPGDC.]
C        HVL(1:NHOLE+1) - head vertex list; first entry is the head
C              vertex (index in PVL) of outer boundary curve; next
C              NHOLE entries contain the head vertex of a hole
C        PVL(1:4,1:NVC),IANG(1:NVC) - polygon vertex list and interior
C              angles; vertices of outer boundary curve are in CCW order
C              followed by vertices of each hole in CW hole; vertices
C              of each polygon are in a circular linked list; see
C              routine DSPGDC for more details of this data structure
C        HOLV(1:NHOLE*2) - indices in PVL of top and bottom vertices of
C              holes; first (last) NHOLE entries are for top (bottom)
C              vertices; top (bottom) vertices are sorted in decreasing
C              (increasing) lexicographic (y,x) order of coordinates
C
C     Abnormal return:
C        IERR is set to 2, 4, or 5
C
C     Routines called:
C        ANGLE, HOLVRT
C
      INTEGER IERR
      COMMON /GERROR/ IERR
      SAVE /GERROR/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER I,IV,IVS,J,LV,LVP,LVS,NV,NVS
      DOUBLE PRECISION ANGLE
C
      NVC = 0
      DO 10 I = 1,NHOLE+1
	 NVC = NVC + NVBC(I)
   10 CONTINUE
      NPOLG = 1
      NVERT = NVC
      NHOLA = 0
      REGNUM(1) = 1
      IF (NHOLE + 1 .GT. MAXHV) THEN
	 IERR = 4
	 RETURN
      ELSE IF (NVC .GT. MAXPV) THEN
	 IERR = 5
	 RETURN
      ELSE IF (NHOLE + NHOLE .GT. MAXHO) THEN
	 IERR = 2
	 RETURN
      ENDIF
C
C     Initialize HVL, PVL arrays.
C
   20 CONTINUE
      HVL(1) = 1
      NV = NVBC(1)
      DO 30 I = 1,NV
	 PVL(LOC,I) = I
	 PVL(POLG,I) = 1
	 PVL(SUCC,I) = I + 1
	 PVL(EDGV,I) = 0
   30 CONTINUE
      PVL(SUCC,NV) = 1
      DO 50 J = 1,NHOLE
	 HVL(J+1) = NV + 1
	 NVS = NV + NVBC(J+1)
         DO 40 I = NV+1,NVS
	    PVL(LOC,I) = I
	    PVL(POLG,I) = 1
	    PVL(SUCC,I) = I - 1
	    PVL(EDGV,I) = 0
   40    CONTINUE
         PVL(SUCC,NV+1) = NVS
	 NV = NVS
   50 CONTINUE
C
C     Initialize IANG array.
C
      DO 70 I = 1,NHOLE+1
	 J = HVL(I)
	 LVP = PVL(LOC,J)
	 IV = PVL(SUCC,J)
	 LV = PVL(LOC,IV)
   60    CONTINUE
	    IVS = PVL(SUCC,IV)
	    LVS = PVL(LOC,IVS)
	    IANG(IV) = ANGLE(VCL(1,LVP),VCL(2,LVP),VCL(1,LV),VCL(2,LV),
     $         VCL(1,LVS),VCL(2,LVS))
	    IF (IV .EQ. J) GO TO 70
	    LVP = LV
	    IV = IVS
	    LV = LVS
	 GO TO 60
   70 CONTINUE
C
C     Initialize HOLV array.
C
      IF (NHOLE .GT. 0) CALL HOLVRT(NHOLE,VCL,HVL(2),PVL,HOLV)
      END
C
C     The following code was excerpted from: edght.f
C
      SUBROUTINE EDGHT(A,B,V,N,HTSIZ,MAXEDG,HDFREE,LAST,HT,EDGE,W)
      IMPLICIT LOGICAL (A-Z)
      INTEGER A,B,HDFREE,HTSIZ,LAST,MAXEDG,N,V,W
      INTEGER EDGE(4,MAXEDG),HT(0:HTSIZ-1)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Search in hash table HT for record in EDGE containing
C        key (A,B).
C
C     Input parameters:
C        A,B - vertex indices, > 0, of edge (also key of hash table)
C        V - value associated with edge
C        N - upper bound on A, B
C        HTSIZ - size of hash table HT
C        MAXEDG - maximum size available for EDGE array
C        HDFREE - head pointer to linked list of free entries of EDGE
C              array due to deletions
C        LAST - index of last entry used in EDGE array
C        HT(0:HTSIZ-1) - hash table of head pointers (direct chaining
C              with ordered lists is used)
C        EDGE(1:4,1:MAXEDG) - entries of hash table records;
C              EDGE(1,I) = MIN(A,B); EDGE(2,I) = MAX(A,B);
C              EDGE(3,I) = V; EDGE(4,I) = link
C        [Note: Before first call to this routine, HDFREE, LAST, and
C              entries of HT should be set to 0.]
C
C     Updated parameters:
C        HDFREE,LAST - at least one of these is updated
C        HT,EDGE - if key with A,B is found then this record is deleted
C              from hash table, else record is inserted in hash table
C
C     Output parameters:
C        W - EDGE(3,INDEX), where INDEX is index of record, if found;
C              else 0
C
C     Abnormal return:
C        IERR is set to 1
C
      INTEGER IERR
      COMMON /GERROR/ IERR
      SAVE /GERROR/
C
      INTEGER AA,BB,BPTR,K,NEWP,PTR
C
      IF (A .LT. B) THEN
         AA = A
         BB = B
      ELSE
         AA = B
         BB = A
      ENDIF
      K = MOD(AA*N + BB, HTSIZ)
      BPTR = -1
      PTR = HT(K)
   10 CONTINUE
      IF (PTR .NE. 0) THEN
	 IF (EDGE(1,PTR) .GT. AA) THEN
	    GO TO 20
	 ELSE IF (EDGE(1,PTR) .EQ. AA) THEN
	    IF (EDGE(2,PTR) .GT. BB) THEN
	       GO TO 20
	    ELSE IF (EDGE(2,PTR) .EQ. BB) THEN
	       IF (BPTR .EQ. -1) THEN
		  HT(K) = EDGE(4,PTR)
	       ELSE
		  EDGE(4,BPTR) = EDGE(4,PTR)
	       ENDIF
	       EDGE(4,PTR) = HDFREE
	       HDFREE = PTR
	       W = EDGE(3,PTR)
	       RETURN
	    ENDIF
	 ENDIF
	 BPTR = PTR
	 PTR = EDGE(4,PTR)
	 GO TO 10
      ENDIF
   20 CONTINUE
      IF (HDFREE .GT. 0) THEN
	 NEWP = HDFREE
	 HDFREE = EDGE(4,HDFREE)
      ELSE
	 LAST = LAST + 1
	 NEWP = LAST
	 IF (LAST .GT. MAXEDG) THEN
	    IERR = 1
	    RETURN
	 ENDIF
      ENDIF
      IF (BPTR .EQ. -1) THEN
	 HT(K) = NEWP
      ELSE
	 EDGE(4,BPTR) = NEWP
      ENDIF
      EDGE(1,NEWP) = AA
      EDGE(2,NEWP) = BB
      EDGE(3,NEWP) = V
      EDGE(4,NEWP) = PTR
      W = 0
      END
C
C     The following code was excerpted from: fndsep.f
C
      SUBROUTINE FNDSEP(ANGAC1,XR,YR,NVRT,XC,YC,IVIS,THETA,NV,IV,
     $   VCL,PVL,IANG,ANGSEP,I1,I2,WKANG)
      IMPLICIT LOGICAL (A-Z)
      INTEGER I1,I2,NV,NVRT
      INTEGER IV(0:NV),IVIS(0:NVRT),PVL(4,*)
      DOUBLE PRECISION ANGAC1,ANGSEP,XR,YR,IANG(*),THETA(0:NVRT)
      DOUBLE PRECISION VCL(2,*),WKANG(0:NV),XC(0:NVRT),YC(0:NVRT)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Find 1 or 2 separators which can resolve reflex vertex
C        (XR,YR) using a max-min angle criterion from list of vertices
C        in increasing polar angle w.r.t. reflex vertex. Preference
C        is given to 1 separator.
