File: mdf2d.f

package info (click to toggle)
felt 3.06-9
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 17,512 kB
  • ctags: 7,946
  • sloc: ansic: 85,476; fortran: 3,614; yacc: 2,803; lex: 1,178; makefile: 305; sh: 302
file content (1281 lines) | stat: -rw-r--r-- 40,787 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
C
C     The following code was excerpted from: dsmdf2.f
C
      SUBROUTINE DSMDF2(HFLAG,NVC,NPOLG,MAXWK,VCL,HVL,PVL,IANG,IVRT,
     $   XIVRT,WIDSQ,EDGVAL,VRTVAL,AREA,WK)
      IMPLICIT LOGICAL (A-Z)
      LOGICAL HFLAG
      INTEGER MAXWK,NPOLG,NVC
      INTEGER HVL(NPOLG),IVRT(*),PVL(4,*),XIVRT(NPOLG+1)
      DOUBLE PRECISION AREA(NPOLG),EDGVAL(*),IANG(*)
      DOUBLE PRECISION VCL(2,NVC),VRTVAL(NVC),WIDSQ(NPOLG),WK(MAXWK)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Set up data structure for heuristic mesh distribution
C        function from data structure for convex polygon decomposition
C        if HFLAG is .TRUE., else set up only IVRT and XIVRT.
C        Also compute areas of convex polygons.
C
C     Input parameters:
C	 HFLAG - .TRUE. if data structure is to be constructed,
C              .FALSE. if only IVRT, XIVRT, AREA are to be computed
C        NVC - number of vertex coordinates in VCL array
C        NPOLG - number of polygonal subregions in HVL array
C        MAXWK - maximum size available for WK array; should be
C              2 times maximum number of vertices in any polygon
C	 VCL(1:2,1:NVC) - vertex coordinate list
C        HVL(1:NPOLG) - head vertex list
C        PVL(1:4,1:*),IANG(1:*) - polygon vertex list, interior angles
C
C     Output parameters:
C        IVRT(1:*) - indices of polygon vertices in VCL, ordered by
C              polygon; same size as PVL
C        XIVRT(1:NPOLG+1) - pointer to first vertex of each polygon
C              in IVRT; vertices of polygon K are IVRT(I) for I from
C              XIVRT(K) to XIVRT(K+1)-1
C        WIDSQ(1:NPOLG) - square of width of convex polygons
C        EDGVAL(1:*) - value associated with each edge of decomp.;
C              same size as PVL
C        VRTVAL(1:NVC) - value associated with each vertex of decomp.
C        [Note: Above 5 arrays are for heuristic mdf data structure.]
C        AREA(1:NPOLG) - area of convex polygons
C
C     Working parameters:
C        WK(1:MAXWK) - double precision work array
C
C     Abnormal return:
C        IERR is set to 7 or 201
C
C     Routines called:
C        AREAPG, WIDTH2
C
      INTEGER IERR
      DOUBLE PRECISION PI,TOL
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      SAVE /GERROR/,/GCONST/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER I,IL,J,JL,K,L,M,NVRT,XC,YC
      DOUBLE PRECISION AREAPG,PIMTOL,S
C
C     Compute area and square of width of polygons.
C
      PIMTOL = PI - TOL
      DO 30 K = 1,NPOLG
	 NVRT = 0
	 I = HVL(K)
   10    CONTINUE
	    IF (IANG(I) .LT. PIMTOL) NVRT = NVRT + 1
	    I = PVL(SUCC,I)
	 IF (I .NE. HVL(K)) GO TO 10
	 IF (NVRT + NVRT .GT. MAXWK) THEN
	    IERR = 7
	    RETURN
	 ENDIF
	 XC = 0
   20    CONTINUE
	    IF (IANG(I) .LT. PIMTOL) THEN
	       J = PVL(LOC,I)
	       XC = XC + 1
	       WK(XC) = VCL(1,J)
	       WK(XC+NVRT) = VCL(2,J)
	    ENDIF
	    I = PVL(SUCC,I)
	 IF (I .NE. HVL(K)) GO TO 20
	 XC = 1
	 YC = XC + NVRT
	 AREA(K) = AREAPG(NVRT,WK(XC),WK(YC))*0.5D0
	 IF (HFLAG) THEN
	    CALL WIDTH2(NVRT,WK(XC),WK(YC),I,J,WIDSQ(K))
	    IF (IERR .NE. 0) RETURN
	 ENDIF
   30 CONTINUE
C
C     Set up IVRT, XIVRT, EDGVAL, VRTVAL arrays.
C
      L = 1
      DO 50 K = 1,NPOLG
	 XIVRT(K) = L
	 I = HVL(K)
	 IL = PVL(LOC,I)
   40    CONTINUE
	    IVRT(L) = IL
	    J = PVL(SUCC,I)
	    JL = PVL(LOC,J)
	    IF (HFLAG) THEN
	       S = MIN((VCL(1,JL)-VCL(1,IL))**2 + (VCL(2,JL)-VCL(2,IL))
     $            **2, WIDSQ(K))
	       M = PVL(EDGV,I)
	       IF (M .GT. 0) S = MIN(S,WIDSQ(PVL(POLG,M)))
	       EDGVAL(L) = S
	    ENDIF
	    L = L + 1
	    I = J
	    IL = JL
	 IF (I .NE. HVL(K)) GO TO 40
   50 CONTINUE
      XIVRT(NPOLG+1) = L
      IF (.NOT. HFLAG) RETURN
      DO 60 I = 1,NVC
	 VRTVAL(I) = 0.0D0
   60 CONTINUE
      DO 80 K = 1,NPOLG
	 J = XIVRT(K+1) - 1
	 L = J
	 DO 70 I = XIVRT(K),L
	    IL = IVRT(I)
	    IF (VRTVAL(IL) .EQ. 0.0D0) THEN
	       VRTVAL(IL) = MIN(EDGVAL(I),EDGVAL(J))
	    ELSE
	       VRTVAL(IL) = MIN(VRTVAL(IL),EDGVAL(I),EDGVAL(J))
	    ENDIF
	    J = I
   70    CONTINUE
   80 CONTINUE
      END
C
C     The following code was excerpted from: eqdis2.f
C
      SUBROUTINE EQDIS2(HFLAG,UMDF,KAPPA,ANGSPC,ANGTOL,DMIN,NMIN,NTRID,
     $   NVC,NPOLG,NVERT,MAXVC,MAXHV,MAXPV,MAXIW,MAXWK,VCL,REGNUM,HVL,
     $   PVL,IANG,AREA,PSI,H,IWK,WK)
      IMPLICIT LOGICAL (A-Z)
      LOGICAL HFLAG
      INTEGER MAXHV,MAXIW,MAXPV,MAXVC,MAXWK,NMIN,NPOLG,NTRID,NVC,NVERT
      INTEGER HVL(MAXHV),IWK(MAXIW),PVL(4,MAXPV),REGNUM(MAXHV)
      DOUBLE PRECISION ANGSPC,ANGTOL,DMIN,KAPPA,UMDF
      DOUBLE PRECISION AREA(MAXHV),H(MAXHV),IANG(MAXPV),PSI(MAXHV)
      DOUBLE PRECISION VCL(2,MAXVC),WK(MAXWK)
      EXTERNAL UMDF
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Further subdivide convex polygons so that an approx.