C
C     Input parameters:
C        ANGAC1 - angle tolerance parameter used for preference
C              in accepting one separator
C        XR,YR - coordinates of reflex vertex
C        NVRT - (number of vertices) - 1
C        XC(0:NVRT), YC(0:NVRT) - vertex coordinates of possible
C              endpoints of a separator
C        IVIS(0:NVRT) - contains information about the vertices of
C              XC, YC arrays w.r.t. the polygon vertex list; if
C              IVIS(I) > 0 then vertex (XC(I),YC(I)) has index IVIS(I)
C              in PVL; if IVIS(I) < 0 then vertex (XC(I),YC(I)) is on
C              the edge joining vertices with indices -IVIS(I) and
C              SUCC(-IVIS(I)) in PVL
C        THETA(0:NVRT) - polar angles of vertices in increasing order;
C              THETA(NVRT) is the interior angle of reflex vertex;
C              THETA(I), I >= 0, is the polar angle of (XC(I),YC(I))
C              w.r.t. reflex vertex
C        NV - (number of vertices to be considered as endpoint of a
C              separator) - 1
C        IV(0:NV) - indices of vertices in XC, YC arrays to be
C              considered as endpoint of a separator; angle between
C              consecutive vertices is assumed to be < 180 degrees
C        VCL(1:2,1:*) - vertex coordinate list
C        PVL(1:4,1:*),IANG(1:*) - polygon vertex list, interior angles
C
C     Output parameters:
C        ANGSEP - minimum of the 4 or 7 angles at the boundary
C              resulting from 1 or 2 separators, respectively
C        I1,I2 - indices of endpoints of separators in XC, YC arrays;
C              I2 = -1 if there is only one separator, else I1 < I2
C
C     Working parameters:
C        WKANG(0:NV) - working array for angles
C
C     Routines called:
C        MINANG
C
      DOUBLE PRECISION PI,TOL
      COMMON /GCONST/ PI,TOL
      SAVE /GCONST/
C
      INTEGER I,II,K,L,M,NL,NR,P,Q,R
      DOUBLE PRECISION ANG,ANGSP2,MINANG,PHI
C
C     Determine the vertices in the inner cone - indices P to Q.
C
      I = 0
      P = -1
      PHI = THETA(NVRT) - PI + TOL
   10 CONTINUE
      IF (P .GE. 0) GO TO 20
	 IF (THETA(IV(I)) .GE. PHI) THEN
	    P = I
	 ELSE
	    I = I + 1
	 ENDIF
      GO TO 10
   20 CONTINUE
      I = NV
      Q = -1
      PHI = PI - TOL
   30 CONTINUE
      IF (Q .GE. 0) GO TO 40
	 IF (THETA(IV(I)) .LE. PHI) THEN
	    Q = I
	 ELSE
	    I = I - 1
	 ENDIF
      GO TO 30
   40 CONTINUE
C
C     Use the max-min angle criterion to find the best separator
C     in inner cone.
C
      ANGSEP = 0.0D0
      DO 50 I = P,Q
	 K = IV(I)
	 ANG = MINANG(XR,YR,XC(K),YC(K),IVIS(K),THETA(K),THETA(NVRT),
     $      VCL,PVL,IANG)
	 IF (ANG .GT. ANGSEP) THEN
	    ANGSEP = ANG
	    II = IV(I)
	 ENDIF
   50 CONTINUE
      ANGSP2 = ANGSEP
      IF (ANGSEP .GE. ANGAC1) GO TO 110
C
C     If the best separator in inner cone is not 'good' enough,
C     use max-min angle criterion to try to find a better pair
C     of separators from the right and left cones.
C
      NR = 0
      NL = 0
      DO 60 R = 0,P-1
         WKANG(R) = 0.0D0
         IF (THETA(IV(R)) .GT. ANGSEP) THEN
	    K = IV(R)
	    ANG = MINANG(XR,YR,XC(K),YC(K),IVIS(K),THETA(K),THETA(NVRT),
     $         VCL,PVL,IANG)
	    IF (ANG .GT. ANGSEP) THEN
	       NR = NR + 1
	       WKANG(R) = ANG
	    ENDIF
         ENDIF
   60 CONTINUE
      IF (NR .EQ. 0) GO TO 110
      PHI = THETA(NVRT) - ANGSEP
      DO 70 L = Q+1,NV
         WKANG(L) = 0.0D0
         IF (THETA(IV(L)) .LT. PHI) THEN
	    K = IV(L)
	    ANG = MINANG(XR,YR,XC(K),YC(K),IVIS(K),THETA(K),THETA(NVRT),
     $         VCL,PVL,IANG)
	    IF (ANG .GT. ANGSEP) THEN
	       NL = NL + 1
	       WKANG(L) = ANG
	    ENDIF
         ENDIF
   70 CONTINUE
      IF (NL .EQ. 0) GO TO 110
C
C     Check all possible pairs for the best pair of separators
C     in the right and left cones.
C
      M = NV
      DO 100 R = P-1,0,-1
         IF (M .GT. Q .AND. WKANG(R) .GT. ANGSP2) THEN
	    PHI = THETA(IV(R))
   80       CONTINUE
	    IF (M .GT. Q .AND. (WKANG(M) .LE. ANGSP2 .OR.
     $         THETA(IV(M)) - PHI .GT. PI - TOL)) THEN
	       M = M - 1
	       GO TO 80
	    ENDIF
	    DO 90 L = Q+1,M
	       IF (WKANG(L) .GT. ANGSP2) THEN
	          ANG = MIN(THETA(IV(L)) - PHI, WKANG(R), WKANG(L))
	          IF (ANG .GT. ANGSP2) THEN
		     ANGSP2 = ANG
		     I1 = IV(R)
		     I2 = IV(L)
	          ENDIF
	       ENDIF
   90       CONTINUE
         ENDIF
  100 CONTINUE
C
C     Choose 1 or 2 separators based on max-min angle criterion or
C     ANGAC1 parameter.
C
  110 CONTINUE
      IF (ANGSP2 .LE. ANGSEP) THEN
	 I1 = II
	 I2 = -1
      ELSE
	 ANGSEP = ANGSP2
      ENDIF
      END
C
C     The following code was excerpted from: holvrt.f
C
      SUBROUTINE HOLVRT(NHOLE,VCL,HVL,PVL,HOLV)
      IMPLICIT LOGICAL (A-Z)
      INTEGER NHOLE
      INTEGER HOLV(NHOLE*2),HVL(NHOLE),PVL(4,*)
      DOUBLE PRECISION VCL(2,*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Determine top and bottom vertices of holes in polygonal
C        region(s), and sort top vertices in decreasing (y,x) order
C        and bottom vertices in increasing (y,x) order.
C
C     Input parameters:
C        NHOLE - number of holes in region(s)
C        VCL(1:2,1:*) - vertex coordinate list
C        HVL(1:NHOLE) - head vertex list; HVL(I) is index in PVL of
C              head vertex of Ith hole
C        PVL(1:4,1:*) - polygon vertex list; see routine DSPGDC
C
C     Output parameters:
C        HOLV(1:NHOLE*2) - indices in PVL of top and bottom vertices of
C              holes; first (last) NHOLE entries are for top (bottom)
C              vertices; top (bottom) vertices are sorted in decreasing
C              (increasing) lexicographic (y,x) order of coordinates
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER HV,I,IMAX,IMIN,IV,J,LV,NHP1
      DOUBLE PRECISION X,XMAX,XMIN,Y,YMAX,YMIN
C
C     Determine top and bottom vertices of holes.
C
      IMIN = HVL(1)
      IMAX = HVL(1)
      XMIN = VCL(1,PVL(LOC,HVL(1)))
      YMIN = VCL(2,PVL(LOC,HVL(1)))
      XMAX = XMIN
      YMAX = YMIN
      DO 20 I = 1,NHOLE
	 HV = HVL(I)
	 IV = HV
   10    CONTINUE
	    LV = PVL(LOC,IV)
	    IF (IV .EQ. HV) THEN
	       IMIN = IV
	       IMAX = IV
	       XMIN = VCL(1,LV)
	       YMIN = VCL(2,LV)
	       XMAX = XMIN
	       YMAX = YMIN
	    ELSE
	       X = VCL(1,LV)
	       Y = VCL(2,LV)
	       IF (Y .LT. YMIN .OR. Y .EQ. YMIN .AND. X .LT. XMIN) THEN
		  IMIN = IV
		  XMIN = X
		  YMIN = Y
	       ELSE IF (Y .GT. YMAX .OR. Y .EQ. YMAX .AND. X .GT. XMAX)
     $         THEN
		  IMAX = IV
		  XMAX = X
		  YMAX = Y
	       ENDIF
	    ENDIF
	    IV = PVL(SUCC,IV)
	 IF (IV .NE. HV) GO TO 10
	 HOLV(I) = IMAX
	 HOLV(I+NHOLE) = IMIN
   20 CONTINUE
C
C     Use linear insertion sort to sort the top vertices of holes
C     in decreasing (y,x) order, then bottom vertices in increasing
C     (y,x) order. It is assumed NHOLE is small.
C
      DO 40 I = 2,NHOLE
	 HV = HOLV(I)
	 LV = PVL(LOC,HV)
	 X = VCL(1,LV)
	 Y = VCL(2,LV)
	 J = I
   30    CONTINUE
	    IV = HOLV(J-1)
	    LV = PVL(LOC,IV)
	    IF (Y .GT. VCL(2,LV) .OR. Y .EQ. VCL(2,LV) .AND.
     $         X .GT. VCL(1,LV)) THEN
	       HOLV(J) = IV
	       J = J - 1
	       IF (J .GT. 1) GO TO 30
	    ENDIF
	 HOLV(J) = HV
   40 CONTINUE
C
      NHP1 = NHOLE + 1
      DO 60 I = NHP1+1,NHOLE+NHOLE
	 HV = HOLV(I)
	 LV = PVL(LOC,HV)
	 X = VCL(1,LV)
	 Y = VCL(2,LV)
	 J = I
   50    CONTINUE
	    IV = HOLV(J-1)
	    LV = PVL(LOC,IV)
	    IF (Y .LT. VCL(2,LV) .OR. Y .EQ. VCL(2,LV) .AND.
     $         X .LT. VCL(1,LV)) THEN
	       HOLV(J) = IV
	       J = J - 1
	       IF (J .GT. NHP1) GO TO 50
	    ENDIF
	 HOLV(J) = HV
   60 CONTINUE
      END
C
C     The following code was excerpted from: insed2.f
C
      SUBROUTINE INSED2(V,W,NPOLG,NVERT,MAXHV,MAXPV,VCL,REGNUM,HVL,
     $   PVL,IANG)
      IMPLICIT LOGICAL (A-Z)
      INTEGER MAXHV,MAXPV,NPOLG,NVERT,V,W
      INTEGER HVL(MAXHV),PVL(4,MAXPV)
      INTEGER REGNUM(MAXHV)
      DOUBLE PRECISION IANG(MAXPV),VCL(2,*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Insert edge joining vertices V, W into head vertex
C        list and polygon vertex list data structures.
C
C     Input parameters:
C        V,W - indices in PVL of vertices which are the endpoints
C              of an edge to be added to decomposition
C        NPOLG - number of positions used in HVL array
C        NVERT - number of positions used in PVL array
C        MAXHV - maximum size available for HVL array
C        MAXPV - maximum size available for PVL array
C        VCL(1:2,1:*) - vertex coordinate list
C        REGNUM(1:NPOLG) - region numbers
C        HVL(1:NPOLG) - head vertex list
C        PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C              interior angles
C
C     Updated parameters:
C        REGNUM,HVL,PVL,IANG
C
C     Abnormal return:
C        IERR is set to 4 or 5
C
C     Routines called:
C        ANGLE
C
      INTEGER IERR,IPRT,MSGLVL
      COMMON /GERROR/ IERR
      COMMON /GPRINT/ IPRT,MSGLVL
      SAVE /GERROR/,/GPRINT/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER I,L,LV,LW,VV,WW
      DOUBLE PRECISION ANGLE
C
      IF (NPOLG .GE. MAXHV) THEN
	 IERR = 4
	 RETURN
      ELSE IF (NVERT+2 .GT. MAXPV) THEN
	 IERR = 5
	 RETURN
      ENDIF
C
C     Split linked list of vertices of the polygon containing vertices
C     V and W into two linked list of vertices of polygons with common
C     edge joining V and W.