C        equidistributing triangular mesh can be constructed with
C        respect to heuristic or user-supplied mesh distribution
C        function, and determine triangle size for each polygon of
C        decomposition.
C
C     Input parameters:
C        HFLAG - .TRUE. if heuristic mdf, .FALSE. if user-supplied mdf
C        UMDF(X,Y) - d.p user-supplied mdf with d.p arguments
C        KAPPA - mesh smoothness parameter in interval [0.0,1.0]
C        ANGSPC - angle spacing parameter in radians used to determine
C              extra points as possible endpoints of separators
C        ANGTOL - angle tolerance parameter in radians used in
C              accepting separators
C        DMIN - parameter used to determine if variation of mdf in
C              polygon is 'sufficiently high'
C        NMIN - parameter used to determine if 'sufficiently large'
C              number of triangles in polygon
C        NTRID - desired number of triangles in mesh
C        NVC - number of vertex coordinates or positions used in VCL
C              array
C        NPOLG - number of polygonal subregions or positions used in
C              HVL array
C        NVERT - number of polygon vertices or positions used in PVL
C              array
C        MAXVC - maximum size available for VCL array, should be >=
C              number of vertex coordinates required for decomposition
C              (approx NVC + 2*NS where NS is expected number of new
C              separators)
C        MAXHV - maximum size available for HVL, REGNUM, AREA, PSI, H
C              arrays; should be >= number of polygons required for
C              decomposition (approx NPOLG + NS)
C        MAXPV - maximum size available for PVL, IANG arrays; should be
C              >= number of polygon vertices required for decomposition
C              (approx NVERT + 5*NS)
C        MAXIW - maximum size available for IWK array; should be >=
C              MAX(2*NP, NVERT + NPOLG + 3*NVRT + INT(2*PI/ANGSPC))
C              where NVRT is maximum number of vertices in a convex
C              polygon of the (input) decomposition, NP is expected
C              value of NPOLG on output
C        MAXWK - maximum size available for WK array; should be >=
C              NVC + NVERT + 2*NPOLG + 3*(NVRT + INT(2*PI/ANGSPC))
C        VCL(1:2,1:NVC) - vertex coordinate list
C        REGNUM(1:NPOLG) - region numbers
C        HVL(1:NPOLG) - head vertex list
C        PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C              interior angles; see routine DSPGDC for more details
C        [Note: The data structures should be as output from routine
C              CVDEC2.]
C
C     Updated parameters:
C        NVC,NPOLG,NVERT,VCL,REGNUM,HVL,PVL,IANG
C
C     Output parameters:
C        AREA(1:NPOLG) - area of convex polygons in decomposition
C        PSI(1:NPOLG) - smoothed mean mdf values in the convex polygons
C        H(1:NPOLG) - triangle size for convex polygons
C
C     Working parameters:
C        IWK(1:MAXIW) - integer work array
C        WK(1:MAXWK) - double precsion work array
C
C     Abnormal return:
C        IERR is set to 3, 4, 5, 6, 7, 200, 201, or 222
C
C     Routines called:
C        DSMDF2, MFDEC2, TRISIZ
C
      INTEGER IERR
      COMMON /GERROR/ IERR
      SAVE /GERROR/
C
      INTEGER EDGVAL,IVRT,M,N,VRTVAL,WIDSQ,XIVRT
C
      IVRT = 1
      XIVRT = IVRT + NVERT
      M = XIVRT + NPOLG
      IF (M .GT. MAXIW) THEN
	 IERR = 6
	 RETURN
      ENDIF
      WIDSQ = 1
      IF (HFLAG) THEN
         EDGVAL = WIDSQ + NPOLG
         VRTVAL = EDGVAL + NVERT
	 N = NPOLG + NVERT + NVC
         IF (N .GT. MAXWK) THEN
	    IERR = 7
	    RETURN
         ENDIF
      ELSE
	 EDGVAL = 1
	 VRTVAL = 1
         N = 0
      ENDIF
      CALL DSMDF2(HFLAG,NVC,NPOLG,MAXWK-N,VCL,HVL,PVL,IANG,IWK(IVRT),
     $   IWK(XIVRT),WK(WIDSQ),WK(EDGVAL),WK(VRTVAL),AREA,WK(N+1))
      IF (IERR .NE. 0) RETURN
      CALL MFDEC2(HFLAG,UMDF,KAPPA,ANGSPC,ANGTOL,DMIN,NMIN,NTRID,NVC,
     $   NPOLG,NVERT,MAXVC,MAXHV,MAXPV,MAXIW-M,MAXWK-N,VCL,REGNUM,HVL,
     $   PVL,IANG,IWK(IVRT),IWK(XIVRT),WK(WIDSQ),WK(EDGVAL),WK(VRTVAL),
     $   AREA,PSI,IWK(M+1),WK(N+1))
      IF (IERR .NE. 0) RETURN
      IF (2*NPOLG .GT. MAXIW) THEN
	 IERR = 6
	 RETURN
      ENDIF
      CALL TRISIZ(NTRID,NPOLG,HVL,PVL,AREA,PSI,H,IWK,IWK(NPOLG+1))
      END
C
C     The following code was excerpted from: intpg.f
C
      SUBROUTINE INTPG(NVRT,XC,YC,CTRX,CTRY,ARPOLY,HFLAG,UMDF,WSQ,NEV,
     $   IFV,LISTEV,IVRT,EDGVAL,VRTVAL,VCL,MDFINT,MEAN,STDV,MDFTR)
      IMPLICIT LOGICAL (A-Z)
      LOGICAL HFLAG
      INTEGER IFV,NEV,NVRT
      INTEGER IVRT(*),LISTEV(NEV)
      DOUBLE PRECISION ARPOLY,CTRX,CTRY,MDFINT,MEAN,STDV,UMDF,WSQ
      DOUBLE PRECISION EDGVAL(*),MDFTR(0:NVRT-1),VCL(2,*),VRTVAL(*)
      DOUBLE PRECISION XC(0:NVRT),YC(0:NVRT)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Compute integral of MDF2(X,Y) [heuristic mdf] or
C        UMDF(X,Y) [user-supplied mdf] in convex polygon.