C
      NVERT = NVERT + 2
      VV = NVERT - 1
      WW = NVERT
      LV = PVL(LOC,V)
      LW = PVL(LOC,W)
      PVL(LOC,VV) = LV
      PVL(LOC,WW) = LW
      PVL(POLG,WW) = PVL(POLG,V)
      PVL(SUCC,VV) = PVL(SUCC,V)
      PVL(SUCC,WW) = PVL(SUCC,W)
      PVL(SUCC,V) = WW
      PVL(SUCC,W) = VV
      PVL(EDGV,VV) = PVL(EDGV,V)
      PVL(EDGV,WW) = PVL(EDGV,W)
      PVL(EDGV,V) = W
      PVL(EDGV,W) = V
      IF (PVL(EDGV,VV) .GT. 0) PVL(EDGV,PVL(EDGV,VV)) = VV
      IF (PVL(EDGV,WW) .GT. 0) PVL(EDGV,PVL(EDGV,WW)) = WW
      L = PVL(LOC,PVL(SUCC,VV))
      IANG(VV) = ANGLE(VCL(1,LW),VCL(2,LW),VCL(1,LV),VCL(2,LV),
     $   VCL(1,L),VCL(2,L))
      IANG(V) = IANG(V) - IANG(VV)
      L = PVL(LOC,PVL(SUCC,WW))
      IANG(WW) = ANGLE(VCL(1,LV),VCL(2,LV),VCL(1,LW),VCL(2,LW),
     $   VCL(1,L),VCL(2,L))
      IANG(W) = IANG(W) - IANG(WW)
      NPOLG = NPOLG + 1
      I = VV
   10 CONTINUE
	 PVL(POLG,I) = NPOLG
	 I = PVL(SUCC,I)
      IF (I .NE. VV) GO TO 10
      HVL(PVL(POLG,V)) = V
      HVL(NPOLG) = VV
      REGNUM(NPOLG) = REGNUM(PVL(POLG,V))
C
      END
C
C     The following code was excerpted from: insvr2.f
C
      SUBROUTINE INSVR2(XI,YI,WP,NVC,NVERT,MAXVC,MAXPV,VCL,PVL,IANG,W)
      IMPLICIT LOGICAL (A-Z)
      INTEGER MAXPV,MAXVC,NVC,NVERT,PVL(4,MAXPV),W,WP
      DOUBLE PRECISION IANG(MAXPV),VCL(2,MAXVC),XI,YI
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Insert point (XI,YI) into vertex coordinate list and
C        polygon vertex list data structures.
C
C     Input parameters:
C        XI,YI - coordinates of point to be inserted
C        WP - index of vertex in PVL which is to be the predecessor
C              vertex of the inserted vertex
C        NVC - number of positions used in VCL array
C        NVERT - number of positions used in PVL array
C        MAXVC - maximum size available for VCL array
C        MAXPV - maximum size available for PVL array
C        VCL(1:2,1:NVC) - vertex coordinate list
C        PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C              interior angles
C
C     Updated parameters:
C        NVC,NVERT,VCL,PVL,IANG
C
C     Output parameter:
C        W - index of inserted vertex in PVL
C
C     Abnormal return:
C        IERR is set to 3 or 5
C
      INTEGER IERR
      DOUBLE PRECISION PI,TOL
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      SAVE /GERROR/,/GCONST/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER WS,WW,WWP,WWS
C
      IF (NVC .GE. MAXVC) THEN
	 IERR = 3
	 RETURN
      ELSE IF (NVERT+2 .GT. MAXPV) THEN
	 IERR = 5
	 RETURN
      ENDIF
C
C     Update linked list of vertices of polygon containing vertex WP.
C
      NVC = NVC + 1
      VCL(1,NVC) = XI
      VCL(2,NVC) = YI
      WS = PVL(SUCC,WP)
      NVERT = NVERT + 1
      W = NVERT
      PVL(LOC,W) = NVC
      PVL(POLG,W) = PVL(POLG,WP)
      PVL(SUCC,WP) = W
      PVL(SUCC,W) = WS
      IANG(W) = PI
      PVL(EDGV,W) = PVL(EDGV,WP)
C
C     If edge containing (XI,YI) is shared by another polygon,
C     then also update linked list of vertices of that polygon.
C
      IF (PVL(EDGV,WP) .GT. 0) THEN
	 WWS = PVL(EDGV,WP)
         WWP = PVL(SUCC,WWS)
         NVERT = NVERT + 1
         WW = NVERT
         PVL(LOC,WW) = NVC
         PVL(POLG,WW) = PVL(POLG,WWS)
         PVL(SUCC,WWS) = WW
         PVL(SUCC,WW) = WWP
         IANG(WW) = PI
         PVL(EDGV,WP) = WW
	 PVL(EDGV,WW) = WP
	 PVL(EDGV,WWS) = W
      ENDIF
      END
C
C     The following code was excerpted from: jnhole.f
C
      SUBROUTINE JNHOLE(ITOPHV,ANGSPC,ANGTOL,NVC,NVERT,MAXVC,MAXPV,
     $   MAXIW,MAXWK,VCL,HVL,PVL,IANG,IWK,WK)
      IMPLICIT LOGICAL (A-Z)
      INTEGER ITOPHV,MAXIW,MAXPV,MAXVC,MAXWK,NVC,NVERT
      INTEGER HVL(*),IWK(MAXIW),PVL(4,MAXPV)
      DOUBLE PRECISION ANGSPC,ANGTOL,IANG(MAXPV),VCL(2,MAXVC),WK(MAXWK)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Join hole boundary to boundary of polygon containing hole
C        by finding a cut edge originating from the top vertex of hole
C        to a point on outer polygon boundary above it.
C
C     Input parameters:
C        ITOPHV - index in PVL of top vertex of hole
C        ANGSPC - angle spacing parameter used in controlling the
C              vertices to be considered as an endpoint of a separator
C        ANGTOL - angle tolerance parameter used in accepting
C              separator(s)
C        NVC - number of positions used in VCL array
C        NVERT - number of positions used in PVL array
C        MAXVC - maximum size available for VCL array
C        MAXPV - maximum size available for PVL array
C        MAXIW - maximum size available for IWK array; should be about
C              3 times number of vertices in outer polygon
C        MAXWK - maximum size available for WK array; should be about
C              5 times number of vertices in outer polygon
C        VCL(1:2,1:NVC) - vertex coordinate list
C        HVL(1:*) - head vertex list
C        PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C              interior angles
C
C     Updated parameters:
C        NVC,NVERT,VCL,PVL,IANG
C
C     Working parameters:
C        IWK(1:MAXIW) - integer work array
C        WK(1:MAXWK) - double precision work array
C
C     Abnormal return:
C        IERR is set to 3, 5, 6, 7, 206 to 210, 212, 218, or 219
C
C     Routines called:
C        ANGLE, RESVRT
C
      INTEGER IERR,IPRT,MSGLVL
      DOUBLE PRECISION PI,TOL
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      COMMON /GPRINT/ IPRT,MSGLVL
      SAVE /GERROR/,/GCONST/,/GPRINT/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER HV,ILFT,IPOLY,IRGT,IV,IVS,L,LV,LW,SUCCIL,SUCCIR
      INTEGER VP,VR,VS,VV,W,WW
      DOUBLE PRECISION ANGLE,DY,S,SLFT,SRGT,XINT,XLFT,XRGT,XT,XV,XVS
      DOUBLE PRECISION YLFT,YRGT,YT,YTMTOL,YTPTOL,YV,YVS
C
      IF (NVC+3 .GT. MAXVC) THEN
	 IERR = 3
	 RETURN
      ELSE IF (NVERT+5 .GT. MAXPV) THEN
	 IERR = 5
	 RETURN
      ENDIF
C
C     Determine 'closest' vertices on outer boundary which are to the
C     left and right of top vertex of hole and on the horizontal line
C     through top vertex. The two closest vertices must be on edges
C     which intersect the horizontal line and are partially above the
C     line. Ties are broken (in the case of a vertex on a cut edge)
C     by choosing the vertex on the edge of maximum or minimum dx/dy
C     slope depending on whether the vertex is to the left or right
C     of top vertex, respectively.