C
C     Input parameters:
C        NVRT - number of vertices in polygon
C        XC(0:NVRT),YC(0:NVRT) - coordinates of polygon vertices in
C              CCW order, translated so that centroid is at origin;
C              (XC(0),YC(0)) = (XC(NVRT),YC(NVRT))
C        CTRX, CTRY - coordinates of centroid before translation
C        ARPOLY - area of polygon
C        HFLAG - .TRUE. if heuristic mdf, .FALSE. if user-supplied mdf
C        UMDF(X,Y) - d.p user-supplied mdf with d.p arguments
C        WSQ - square of width of original polygon of decomposition
C        NEV,IFV,LISTEV(1:NEV) - output from routine PRMDF2
C        IVRT(1:*),EDGVAL(1:*),VRTVAL(1:*) - arrays output from DSMDF2;
C              if .NOT. HFLAG then only first array exists
C        VCL(1:2,1:*) - vertex coordinate list
C
C     Output parameters:
C        MDFINT - integral of mdf in polygon
C        MEAN - mean mdf value in polygon
C        STDV - standard deviation of mdf in polygon
C        MDFTR(0:NVRT-1) - mean mdf value in each triangle of polygon;
C              triangles are determined by polygon vertices and centroid
C
C     Routines called:
C        UMDF
C
      INTEGER NQPT
      PARAMETER (NQPT = 3)
C
      EXTERNAL UMDF
      INTEGER I,J,K,KP1,L,M
      DOUBLE PRECISION AREATR,D,MDFSQI,S,SUM1,SUM2,TEMP,VAL
      DOUBLE PRECISION X,X0,X1,XX,Y,Y0,Y1,YY
C
      DOUBLE PRECISION WT(NQPT),QC(3,NQPT)
      DATA WT/0.3333333333333333D0,0.3333333333333333D0,
     $   0.3333333333333333D0/
      DATA QC/0.6666666666666666D0,0.1666666666666667D0,
     $   0.1666666666666667D0,0.1666666666666667D0,
     $   0.6666666666666666D0,0.1666666666666667D0,
     $   0.1666666666666667D0,0.1666666666666667D0,
     $   0.6666666666666666D0/
      SAVE WT,QC
C
C     NQPT is number of quad pts for numerical integration in triangle
C     WT(I) is weight of Ith quadrature point
C     QC(1:3,I) are barycentric coordinates of Ith quadrature point
C
      MDFINT = 0.0D0
      MDFSQI = 0.0D0
      DO 30 L = 0,NVRT-1
	 AREATR = 0.5D0*(XC(L)*YC(L+1) - XC(L+1)*YC(L))
	 SUM1 = 0.0D0
	 SUM2 = 0.0D0
	 DO 20 M = 1,NQPT
	    XX = QC(1,M)*XC(L) + QC(2,M)*XC(L+1)
	    YY = QC(1,M)*YC(L) + QC(2,M)*YC(L+1)
	    IF (HFLAG) THEN
C	       VAL = MDF2(XX+CTRX,YY+CTRY,WSQ,NEV,IFV,LISTEV,IVRT,
C    $            EDGVAL,VRTVAL,VCL)
C              Insert code for function MDF2 to reduce number of calls.
C
	       X = XX + CTRX
	       Y = YY + CTRY
               S = WSQ
               DO 10 I = 1,NEV
	          K = LISTEV(I)
	          IF (K .LT. 0) THEN
	             K = -K
	             D = (VCL(1,K) - X)**2 + (VCL(2,K) - Y)**2
	             D = MAX(0.25D0*D,VRTVAL(K))
	             S = MIN(S,D)
	          ELSE
	             KP1 = K + 1
	             IF (I .EQ. NEV .AND. IFV .GT. 0) KP1 = IFV
	             J = IVRT(KP1)
	             X0 = X - VCL(1,J)
	             Y0 = Y - VCL(2,J)
	             X1 = VCL(1,IVRT(K)) - VCL(1,J)
	             Y1 = VCL(2,IVRT(K)) - VCL(2,J)
	             IF (X0*X1 + Y0*Y1 .LE. 0.0D0) THEN
	                D = X0**2 + Y0**2
	             ELSE
	                X0 = X0 - X1
	                Y0 = Y0 - Y1
	                IF (X0*X1 + Y0*Y1 .GE. 0.0D0) THEN
	                   D = X0**2 + Y0**2
	                ELSE
		           D = (X1*Y0 - Y1*X0)**2/(X1**2 + Y1**2)
	                ENDIF
	             ENDIF
	             D = MAX(0.25D0*D,EDGVAL(K))
	             S = MIN(S,D)
	          ENDIF
   10          CONTINUE
               VAL = 1.0D0/S
	    ELSE
 	       VAL = UMDF(XX+CTRX,YY+CTRY)
	    ENDIF
	    TEMP = WT(M)*VAL
	    SUM1 = SUM1 + TEMP
	    SUM2 = SUM2 + TEMP*VAL
   20    CONTINUE
	 MDFTR(L) = SUM1
	 MDFINT = MDFINT + SUM1*AREATR
	 MDFSQI = MDFSQI + SUM2*AREATR
   30 CONTINUE
      MEAN = MDFINT/ARPOLY
      STDV = MDFSQI/ARPOLY - MEAN**2
      STDV = SQRT(MAX(STDV,0.0D0))
      END
C
C     The following code was excerpted from: mfdec2.f
C
      SUBROUTINE MFDEC2(HFLAG,UMDF,KAPPA,ANGSPC,ANGTOL,DMIN,NMIN,NTRID,
     $   NVC,NPOLG,NVERT,MAXVC,MAXHV,MAXPV,MAXIW,MAXWK,VCL,REGNUM,HVL,
     $   PVL,IANG,IVRT,XIVRT,WIDSQ,EDGVAL,VRTVAL,AREA,PSI,IWK,WK)
      IMPLICIT LOGICAL (A-Z)
      LOGICAL HFLAG
      INTEGER MAXHV,MAXIW,MAXPV,MAXVC,MAXWK,NMIN,NPOLG,NTRID,NVC,NVERT
      INTEGER HVL(MAXHV),IVRT(NVERT),IWK(MAXIW),PVL(4,MAXPV)
      INTEGER REGNUM(MAXHV),XIVRT(NPOLG+1)
      DOUBLE PRECISION ANGSPC,ANGTOL,DMIN,KAPPA,UMDF
      DOUBLE PRECISION AREA(MAXHV),EDGVAL(NVERT),IANG(MAXPV),PSI(MAXHV)
      DOUBLE PRECISION VCL(2,MAXVC),VRTVAL(NVC),WIDSQ(NPOLG),WK(MAXWK)
      EXTERNAL UMDF
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Further subdivide convex polygons so that the variation
C        of heuristic or user-supplied mesh distribution function in
C        each polygon is limited.
C
C     Input parameters:
C        HFLAG - .TRUE. if heuristic mdf, .FALSE. if user-supplied mdf
C        UMDF(X,Y) - d.p user-supplied mdf with d.p arguments
C        KAPPA - mesh smoothness parameter in interval [0.0,1.0]
C        ANGSPC - angle spacing parameter in radians used to determine
C              extra points as possible endpoints of separators
C        ANGTOL - angle tolerance parameter in radians used in
C              accepting separators
C        DMIN - parameter used to determine if variation of mdf in
C              polygon is 'sufficiently high'
C        NMIN - parameter used to determine if 'sufficiently large'
C              number of triangles in polygon
C        NTRID - desired number of triangles in mesh
C        NVC - number of vertex coordinates or positions used in VCL
C              array
C        NPOLG - number of polygonal subregions or positions used in
C              HVL array
C        NVERT - number of polygon vertices or positions used in PVL
C              array
C        MAXVC - maximum size available for VCL array
C        MAXHV - maximum size available for HVL,REGNUM,AREA,PSI arrays
C        MAXPV - maximum size available for PVL, IANG arrays
C        MAXIW - maximum size available for IWK array; should be about
C              3*NVRT + INT(2*PI/ANGSPC) where NVRT is maximum number of
C              vertices in a convex polygon of the (input) decomposition
C        MAXWK - maximum size available for WK array; should be about
C              NPOLG + 3*(NVRT + INT(2*PI/ANGSPC)) + 2
C        VCL(1:2,1:NVC) - vertex coordinate list
C        REGNUM(1:NPOLG) - region numbers
C        HVL(1:NPOLG) - head vertex list
C        PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C              interior angles
C        IVRT(1:NVERT),XIVRT(1:NPOLG+1),WIDSQ(1:NPOLG),EDGVAL(1:NVERT),
C              VRTVAL(1:NVC) - arrays output from routine DSMDF2;
C              if .NOT. HFLAG then only first two arrays exist
C        AREA(1:NPOLG) - area of convex polygons in decomposition
C
C     Updated parameters:
C        NVC,NPOLG,NVERT,VCL,REGNUM,HVL,PVL,IANG,AREA
C
C     Output parameters:
C        PSI(1:NPOLG) - mean mdf values in the convex polygons
C
C     Working parameters:
C        IWK(1:MAXIW) - integer work array
C        WK(1:MAXWK) - double precision work array
C
C     Abnormal return:
C        IERR is set to 3, 4, 5, 6, 7, 200, or 222
C
C     Routines called:
C        AREAPG, INSED2, INSVR2, INTPG, PRMDF2, SEPMDF, SEPSHP
C
      INTEGER IERR
      DOUBLE PRECISION PI,TOL
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      SAVE /GERROR/,/GCONST/
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER I,I1,I2,IFV,II,INC,INDPVL,J,K,L,LISTEV,M,MAXN,MDFTR,NEV
      INTEGER NP,NVRT,P,V,W,XC,YC
      DOUBLE PRECISION ALPHA,ANGSP2,AREAPG,AREARG,C1,C2,COSALP,CTRX
      DOUBLE PRECISION CTRY,DELTA,DX,DY,INTREG,MDFINT,MEAN,NUMER,NWAREA
      DOUBLE PRECISION PI2,R,SINALP,STDV,SUMX,SUMY,THETA1,THETA2,WSQ
      DOUBLE PRECISION X1,X2,Y1,Y2
C
C     WK(1:NPOLG) is used for mdf standard deviation in polygons.
C     Compute AREARG = area of region and INTREG = estimated integral
C     of MDF2(X,Y) or UMDF(X,Y).
C
      NVRT = 0
      DO 10 I = 1,NPOLG
         NVRT = MAX(NVRT,XIVRT(I+1)-XIVRT(I))
   10 CONTINUE
      IF (HFLAG .AND. 2*NVRT .GT. MAXIW) THEN
	 IERR = 6
	 RETURN
      ELSE IF (NPOLG + 3*NVRT + 2 .GT. MAXWK) THEN
	 IERR = 7
	 RETURN
      ENDIF
      LISTEV = 1
      XC = NPOLG + 1
      YC = XC + NVRT + 1
      MDFTR = YC + NVRT + 1
      AREARG = 0.0D0
      INTREG = 0.0D0
      NEV = -1
      DO 40 I = 1,NPOLG
	 IF (HFLAG) THEN
	    WSQ = WIDSQ(I)
	    CALL PRMDF2(I,WSQ,IVRT,XIVRT,EDGVAL,VRTVAL,NEV,IFV,
     $         IWK(LISTEV))
	 ENDIF
	 IF (NEV .EQ. 0) THEN
	    PSI(I) = 1.0D0/WSQ
	    WK(I) = 0.0D0
	    MDFINT = PSI(I)*AREA(I)
	 ELSE
	    NVRT = XIVRT(I+1) - XIVRT(I)
	    K = XIVRT(I)
	    SUMX = 0.0D0
	    SUMY = 0.0D0
	    DO 20 J = 0,NVRT-1
	       L = IVRT(K)
	       WK(XC+J) = VCL(1,L)
	       WK(YC+J) = VCL(2,L)
	       SUMX = SUMX + WK(XC+J)
	       SUMY = SUMY + WK(YC+J)
	       K = K + 1
   20       CONTINUE
	    CTRX = SUMX/DBLE(NVRT)
	    CTRY = SUMY/DBLE(NVRT)
	    DO 30 J = 0,NVRT-1
	       WK(XC+J) = WK(XC+J) - CTRX
	       WK(YC+J) = WK(YC+J) - CTRY
   30       CONTINUE
	    WK(XC+NVRT) = WK(XC)
	    WK(YC+NVRT) = WK(YC)
	    CALL INTPG(NVRT,WK(XC),WK(YC),CTRX,CTRY,AREA(I),HFLAG,UMDF,
     $         WSQ,NEV,IFV,IWK(LISTEV),IVRT,EDGVAL,VRTVAL,VCL,MDFINT,
     $         PSI(I),WK(I),WK(MDFTR))
	 ENDIF
	 AREARG = AREARG + AREA(I)
	 INTREG = INTREG + MDFINT
   40 CONTINUE
C
C     If HFLAG, compute mean mdf values from KAPPA, etc. Scale PSI(I)'s
C     so that integral in region is 1. Determine which polygons need to
C     be further subdivided (indicated by negative PSI(I) value).
C
      IF (HFLAG) THEN
	 C1 = (1.0D0 - KAPPA)/INTREG
	 C2 = KAPPA/AREARG
      ELSE
	 C1 = 1.0D0/INTREG
	 C2 = 0.0D0
      ENDIF
      DO 50 I = 1,NPOLG
	 PSI(I) = PSI(I)*C1 + C2
	 IF (C1*WK(I) .GT. PSI(I)*DMIN) THEN
	    IF (NTRID*PSI(I)*AREA(I) .GT. NMIN) PSI(I) = -PSI(I)
	 ENDIF
   50 CONTINUE
C
C     Further subdivide polygons for which STDV/MEAN > DMIN and
C     (estimated number of triangles) > NMIN.