C
      IPOLY = PVL(POLG,ITOPHV)
      LV = PVL(LOC,ITOPHV)
      XT = VCL(1,LV)
      YT = VCL(2,LV)
      DY = 0.0D0
      HV = HVL(IPOLY)
      IV = HV
      YV = VCL(2,PVL(LOC,IV))
      SLFT = 0.0
      SRGT = 0.0
   10 CONTINUE
	 IV = PVL(SUCC,IV)
	 YVS = VCL(2,PVL(LOC,IV))
	 DY = MAX(DY,ABS(YVS-YV))
	 YV = YVS
      IF (IV .NE. HV) GO TO 10
      YTMTOL = YT - TOL*DY
      YTPTOL = YT + TOL*DY
      ILFT = 0
      IRGT = 0
      XLFT = 0.0D0
      XRGT = 0.0D0
      HV = HVL(IPOLY)
      IV = HV
      LV = PVL(LOC,IV)
      XV = VCL(1,LV)
      YV = VCL(2,LV)
   20 CONTINUE
	 IVS = PVL(SUCC,IV)
	 LV = PVL(LOC,IVS)
	 XVS = VCL(1,LV)
	 YVS = VCL(2,LV)
	 IF (YV .LE. YTPTOL .AND. YVS .GT. YTPTOL) THEN
	    IF (YV .GE. YTMTOL) THEN
	       IF (XV .GT. XT) THEN
		  IF (XV .LT. XRGT .OR. IRGT .EQ. 0) THEN
		     IRGT = IV
		     XRGT = XV
		     YRGT = YV
		     SRGT = (XVS - XV)/(YVS - YV)
		  ELSE IF (XV .EQ. XRGT) THEN
		     S = (XVS - XV)/(YVS - YV)
		     IF (S .LT. SRGT) THEN
			IRGT = IV
		        YRGT = YV
			SRGT = S
		     ENDIF
		  ENDIF
	       ENDIF
	    ELSE
	       XINT = (YT - YV)*(XVS - XV)/(YVS - YV) + XV
	       IF (XINT .GT. XT) THEN
		  IF (XINT .LT. XRGT .OR. IRGT .EQ. 0) THEN
		     IRGT = IV
		     XRGT = XINT
		     YRGT = YT
		  ENDIF
	       ENDIF
	    ENDIF
	 ELSE IF (YV .GT. YTPTOL .AND. YVS .LE. YTPTOL) THEN
	    IF (YVS .GE. YTMTOL) THEN
	       IF (XVS .LT. XT) THEN
		  IF (XVS .GT. XLFT .OR. ILFT .EQ. 0) THEN
		     ILFT = IV
		     XLFT = XVS
		     YLFT = YVS
		     SLFT = (XVS - XV)/(YVS - YV)
		  ELSE IF (XVS .EQ. XLFT) THEN
		     S = (XVS - XV)/(YVS - YV)
		     IF (S .GT. SLFT) THEN
			ILFT = IV
		        YLFT = YVS
			SLFT = S
		     ENDIF
		  ENDIF
	       ENDIF
	    ELSE
	       XINT = (YT - YV)*(XVS - XV)/(YVS - YV) + XV
	       IF (XINT .LT. XT) THEN
		  IF (XINT .GT. XLFT .OR. ILFT .EQ. 0) THEN
		     ILFT = IV
		     XLFT = XINT
		     YLFT = YT
		  ENDIF
	       ENDIF
	    ENDIF
	 ENDIF
	 IV = IVS
	 XV = XVS
	 YV = YVS
      IF (IV .NE. HV) GO TO 20
C
      IF (ILFT .EQ. 0 .OR. IRGT .EQ. 0) THEN
	 IERR = 218
	 RETURN
      ENDIF
C
C     Temporarily modify PVL to pass the subregion 'above' top vertex
C     of hole to routine RESVRT. The top vertex is the reflex vertex
C     passed to RESVRT (in the temporary subregion, it has interior
C     angle PI). This causes one separator to be chosen by RESVRT
C     and its other endpoint is above the top vertex.
C
      SUCCIL = PVL(SUCC,ILFT)
      SUCCIR = PVL(SUCC,IRGT)
      VCL(1,NVC+2) = XLFT
      VCL(2,NVC+2) = YLFT
      VCL(1,NVC+3) = XRGT
      VCL(2,NVC+3) = YRGT
      VP = NVERT + 3
      VR = NVERT + 4
      VS = NVERT + 5
      IANG(VR) = ANGLE(XLFT,YLFT,XT,YT,XRGT,YRGT)
      IF (IANG(VR) .LT. PI - TOL .OR. IANG(VR) .GT. PI + TOL) THEN
	 IERR = 219
	 RETURN
      ENDIF
      PVL(LOC,VP) = NVC + 2
      PVL(POLG,VP) = IPOLY
      PVL(SUCC,VP) = VR
      PVL(EDGV,VP) = 0
      PVL(LOC,VR) = PVL(LOC,ITOPHV)
      PVL(POLG,VR) = IPOLY
      PVL(SUCC,VR) = VS
      PVL(EDGV,VR) = 0
      PVL(LOC,VS) = NVC + 3
      PVL(POLG,VS) = IPOLY
      PVL(SUCC,VS) = SUCCIR
      PVL(EDGV,VS) = PVL(EDGV,IRGT)
      PVL(SUCC,ILFT) = VP
      LV = PVL(LOC,ILFT)
      IANG(VP) = ANGLE(VCL(1,LV),VCL(2,LV),XLFT,YLFT,XT,YT)
      LV = PVL(LOC,SUCCIR)
      IANG(VS) = ANGLE(XT,YT,XRGT,YRGT,VCL(1,LV),VCL(2,LV))
      W = 0
      CALL RESVRT(VR,ANGSPC,ANGTOL,NVC,NVERT,MAXVC,MAXPV,MAXIW,MAXWK,
     $   VCL,PVL,IANG,W,WW,IWK,WK)
C
C     Remove temporary modification to PVL. There are three cases
C     depending on where the endpoint of separator is located:
C     successor of closest vertex to the right of top vertex,
C     predecessor of closest vertex to the left of top vertex,
C     or neither of these.