C
      ANGSP2 = 2.0D0*ANGSPC
      PI2 = 2.0D0*PI
      INC = INT(PI2/ANGSPC)
      NEV = 0
      NP = NPOLG
      XC = 1
      DO 140 I = 1,NP
	 IF (PSI(I) .LT. 0.0D0) THEN
	    IF (HFLAG) THEN
	       WSQ = WIDSQ(I)
	       CALL PRMDF2(I,WSQ,IVRT,XIVRT,EDGVAL,VRTVAL,NEV,IFV,
     $            IWK(LISTEV))
	    ENDIF
	    L = NPOLG + 1
	    K = I
   60       CONTINUE
	    IF (K .GT. NPOLG) GO TO 130
   70          CONTINUE
	       IF (PSI(K) .GE. 0.0D0) GO TO 120
		  NVRT = 0
		  SUMX = 0.0D0
		  SUMY = 0.0D0
		  J = HVL(K)
   80             CONTINUE
		     NVRT = NVRT + 1
		     M = PVL(LOC,J)
		     SUMX = SUMX + VCL(1,M)
		     SUMY = SUMY + VCL(2,M)
		     J = PVL(SUCC,J)
		  IF (J .NE. HVL(K)) GO TO 80
		  CTRX = SUMX/DBLE(NVRT)
		  CTRY = SUMY/DBLE(NVRT)
		  MAXN = NVRT + INC
		  IF (NEV + MAXN + 1 .GT. MAXIW) THEN
		     IERR = 6
		     RETURN
		  ELSE IF (3*MAXN + 2 .GT. MAXWK) THEN
		     IERR = 7
		     RETURN
		  ENDIF
		  YC = XC + MAXN + 1
		  MDFTR = YC + MAXN + 1
		  INDPVL = LISTEV + NEV
		  NVRT = 0
		  M = PVL(LOC,J)
		  X1 = VCL(1,M) - CTRX
		  Y1 = VCL(2,M) - CTRY
		  WK(XC) = X1
		  WK(YC) = Y1
		  THETA1 = ATAN2(Y1,X1)
		  P = J
		  IWK(INDPVL) = J
   90             CONTINUE
		     J = PVL(SUCC,J)
		     M = PVL(LOC,J)
		     X2 = VCL(1,M) - CTRX
		     Y2 = VCL(2,M) - CTRY
		     THETA2 = ATAN2(Y2,X2)
		     IF (THETA2 .LT. THETA1) THETA2 = THETA2 + PI2
    		     DELTA = THETA2 - THETA1
		     IF (DELTA .GE. ANGSP2) THEN
			M = INT(DELTA/ANGSPC)
			DELTA = DELTA/DBLE(M)
			DX = X2 - X1
			DY = Y2 - Y1
			NUMER = X1*DY - Y1*DX
			ALPHA = THETA1
			DO 100 II = 1,M-1
			   ALPHA = ALPHA + DELTA
			   COSALP = COS(ALPHA)
			   SINALP = SIN(ALPHA)
			   R = NUMER/(DY*COSALP - DX*SINALP)
			   NVRT = NVRT + 1
			   WK(XC+NVRT) = R*COSALP
			   WK(YC+NVRT) = R*SINALP
			   IWK(INDPVL+NVRT) = -P
  100                   CONTINUE
		     ENDIF
		     NVRT = NVRT + 1
		     WK(XC+NVRT) = X2
		     WK(YC+NVRT) = Y2
		     X1 = X2
		     Y1 = Y2
		     THETA1 = THETA2
		     P = J
		     IWK(INDPVL+NVRT) = J
		  IF (J .NE. HVL(K)) GO TO 90
	          CALL INTPG(NVRT,WK(XC),WK(YC),CTRX,CTRY,AREA(K),HFLAG,
     $               UMDF,WSQ,NEV,IFV,IWK(LISTEV),IVRT,EDGVAL,VRTVAL,
     $               VCL,MDFINT,MEAN,STDV,WK(MDFTR))
		  PSI(K) = MEAN*C1 + C2
	          IF (C1*STDV .GT. PSI(K)*DMIN) THEN
	             IF (NTRID*PSI(K)*AREA(K) .GT. NMIN) THEN
			CALL SEPMDF(ANGTOL,NVRT,WK(XC),WK(YC),AREA(K),
     $                     MEAN,WK(MDFTR),IWK(INDPVL),IANG,I1,I2)
			IF (I1 .LT. 0) THEN
			   IF (YC + 3*NVRT .GT. MAXWK) THEN
			      IERR = 7
			      RETURN
			   ENDIF
			   CALL SEPSHP(ANGTOL,NVRT,WK(XC),WK(YC),
     $                        IWK(INDPVL),IANG,I1,I2,WK(YC+NVRT+1))
			   IF (IERR .NE. 0) RETURN
			ENDIF
			IF (I1 .LT. 0) THEN
			   IERR = 222
			   RETURN
			ENDIF
			V = IWK(INDPVL+I1)
			IF (V .LT. 0) THEN
			   CALL INSVR2(WK(XC+I1)+CTRX,WK(YC+I1)+CTRY,-V,
     $                        NVC,NVERT,MAXVC,MAXPV,VCL,PVL,IANG,V)
			   IF (IERR .NE. 0) RETURN
			ENDIF
			W = IWK(INDPVL+I2)
			IF (W .LT. 0) THEN
			   CALL INSVR2(WK(XC+I2)+CTRX,WK(YC+I2)+CTRY,-W,
     $                        NVC,NVERT,MAXVC,MAXPV,VCL,PVL,IANG,W)
			   IF (IERR .NE. 0) RETURN
			ENDIF
			CALL INSED2(V,W,NPOLG,NVERT,MAXHV,MAXPV,VCL,
     $                     REGNUM,HVL,PVL,IANG)
			IF (IERR .NE. 0) RETURN
		        NVRT = 0
		        J = HVL(K)
  110                   CONTINUE
		           M = PVL(LOC,J)
		           WK(XC+NVRT) = VCL(1,M)
		           WK(YC+NVRT) = VCL(2,M)
		           NVRT = NVRT + 1
		           J = PVL(SUCC,J)
		        IF (J .NE. HVL(K)) GO TO 110
			NWAREA = AREAPG(NVRT,WK(XC),WK(YC))*0.5D0
			AREA(NPOLG) = AREA(K) - NWAREA
			AREA(K) = NWAREA
			PSI(K) = -PSI(K)
			PSI(NPOLG) = PSI(K)
		     ENDIF
	          ENDIF
	       GO TO 70
  120          CONTINUE
	       IF (K .EQ. I) THEN
		  K = L
	       ELSE
		  K = K + 1
	       ENDIF
	    GO TO 60
  130       CONTINUE
	 ENDIF
  140 CONTINUE
      END
C
C     The following code was excerpted from: mmasep.f
C
      SUBROUTINE MMASEP(ANGTOL,XC,YC,INDPVL,IANG,V,W,I1,I2)
      IMPLICIT LOGICAL (A-Z)
      INTEGER I1,I2,INDPVL(0:*),V(2),W(2)
      DOUBLE PRECISION ANGTOL,IANG(*),XC(0:*),YC(0:*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Find best of four possible separators according to
C        max-min angle criterion.
C
C     Input parameters:
C        ANGTOL - angle tolerance parameter (in radians) for accepting
C              separator
C        XC(0:NVRT),YC(0:NVRT) - coordinates of polygon vertices in
C              CCW order where NVRT is number of vertices;
C              (XC(0),YC(0)) = (XC(NVRT),YC(NVRT))
C        INDPVL(0:NVRT) - indices in PVL of vertices; INDPVL(I) = -K if
C              (XC(I),YC(I)) is extra vertex inserted on edge from
C              K to PVL(SUCC,K)
C        IANG(1:*) - interior angle array
C        V(1:2),W(1:2) - indices in XC, YC in range 0 to NVRT-1; four
C              possible separators are V(I),W(J), I,J = 1,2
C
C     Output parameters:
C        I1,I2 - indices in range 0 to NVRT-1 of best separator
C              according to max-min angle criterion; I1 = -1
C              if no satisfactory separator is found
C
C     Routines called:
C        ANGLE
C
      DOUBLE PRECISION PI,TOL
      COMMON /GCONST/ PI,TOL
      SAVE /GCONST/
C
      INTEGER I,J,K,L,M
      DOUBLE PRECISION ALPHA,ANGLE,ANGMAX,ANGMIN,BETA,DELTA,GAMMA
C
      ANGMAX = 0.0D0
      DO 20 I = 1,2
	 L = V(I)
	 K = INDPVL(L)
	 IF (K .GT. 0) THEN
	    ALPHA = IANG(K)
	 ELSE
	    ALPHA = PI
	 ENDIF
	 DO 10 J = 1,2
	    M = W(J)
	    IF (L .EQ. M) GO TO 10
	    K = INDPVL(M)
	    IF (K .GT. 0) THEN
	       BETA = IANG(K)
	    ELSE
	       BETA = PI
	    ENDIF
	    GAMMA = ANGLE(XC(M),YC(M),XC(L),YC(L),XC(L+1),YC(L+1))
	    DELTA = ANGLE(XC(L),YC(L),XC(M),YC(M),XC(M+1),YC(M+1))
	    ANGMIN = MIN(GAMMA,ALPHA-GAMMA,DELTA,BETA-DELTA)
	    IF (ANGMIN .GT. ANGMAX) THEN
	       ANGMAX = ANGMIN
	       I1 = L
	       I2 = M
	    ENDIF
   10    CONTINUE
   20 CONTINUE
      IF (ANGMAX .LT. ANGTOL) I1 = -1
      END
C
C     The following code was excerpted from: prmdf2.f
C
      SUBROUTINE PRMDF2(IPOLY,WSQ,IVRT,XIVRT,EDGVAL,VRTVAL,NEV,IFV,
     $   LISTEV)
      IMPLICIT LOGICAL (A-Z)
      INTEGER IFV,IPOLY,IVRT(*),LISTEV(*),NEV,XIVRT(*)
      DOUBLE PRECISION EDGVAL(*),VRTVAL(*),WSQ
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Preprocessing step for evaluating mesh distribution
C        function in polygon IPOLY - the edges and vertices for
C        which distances must be computed are determined.
C
C     Input parameters:
C        IPOLY - index of polygon
C        WSQ - square of width of polygon IPOLY
C        IVRT(1:*) - indices of polygon vertices in VCL, ordered by
C              polygon
C        XIVRT(1:*) - pointer to first vertex of each polygon in IVRT;
C              vertices of polygon IPOLY are IVRT(I) for I from
C              XIVRT(IPOLY) to XIVRT(IPOLY+1)-1
C        EDGVAL(1:*) - value associated with each edge of decomp.
C        VRTVAL(1:*) - value associated with each vertex of decomp.
C
C     Output parameters:
C        NEV - number of edges and vertices for which distances must
C              be evaluated
C        IFV - index of first vertex XIVRT(IPOLY) if LISTEV(NEV)
C              = XIVRT(IPOLY+1) - 1; 0 otherwise
C        LISTEV(1:*) - array of length <= [XIVRT(IPOLY+1)-XIVRT(IPOLY)]
C              *2 containing indices of edges and vertices mentioned
C              above; indices of vertices are negated
C
      INTEGER I,IM1,J,L
C
      IFV = 0
      NEV = 0
      IM1 = XIVRT(IPOLY+1) - 1
      L = IM1
      DO 10 I = XIVRT(IPOLY),L
	 J = IVRT(I)
	 IF (VRTVAL(J) .LT. MIN(EDGVAL(I),EDGVAL(IM1))) THEN
	    NEV = NEV + 1
	    LISTEV(NEV) = -J
	 ENDIF
	 IF (EDGVAL(I) .LT. WSQ) THEN
	    NEV = NEV + 1
	    LISTEV(NEV) = I
	 ENDIF
	 IM1 = I
   10 CONTINUE
      IF (NEV .GT. 0) THEN
	 IF (LISTEV(NEV) .EQ. L) IFV = XIVRT(IPOLY)
      ENDIF
      END
C
C     The following code was excerpted from: sepmdf.f
C
      SUBROUTINE SEPMDF(ANGTOL,NVRT,XC,YC,ARPOLY,MEAN,MDFTR,INDPVL,
     $   IANG,I1,I2)
      IMPLICIT LOGICAL (A-Z)
      INTEGER I1,I2,NVRT
      INTEGER INDPVL(0:NVRT)
      DOUBLE PRECISION ANGTOL,ARPOLY,MEAN
      DOUBLE PRECISION IANG(*),MDFTR(0:NVRT-1),XC(0:NVRT),YC(0:NVRT)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Determine separator to split convex polygon into two
C        parts based on mesh distribution function.
C
C     Input parameters:
C        ANGTOL - angle tolerance parameter (in radians)
C        NVRT - number of vertices in polygon
C        XC(0:NVRT),YC(0:NVRT) - coordinates of polygon vertices in
C              CCW order, translated so that centroid is at origin;
C              (XC(0),YC(0)) = (XC(NVRT),YC(NVRT))
C        ARPOLY - area of polygon
C        MEAN - mean mdf value in polygon
C        MDFTR(0:NVRT-1) - mean mdf value in each triangle of polygon;
C              triangles are determined by polygon vertices and centroid
C        INDPVL(0:NVRT) - indices in PVL of vertices; INDPVL(I) = -K if
C              (XC(I),YC(I)) is extra vertex inserted on edge from
C              K to PVL(SUCC,K)
C        IANG(1:*) - interior angle array
C
C     Output parameters:
C        I1,I2 - indices in range 0 to NVRT-1 of best separator
C              according to mdf and max-min angle criterion; I1 = -1
C              if no satisfactory separator is found
C
C     Routines called:
C        ANGLE, MMASEP
C
      DOUBLE PRECISION PI,TOL
      COMMON /GCONST/ PI,TOL
      SAVE /GCONST/
C
      INTEGER HI,I,L,M,V(2),W(2)
      DOUBLE PRECISION ANGLE,AREATR,SUM
C
C     Determine triangle with highest mean mesh density; then determine
C     triangles adjacent to this triangle with mesh density >= MEAN
C     such that the area of these triangles is <= ARPOLY/2.