C
      IF (PVL(SUCC,VS) .EQ. W) THEN
	 PVL(SUCC,ILFT) = SUCCIL
	 PVL(SUCC,IRGT) = W
	 PVL(EDGV,IRGT) = PVL(EDGV,VS)
         IF (PVL(EDGV,IRGT) .GT. 0) PVL(EDGV,PVL(EDGV,IRGT)) = IRGT
      ELSE IF (PVL(SUCC,ILFT) .EQ. W) THEN
	 PVL(SUCC,W) = SUCCIL
      ELSE
	 PVL(SUCC,ILFT) = SUCCIL
      ENDIF
      IF (IERR .NE. 0) RETURN
C
C     Update PVL with cut edge, i.e. join linked lists of vertices
C     of the hole polygon and the outer boundary polygon into one
C     linked list of vertices by adding the cut edge from the top
C     vertex of hole to the vertex on the outer boundary.
C
      NVERT = NVERT + 2
      VV = NVERT - 1
      WW = NVERT
      LV = PVL(LOC,ITOPHV)
      LW = PVL(LOC,W)
      PVL(LOC,VV) = LV
      PVL(LOC,WW) = LW
      PVL(POLG,VV) = IPOLY
      PVL(POLG,WW) = IPOLY
      PVL(SUCC,VV) = PVL(SUCC,ITOPHV)
      PVL(SUCC,WW) = PVL(SUCC,W)
      PVL(SUCC,ITOPHV) = WW
      PVL(SUCC,W) = VV
      PVL(EDGV,VV) = PVL(EDGV,ITOPHV)
      PVL(EDGV,WW) = PVL(EDGV,W)
      PVL(EDGV,ITOPHV) = W
      PVL(EDGV,W) = ITOPHV
      IF (PVL(EDGV,VV) .GT. 0) PVL(EDGV,PVL(EDGV,VV)) = VV
      IF (PVL(EDGV,WW) .GT. 0) PVL(EDGV,PVL(EDGV,WW)) = WW
      L = PVL(LOC,PVL(SUCC,VV))
      IANG(VV) = ANGLE(VCL(1,LW),VCL(2,LW),VCL(1,LV),VCL(2,LV),
     $   VCL(1,L),VCL(2,L))
      IANG(ITOPHV) = IANG(ITOPHV) - IANG(VV)
      L = PVL(LOC,PVL(SUCC,WW))
      IANG(WW) = ANGLE(VCL(1,LV),VCL(2,LV),VCL(1,LW),VCL(2,LW),
     $   VCL(1,L),VCL(2,L))
      IANG(W) = IANG(W) - IANG(WW)
C
      END
C
C     The following code was excerpted from: minang.f
C
      DOUBLE PRECISION FUNCTION MINANG(XR,YR,XS,YS,IND,ALPHA,THETA,
     $   VCL,PVL,IANG)
      IMPLICIT LOGICAL (A-Z)
      INTEGER IND,PVL(4,*)
      DOUBLE PRECISION ALPHA,IANG(*),THETA,VCL(2,*),XR,XS,YR,YS
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Determine the minimum of the 4 angles at the boundary
C        resulting from using edge joining vertices (XR,YR) and
C        (XS,YS) as a separator.
C
C     Input parameters:
C        XR,YR - coordinates of reflex vertex
C        XS,YS - coordinates of other endpoint of possible separator
C        IND - if positive then (XS,YS) has index IND in PVL; else
C              (XS,YS) is on edge joining vertices with indices -IND
C              and SUCC(-IND) in PVL
C        ALPHA - polar angle of (XS,YS) w.r.t. (XR,YR)
C        THETA - interior angle at reflex vertex
C        VCL(1:2,1:*) - vertex coordinate list
C        PVL(1:4,1:*),IANG(1:*) - polygon vertex list, interior angles
C
C     Returned function value:
C        MINANG - minimum of the 4 angles in radians
C
C     Routines called:
C        ANGLE
C
      DOUBLE PRECISION PI,TOL
      COMMON /GCONST/ PI,TOL
      SAVE /GCONST/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER J,L
      DOUBLE PRECISION ANG,ANGLE,BETA1
C
      IF (IND .GT. 0) THEN
	 J = PVL(SUCC,IND)
	 ANG = IANG(IND)
      ELSE
	 J = PVL(SUCC,-IND)
	 ANG = PI
      ENDIF
      L = PVL(LOC,J)
      BETA1 = ANGLE(XR,YR,XS,YS,VCL(1,L),VCL(2,L))
      MINANG = MIN(ALPHA, THETA - ALPHA, ANG - BETA1, BETA1)
      END
C
C     The following code was excerpted from: resvrt.f
C
      SUBROUTINE RESVRT(VR,ANGSPC,ANGTOL,NVC,NVERT,MAXVC,MAXPV,MAXIW,
     $   MAXWK,VCL,PVL,IANG,W1,W2,IWK,WK)
      IMPLICIT LOGICAL (A-Z)
      INTEGER MAXIW,MAXPV,MAXVC,MAXWK,NVC,NVERT,VR,W1,W2
      INTEGER IWK(MAXIW),PVL(4,MAXPV)
      DOUBLE PRECISION ANGSPC,ANGTOL,IANG(MAXPV),VCL(2,MAXVC),WK(MAXWK)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Resolve reflex vertex of simply connected polygon with
C        one or two separators. The reflex vertex must be a 'simple'
C        vertex of the polygon.
C
C     Input parameters:
C        VR - index in PVL of reflex vertex
C        ANGSPC - angle spacing parameter used in controlling the
C              vertices to be considered as an endpoint of a separator
C        ANGTOL - angle tolerance parameter used in accepting
C              separator(s)
C        NVC - number of positions used in VCL array
C        NVERT - number of positions used in PVL array
C        MAXVC - maximum size available for VCL array
C        MAXPV - maximum size available for PVL array
C        MAXIW - maximum size available for IWK array; should be about
C              3 times number of vertices in polygon
C        MAXWK - maximum size available for WK array; should be about
C              5 times number of vertices in polygon
C        VCL(1:2,1:NVC) - vertex coordinate list
C        PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C              interior angles
C
C     Updated parameters:
C        NVC,NVERT,VCL,PVL,IANG - are updated if INSVR2 is called
C
C     Output parameters:
C        W1 - index in PVL of vertex which is the endpoint of separator
C              in inner cone or right cone w.r.t. reflex vertex
C        W2 - 0 if there is only one separator; else index in PVL of
C              vertex which is endpoint of 2nd separator in left cone
C
C     Working parameters:
C        IWK(1:MAXIW) - integer work array
C        WK(1:MAXWK) - double precision work array
C
C     Abnormal return:
C        IERR is set to 3, 5, 6, 7, 206, 207, 208, 209, 210, or 212
C
C     Routines called:
C        FNDSEP, INSVR2, VISPOL, VISVRT, VORNBR
C
      INTEGER IERR
      COMMON /GERROR/ IERR
      SAVE /GERROR/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER I,I1,I2,IVIS,IVOR,IVRT,L,MAXN,NVIS,NVOR,NVRT,NVSVRT
      INTEGER THETA,V,WKANG,XC,XVOR,YC,YVOR
      DOUBLE PRECISION ANGSEP,XR,YR
C
C     Determine number of vertices in polygon containing reflex vertex.