C     Note that twice the triangle area is computed.
C
      HI = 0
      DO 10 I = 1,NVRT-1
	 IF (MDFTR(I) .GT. MDFTR(HI)) HI = I
   10 CONTINUE
      SUM = XC(HI)*YC(HI+1) - XC(HI+1)*YC(HI)
      L = HI - 1
      IF (L .LT. 0) L = NVRT - 1
      M = HI + 1
      IF (M .GE. NVRT) M = 0
   20 CONTINUE
	 IF (MDFTR(L) .GE. MDFTR(M)) THEN
	    I = L
	 ELSE
	    I = M
	 ENDIF
	 IF (MDFTR(I) .LT. MEAN) GO TO 30
	 AREATR = XC(I)*YC(I+1) - XC(I+1)*YC(I)
	 SUM = SUM + AREATR
	 IF (SUM .GT. ARPOLY) GO TO 30
	 IF (I .EQ. L) THEN
	    L = L - 1
	    IF (L .LT. 0) L = NVRT - 1
	 ELSE
	    M = M + 1
	    IF (M .GE. NVRT) M = 0
	 ENDIF
      GO TO 20
   30 CONTINUE
      L = L + 1
      IF (L .GE. NVRT) L = 0
C
C     Interchange role of L and M depending on angle determined by
C     (XC(M),YC(M)), (0,0), and (XC(L),YC(L)).
C     Possible separators are L,M; L,M+1; L+1,M; L+1,M+1.
C
      IF (ANGLE(XC(M),YC(M),0.0D0,0.0D0,XC(L),YC(L)) .GT. PI) THEN
	 I = L
	 L = M
	 M = I
      ENDIF
      V(1) = L
      V(2) = L - 1
      IF (V(2) .LT. 0) V(2) = NVRT - 1
      W(1) = M
      W(2) = M + 1
      IF (W(2) .GE. NVRT) W(2) = 0
      CALL MMASEP(ANGTOL,XC,YC,INDPVL,IANG,V,W,I1,I2)
      END
C
C     The following code was excerpted from: sepshp.f
C
      SUBROUTINE SEPSHP(ANGTOL,NVRT,XC,YC,INDPVL,IANG,I1,I2,WK)
      IMPLICIT LOGICAL (A-Z)
      INTEGER I1,I2,NVRT
      INTEGER INDPVL(0:NVRT)
      DOUBLE PRECISION ANGTOL,IANG(*),WK(2*NVRT),XC(0:NVRT),YC(0:NVRT)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Determine separator to split convex polygon into two
C        parts based on shape (diameter) of polygon.
C
C     Input parameters:
C        ANGTOL - angle tolerance parameter (in radians)
C        NVRT - number of vertices in polygon
C        XC(0:NVRT), YC(0:NVRT) - coordinates of polygon vertices in
C              CCW order, translated so that centroid is at origin;
C              (XC(0),YC(0)) = (XC(NVRT),YC(NVRT))
C        INDPVL(0:NVRT) - indices in PVL of vertices; INDPVL(I) = -K if
C              (XC(I),YC(I)) is extra vertex inserted on edge from
C              K to PVL(SUCC,K)
C        IANG(1:*) - interior angle array
C
C     Output parameters:
C        I1,I2 - indices in range 0 to NVRT-1 of best separator
C              according to shape and max-min angle criterion; I1 = -1
C              if no satisfactory separator is found
C
C     Working parameters:
C        WK(1:2*NVRT) - space for two working arrays of length NVRT
C
C     Abnormal return:
C        IERR is set to 200
C
C     Routines called:
C        DIAM2, MMASEP
C
      INTEGER IERR
      DOUBLE PRECISION PI,TOL
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      SAVE /GERROR/,/GCONST/
C
      INTEGER I,K,N,V(2),W(2)
      DOUBLE PRECISION DIST,DX,DY,PIMTOL,XA,YA
C
C     Determine diameter of polygon. Possible separators endpoints (two
C     on each side of polygon) are nearest to perpendicular bisector of
C     diameter. (XA,YA) and (XA+DX,YA+DY) are on bisector. Distance to
C     bisector is proportional to two times triangle area.
C
      PIMTOL = PI - TOL
      N = 0
      DO 10 I = 0,NVRT-1
	 K = INDPVL(I)
	 IF (K .GT. 0) THEN
	    IF (IANG(K) .LT. PIMTOL) THEN
	       N = N + 1
	       WK(N) = XC(I)
	       WK(N+NVRT) = YC(I)
	    ENDIF
	 ENDIF
   10 CONTINUE
      CALL DIAM2(N,WK,WK(NVRT+1),I1,I2,DIST)
      IF (IERR .NE. 0) RETURN
      IF (I1 .GT. I2) THEN
	 I = I1
	 I1 = I2
	 I2 = I
      ENDIF
      DX = WK(I2+NVRT) - WK(I1+NVRT)
      DY = WK(I1) - WK(I2)
      XA = 0.5D0*(WK(I1) + WK(I2) - DX)
      YA = 0.5D0*(WK(I1+NVRT) + WK(I2+NVRT) - DY)
C
      I = I1 - 1
   20 CONTINUE
      IF (XC(I) .EQ. WK(I1) .AND. YC(I) .EQ. WK(I1+NVRT)) THEN
	 I1 = I
      ELSE
	 I = I + 1
	 GO TO 20
      ENDIF
      I = MAX(I2-1,I1+1)
   30 CONTINUE
      IF (XC(I) .EQ. WK(I2) .AND. YC(I) .EQ. WK(I2+NVRT)) THEN
	 I2 = I
      ELSE
	 I = I + 1
	 GO TO 30
      ENDIF
      I = I1 + 1
   40 CONTINUE
      DIST = DX*(YC(I) - YA) - DY*(XC(I) - XA)
      IF (DIST .GE. 0.0D0) THEN
	 V(1) = I - 1
	 V(2) = I
      ELSE
	 I = I + 1
	 GO TO 40
      ENDIF
      I = I2 + 1
   50 CONTINUE
      IF (I .GE. NVRT) I = 0
      DIST = DX*(YC(I) - YA) - DY*(XC(I) - XA)
      IF (DIST .LE. 0.0D0) THEN
	 W(1) = I - 1
	 W(2) = I
	 IF (I .LE. 0) W(1) = NVRT - 1
      ELSE
	 I = I + 1
	 GO TO 50
      ENDIF
      CALL MMASEP(ANGTOL,XC,YC,INDPVL,IANG,V,W,I1,I2)
      END
C
C     The following code was excerpted from: sfdwmf.f
C
      SUBROUTINE SFDWMF(L,R,PSI,INDP,LOCH)
      IMPLICIT LOGICAL (A-Z)
      INTEGER L,R
      INTEGER INDP(R),LOCH(*)
      DOUBLE PRECISION PSI(*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Sift PSI(INDP(L)) down heap which has maximum PSI value
C        at root of heap and is maintained by pointers in INDP.