C
      NVRT = 0
      V = VR
   10 CONTINUE
         V = PVL(SUCC,V)
         IF (V .NE. VR) THEN
	    NVRT = NVRT + 1
	    GO TO 10
         ENDIF
      MAXN = NVRT + INT(IANG(VR)/ANGSPC)
      L = PVL(LOC,VR)
      XR = VCL(1,L)
      YR = VCL(2,L)
C
C     Set up work arrays for routine VISPOL, and determine whether there
C     is enough workspace. XC, YC are d.p. arrays of length NVRT in WK,
C     used for the coordinates of the polygon containing the reflex
C     vertex. MAXN positions are reserved for XC, YC since this is the
C     maximum space required by routine VISVRT. IVIS is an integer array
C     of length MAXN in IWK. IVRT is an integer array of length NVRT in
C     IWK used temporarily for storing indices of vertices in PVL.
C
      IF (MAXN + NVRT .GT. MAXIW) THEN
	 IERR = 6
	 RETURN
      ELSE IF (MAXN + MAXN .GT. MAXWK) THEN
	 IERR = 7
	 RETURN
      ENDIF
      IVIS = 1
      IVRT = IVIS + MAXN
      XC = 1
      YC = XC + MAXN
      V = PVL(SUCC,VR)
      DO 20 I = 0,NVRT-1
	 L = PVL(LOC,V)
	 WK(XC+I) = VCL(1,L)
	 WK(YC+I) = VCL(2,L)
	 IWK(IVRT+I) = V
	 V = PVL(SUCC,V)
   20 CONTINUE
      CALL VISPOL(XR,YR,NVRT-1,WK(XC),WK(YC),NVIS,IWK(IVIS))
      IF (IERR .NE. 0) RETURN
C
C     XC, YC now contain visibility polygon coordinates. Update MAXN
C     and set up d.p. array THETA of length MAXN in WK for routine
C     VISVRT. Elements of IVIS are changed to indices of PVL after call.
C
      MAXN = MAXN - NVRT + NVIS + 1
      THETA = YC + MAXN
      IF (THETA + MAXN - 1 .GT. MAXWK) THEN
	 IERR = 7
	 RETURN
      ENDIF
      CALL VISVRT(ANGSPC,XR,YR,NVIS,WK(XC),WK(YC),IWK(IVIS),MAXN-1,
     $   NVSVRT,WK(THETA))
      WK(THETA+NVSVRT) = IANG(VR)
      DO 30 I = IVIS,IVIS+NVSVRT
	 L = IWK(I)
	 IF (L .GE. 0) THEN
	    IWK(I) = IWK(IVRT+L)
	 ELSE
	    IWK(I) = -IWK(IVRT-L-1)
	 ENDIF
   30 CONTINUE
C
C     XC, YC now contain coord. of visible vertices to be considered
C     as an endpoint of a separator. Set up work arrays for routine
C     VORNBR. Integer array IVOR and d.p. arrays XVOR, YVOR, each of
C     length NVSVRT+1, are added at the end of IWK and WK arrays.
C
      IVOR = IVIS + NVSVRT + 1
      XVOR = THETA + NVSVRT + 1
      YVOR = XVOR + NVSVRT + 1
      IF (IVOR + NVSVRT .GT. MAXIW) THEN
	 IERR = 6
	 RETURN
      ELSE IF (YVOR + NVSVRT .GT. MAXWK) THEN
	 IERR = 7
	 RETURN
      ENDIF
      CALL VORNBR(XR,YR,NVSVRT,WK(XC),WK(YC),NVOR,IWK(IVOR),WK(XVOR),
     $   WK(YVOR))
      IF (IERR .NE. 0) RETURN
C
C     Set up d.p. array WKANG of length NVOR+1 <= NVSVRT+1 in WK for
C     routine FNDSEP. Only Voronoi neighbours are considered as an
C     endpoint of a separator in the first call to FNDSEP. If the
C     minimum angle created at the boundary by the separator(s) is too
C     small, then a second call is made to FNDSEP in which all visible
C     vertices are considered as an endpoint of a separator.
C
      WKANG = XVOR
      IF (IWK(IVOR+NVOR) .EQ. NVSVRT) NVOR = NVOR - 1
      IF (IWK(IVOR) .EQ. 0) THEN
	 IVOR = IVOR + 1
	 NVOR = NVOR - 1
      ENDIF
      CALL FNDSEP(ANGTOL+ANGTOL,XR,YR,NVSVRT,WK(XC),WK(YC),IWK(IVIS),
     $   WK(THETA),NVOR,IWK(IVOR),VCL,PVL,IANG,ANGSEP,I1,I2,WK(WKANG))
      IF (ANGSEP .LT. ANGTOL) THEN
	 IVRT = IVIS + NVSVRT + 1
	 DO 40 I = 1,NVSVRT-1
	    IWK(IVRT+I-1) = I
   40    CONTINUE
         CALL FNDSEP(ANGTOL+ANGTOL,XR,YR,NVSVRT,WK(XC),WK(YC),IWK(IVIS),
     $      WK(THETA),NVSVRT-2,IWK(IVRT),VCL,PVL,IANG,ANGSEP,I1,I2,
     $      WK(WKANG))
      ENDIF
C
C     Insert endpoint(s) of separator(s) in vertex coordinate list and
C     polygon vertex list data structures, if they are not yet there.
C
      IF (I2 .EQ. -1) THEN
	 W2 = 0
      ELSE IF (IWK(IVIS+I2) .LT. 0) THEN
	 CALL INSVR2(WK(XC+I2),WK(YC+I2),-IWK(IVIS+I2),NVC,NVERT,MAXVC,
     $      MAXPV,VCL,PVL,IANG,W2)
	 IF (IERR .NE. 0) RETURN
      ELSE
	 W2 = IWK(IVIS+I2)
      ENDIF
      IF (IWK(IVIS+I1) .LT. 0) THEN
	 CALL INSVR2(WK(XC+I1),WK(YC+I1),-IWK(IVIS+I1),NVC,NVERT,MAXVC,
     $      MAXPV,VCL,PVL,IANG,W1)
	 IF (IERR .NE. 0) RETURN
      ELSE
	 W1 = IWK(IVIS+I1)
      ENDIF
      END
C
C     The following code was excerpted from: spdec2.f
C
      SUBROUTINE SPDEC2(ANGSPC,ANGTOL,NVC,NPOLG,NVERT,NHOLE,NHOLA,MAXVC,
     $   MAXHV,MAXPV,MAXIW,MAXWK,HOLV,VCL,REGNUM,HVL,PVL,IANG,IWK,WK)
      IMPLICIT LOGICAL (A-Z)
      INTEGER MAXHV,MAXIW,MAXPV,MAXVC,MAXWK,NHOLA,NHOLE,NPOLG,NVC,NVERT
      INTEGER HOLV(*),HVL(MAXHV),IWK(MAXIW),PVL(4,MAXPV),REGNUM(MAXHV)
      DOUBLE PRECISION ANGSPC,ANGTOL,IANG(MAXPV),VCL(2,MAXVC),WK(MAXWK)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Decompose general polygonal region with interfaces and
C        holes into simple polygons using vertex coordinate list,
C        head vertex list, and polygon vertex list data structures.