C
C     Input parameters:
C	 L - element of heap to be sifted down
C        R - upper bound of heap
C	 PSI(1:*) - key values for heap
C        INDP(1:R) - indices of PSI which are maintained in heap
C        LOCH(1:*) - location of indices in heap (inverse of INDP)
C
C     Updated parameters:
C        INDP,LOCH
C
      INTEGER I,J,K
      DOUBLE PRECISION T
C
      I = L
      J = 2*I
      K = INDP(I)
      T = PSI(K)
   10 CONTINUE
      IF (J .GT. R) GO TO 20
	 IF (J .LT. R) THEN
	    IF (PSI(INDP(J)) .LT. PSI(INDP(J+1))) J = J + 1
	 ENDIF
	 IF (T .GE. PSI(INDP(J))) GO TO 20
	 INDP(I) = INDP(J)
	 LOCH(INDP(I)) = I
	 I = J
	 J = 2*I
      GO TO 10
   20 CONTINUE
      INDP(I) = K
      LOCH(K) = I
      END
C
C     The following code was excerpted from: sfupmf.f
C
      SUBROUTINE SFUPMF(R,PSI,INDP,LOCH)
      IMPLICIT LOGICAL (A-Z)
      INTEGER R
      INTEGER INDP(R),LOCH(*)
      DOUBLE PRECISION PSI(*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Sift PSI(INDP(R)) up heap which has maximum PSI value
C        at root of heap and is maintained by pointers in INDP.
C
C     Input parameters:
C	 R - element of heap to be sifted up
C	 PSI(1:*) - key values for heap
C        INDP(1:R) - indices of PSI which are maintained in heap
C        LOCH(1:*) - location of indices in heap (inverse of INDP)
C
C     Updated parameters:
C        INDP,LOCH
C
      INTEGER I,J,K
      DOUBLE PRECISION T
C
      I = R
      J = INT(I/2)
      K = INDP(I)
      T = PSI(K)
   10 CONTINUE
      IF (I .LE. 1) GO TO 20
	 IF (T .LE. PSI(INDP(J))) GO TO 20
	 INDP(I) = INDP(J)
	 LOCH(INDP(I)) = I
	 I = J
	 J = INT(I/2)
      GO TO 10
   20 CONTINUE
      INDP(I) = K
      LOCH(K) = I
      END
C
C     The following code was excerpted from: trisiz.f
C
      SUBROUTINE TRISIZ(NTRID,NPOLG,HVL,PVL,AREA,PSI,H,INDP,LOCH)
      IMPLICIT LOGICAL (A-Z)
      INTEGER NPOLG,NTRID
      INTEGER HVL(NPOLG),INDP(NPOLG),LOCH(NPOLG),PVL(4,*)
      DOUBLE PRECISION AREA(NPOLG),H(NPOLG),PSI(NPOLG)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Smooth PSI (mean mesh distribution function) values using
C        heap so that they differ by a factor of at most 4 in adjacent
C        polygons and then compute triangle sizes for each polygon.
C
C     Input parameters:
C	 NTRID - desired number of triangles in mesh
C        NPOLG - number of polygons or positions used in HVL array
C        HVL(1:NPOLG) - head vertex list
C        PVL(1:4,1:*) - polygon vertex list
C        AREA(1:NPOLG) - area of convex polygons in decomposition
C        PSI(1:NPOLG) - mean mdf values in the convex polygons
C
C     Updated parameters:
C	 PSI(1:NPOLG) - values are 'smoothed' on output
C
C     Output parameters:
C        H(1:NPOLG) - triangle size for convex polygons
C
C     Working parameters:
C        INDP(1:NPOLG) - indices of polygon or PSI which are maintained
C              in heap according to PSI values
C        LOCH(1:NPOLG) - location of polygon indices in heap
C
C     Routines called:
C        SFDWMF, SFUPMF
C
      INTEGER EDGV,LOC,POLG,SUCC
      PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
      INTEGER I,J,K,L,R
      DOUBLE PRECISION FACTOR,SUM
C
      FACTOR = 0.25D0
      DO 10 I = 1,NPOLG
	 INDP(I) = I
	 LOCH(I) = I
   10 CONTINUE
      K = INT(NPOLG/2)
      DO 20 L = K,1,-1
	 CALL SFDWMF(L,NPOLG,PSI,INDP,LOCH)
   20 CONTINUE
      DO 40 R = NPOLG,2,-1
	 J = INDP(1)
	 INDP(1) = INDP(R)
	 LOCH(INDP(1)) = 1
	 CALL SFDWMF(1,R-1,PSI,INDP,LOCH)
	 I = HVL(J)
   30    CONTINUE
	    K = PVL(EDGV,I)
	    IF (K .GT. 0) THEN
	       K = PVL(POLG,K)
	       IF (PSI(K) .LT. PSI(J)*FACTOR) THEN
		  PSI(K) = PSI(J)*FACTOR
		  CALL SFUPMF(LOCH(K),PSI,INDP,LOCH)
	       ENDIF
	    ENDIF
	    I = PVL(SUCC,I)
	 IF (I .NE. HVL(J)) GO TO 30
   40 CONTINUE
C
      SUM = 0.0D0
      DO 50 I = 1,NPOLG
	 SUM = SUM + PSI(I)*AREA(I)
   50 CONTINUE
      FACTOR = 2.0D0/DBLE(NTRID)
      DO 60 I = 1,NPOLG
	 PSI(I) = PSI(I)/SUM
	 H(I) = SQRT(FACTOR/PSI(I))
   60 CONTINUE
      END
C
C     The following code was excerpted from: umdf2.f
C
      DOUBLE PRECISION FUNCTION UMDF2(X,Y)
      IMPLICIT LOGICAL (A-Z)
      DOUBLE PRECISION X,Y
C
C     Purpose: Dummy user-supplied mesh distribution function which
C        is provided if heuristic mesh distribution function is used.
C
C     Input parameters:
C        X,Y - coordinates of 2-D point
C
C     Returned function value:
C        UMDF2 - mesh distribution function value at (X,Y)
C
      UMDF2 = 1.0D0
      END