C
C     Input parameters:
C        ANGSPC - angle spacing parameter in radians used in controlling
C              vertices to be considered as an endpoint of a separator
C        ANGTOL - angle tolerance parameter in radians used in accepting
C              separator(s)
C        NVC - number of vertex coordinates or positions used in VCL
C              array
C        NPOLG - number of polygonal subregions or positions used in
C              HVL array
C        NVERT - number of polygon vertices or positions used in PVL
C              array
C        NHOLE - number of holes and hole interfaces
C        NHOLA - number of 'attached' holes; these holes are attached
C              to the outer boundary of a subregion through vertices
C              or cut interfaces and have their edges in consecutive
C              order on the boundary
C        MAXVC - maximum size available for VCL array, should be >=
C              number of vertex coordinates required for decomposition
C        MAXHV - maximum size available for HVL, REGNUM arrays, should
C              be >= number of polygons required for decomposition
C        MAXPV - maximum size available for PVL, IANG arrays; should be
C              >= number of polygon vertices required for decomposition
C        MAXIW - maximum size available for IWK array; should be about
C              3 times maximum number of vertices in any polygon
C        MAXWK - maximum size available for WK array; should be about
C              5 times maximum number of vertices in any polygon
C        HOLV(1:NHOLE*2+NHOLA) - indices in PVL of bottom or top vertex
C              of holes; first (next) NHOLE entries are for top (bottom)
C              vertices of holes and hole interfaces, with top (bottom)
C              vertices sorted in decreasing (increasing) lexicographic
C              (y,x) order of coord; last NHOLA entries are for attached
C              holes; if bottom vertex of attached hole is a simple
C              vertex of boundary curve containing the hole then entry
C              contains index of bottom vertex otherwise entry contains
C              index of top vertex (which is simple)
C        VCL(1:2,1:NVC) - vertex coordinate list
C        REGNUM(1:NPOLG) - region numbers
C        HVL(1:NPOLG) - head vertex list
C        PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C              interior angles; see routine DSPGDC for more details
C        [Note: The data structures should be as output from routines
C              DSMCPR or DSPGDC.]
C
C     Updated parameters:
C        NVC,NPOLG,NVERT,VCL,REGNUM,HVL,PVL,IANG
C
C     Working parameters:
C        IWK(1:MAXIW) - integer work array
C        WK(1:MAXWK) - double precision work array
C
C     Abnormal return:
C        IERR is set to 3, 4, 5, 6, 7, 206 to 210, 212, 218, or 219
C
C     Routines called:
C        INSED2, JNHOLE, RESVRT
C
      INTEGER IERR
      DOUBLE PRECISION PI,TOL
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      SAVE /GERROR/,/GCONST/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER I,J,P,VR,W1,W2
      DOUBLE PRECISION PIPTOL
      LOGICAL CI,CJ
C
C     For each simple hole, find cut edge from top vertex of hole to
C     a point on the outer boundary above top vertex, and update
C     VCL, HVL, PVL, IANG.
C
      PIPTOL = PI + TOL
      DO 10 I = 1,NHOLE
	 CALL JNHOLE(HOLV(I),ANGSPC,ANGTOL,NVC,NVERT,MAXVC,MAXPV,MAXIW,
     $      MAXWK,VCL,HVL,PVL,IANG,IWK,WK)
	 IF (IERR .NE. 0) RETURN
   10 CONTINUE
C
C     Resolve remaining vertices in HOLV array if they are reflex
C     vertices. These vertices may no longer be reflex if they are the
C     endpoint of a cut edge from the top vertex of another hole or
C     of a previous separator.
C
      DO 20 I = NHOLE+1,NHOLE+NHOLE+NHOLA
	 VR = HOLV(I)
	 IF (IANG(VR) .GT. PIPTOL) THEN
            CALL RESVRT(VR,ANGSPC,ANGTOL,NVC,NVERT,MAXVC,MAXPV,MAXIW,
     $         MAXWK,VCL,PVL,IANG,W1,W2,IWK,WK)
	    IF (IERR .NE. 0) RETURN
	    CALL INSED2(VR,W1,NPOLG,NVERT,MAXHV,MAXPV,VCL,REGNUM,HVL,
     $         PVL,IANG)
	    IF (IERR .NE. 0) RETURN
            IF (W2 .GT. 0) CALL INSED2(VR,W2,NPOLG,NVERT,MAXHV,MAXPV,
     $         VCL,REGNUM,HVL,PVL,IANG)
	    IF (IERR .NE. 0) RETURN
         ENDIF
   20 CONTINUE
      IF (NHOLA .EQ. 0) RETURN
C
C     Check that polygons are simple. If polygon is simply-connected and
C     not simple then find a simple reflex vertex in polygon to resolve.
C
      P = 1
   30 CONTINUE
      IF (P .GT. NPOLG) RETURN
	 I = HVL(P)
   40    CONTINUE
	    IF (PVL(POLG,PVL(EDGV,I)) .EQ. P) GO TO 50
	    I = PVL(SUCC,I)
	 IF (I .NE. HVL(P)) GO TO 40
	 P = P + 1
	 GO TO 30
   50    CONTINUE
	 CI = .TRUE.
   60    CONTINUE
	    J = PVL(SUCC,I)
	    CJ = (PVL(POLG,PVL(EDGV,J)) .EQ. P)
	 IF (CI .OR. CJ .OR. IANG(J) .LE. PIPTOL) THEN
	    I = J
	    CI = CJ
	    GO TO 60
	 ENDIF
	 VR = J
         CALL RESVRT(VR,ANGSPC,ANGTOL,NVC,NVERT,MAXVC,MAXPV,MAXIW,
     $      MAXWK,VCL,PVL,IANG,W1,W2,IWK,WK)
	 IF (IERR .NE. 0) RETURN
	 CALL INSED2(VR,W1,NPOLG,NVERT,MAXHV,MAXPV,VCL,REGNUM,HVL,
     $      PVL,IANG)
	 IF (IERR .NE. 0) RETURN
         IF (W2 .GT. 0) CALL INSED2(VR,W2,NPOLG,NVERT,MAXHV,MAXPV,
     $      VCL,REGNUM,HVL,PVL,IANG)
	 IF (IERR .NE. 0) RETURN
      GO TO 30
      END