1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
|
C
C The following code was excerpted from: bedgmv.f
C
SUBROUTINE BEDGMV(NVC,NPOLG,NVERT,MAXVC,H,VCL,HVL,PVL,VSTART,VNUM)
IMPLICIT LOGICAL (A-Z)
INTEGER MAXVC,NPOLG,NVC,NVERT
INTEGER HVL(NPOLG),PVL(4,NVERT),VSTART(NVERT),VNUM(NVERT)
DOUBLE PRECISION H(NPOLG),VCL(2,MAXVC)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Generate mesh vertices on boundary of convex polygons
C of decomposition with spacing determined by H array.
C
C Input parameters:
C NVC - number of coordinates or positions used in VCL array
C NPOLG - number of polygons or positions used in HVL array
C NVERT - number of vertices or positions used in PVL array
C MAXVC - maximum size available for VCL array
C H(1:NPOLG) - spacing of mesh vertices for convex polygons
C VCL(1:2,1:NVC) - vertex coordinate list
C HVL(1:NPOLG) - head vertex list
C PVL(1:4,1:NVERT) - polygon vertex list
C
C Updated parameters:
C NVC,VCL
C
C Output parameters:
C VSTART(1:NVERT) - start location in VCL for mesh vertices on
C each edge in PVL if there are any, else 0
C VNUM(1:NVERT) - number of mesh vertices on interior of each
C edge in PVL; entry is negated if mesh vertices are
C listed in backward order in VCL
C
C Abnormal return:
C IERR is set to 3
C
INTEGER IERR
COMMON /GERROR/ IERR
SAVE /GERROR/
C
INTEGER EDGV,LOC,POLG,SUCC
PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
INTEGER I,IA,J,K,L,M,U,V
DOUBLE PRECISION DX,DY,HH,LENG,X,Y
C
DO 10 I = 1,NVERT
VSTART(I) = -1
10 CONTINUE
DO 40 K = 1,NPOLG
I = HVL(K)
20 CONTINUE
J = PVL(SUCC,I)
IF (VSTART(I) .EQ. -1) THEN
U = PVL(LOC,I)
V = PVL(LOC,J)
X = VCL(1,U)
Y = VCL(2,U)
LENG = SQRT((VCL(1,V) - X)**2 + (VCL(2,V) - Y)**2)
IA = PVL(EDGV,I)
IF (IA .LE. 0) THEN
HH = H(K)
ELSE
HH = SQRT(H(K)*H(PVL(POLG,IA)))
ENDIF
L = INT(LENG/HH)
IF (LENG/HH - L .GT. DBLE(L)/DBLE(2*L+1)) L = L + 1
IF (L .LE. 1) THEN
VSTART(I) = 0
VNUM(I) = 0
ELSE
DX = (VCL(1,V) - X)/DBLE(L)
DY = (VCL(2,V) - Y)/DBLE(L)
L = L - 1
IF (NVC + L .GT. MAXVC) THEN
IERR = 3
RETURN
ENDIF
VSTART(I) = NVC + 1
VNUM(I) = L
DO 30 M = 1,L
X = X + DX
Y = Y + DY
NVC = NVC + 1
VCL(1,NVC) = X
VCL(2,NVC) = Y
30 CONTINUE
ENDIF
IF (IA .GT. 0) THEN
VSTART(IA) = VSTART(I)
VNUM(IA) = -VNUM(I)
ENDIF
ENDIF
I = J
IF (I .NE. HVL(K)) GO TO 20
40 CONTINUE
END
C
C The following code was excerpted from: cvdtri.f
C
SUBROUTINE CVDTRI(INTER,LDV,NT,VCL,TIL,TEDG,SPTR)
IMPLICIT LOGICAL (A-Z)
LOGICAL INTER
INTEGER LDV,NT
INTEGER SPTR(NT),TEDG(3,NT),TIL(3,NT)
DOUBLE PRECISION VCL(LDV,*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Convert triangles in strip near boundary of polygon
C or inside polygon to Delaunay triangles.
C
C Input parameters:
C INTER - .TRUE. iff at least one interior mesh vertex
C LDV - leading dimension of VCL in calling routine
C NT - number of triangles in strip or polygon
C VCL(1:2,1:*) - vertex coordinate list
C TIL(1:3,1:NT) - triangle incidence list
C TEDG(1:3,1:NT) - TEDG(J,I) refers to edge with vertices
C TIL(J:J+1,I) and contains index of merge edge or
C > NT for edge of chains
C
C Updated parameters:
C TIL,TEDG - updated due to diagonal edge swaps
C
C Working parameter:
C SPTR(1:NT) - SPTR(I) = -1 if merge edge I is not in LOP stack,
C else >= 0 and pointer (index of SPTR) to next edge in
C stack (0 indicates bottom of stack)
C
C Abnormal return:
C IERR is set to 231
C
C Routines called:
C FNDTRI, LOP
C
INTEGER IERR
COMMON /GERROR/ IERR
SAVE /GERROR/
C
INTEGER E,IND(2),ITR(2),K,MXTR,TOP
LOGICAL SFLAG
C
SFLAG = .TRUE.
DO 10 K = 1,NT
SPTR(K) = -1
10 CONTINUE
DO 30 K = 1,NT
MXTR = K + 1
IF (K .EQ. NT) THEN
IF (.NOT. INTER) RETURN
MXTR = NT
SFLAG = .FALSE.
ENDIF
TOP = K
SPTR(K) = 0
20 CONTINUE
E = TOP
TOP = SPTR(E)
CALL FNDTRI(E,MXTR,SFLAG,TEDG,ITR,IND)
IF (IERR .NE. 0) RETURN
CALL LOP(ITR,IND,K,TOP,LDV,VCL,TIL,TEDG,SPTR)
IF (TOP .GT. 0) GO TO 20
30 CONTINUE
END
C
C The following code was excerpted from: fndtri.f
C
SUBROUTINE FNDTRI(IEDG,MXTR,SFLAG,TEDG,ITR,IND)
IMPLICIT LOGICAL (A-Z)
LOGICAL SFLAG
INTEGER IEDG,IND(2),ITR(2),MXTR,TEDG(3,MXTR)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Find two triangles containing edge with index IEDG
C in array TEDG.
C
C Input parameters:
C IEDG - index of edge to be searched in TEDG
C MXTR - maximum index of triangle to be searched in TEDG
C SFLAG - .TRUE. iff second triangle is to be searched from
C end of array
C TEDG(1:3,1:MXTR) - triangle edge indices; see routine CVDTRI
C
C Output parameters:
C ITR(1:2),IND(1:2) - indices such that IEDG =
C TEDG(IND(1),ITR(1)) = TEDG(IND(2),ITR(2))
C
C Abnormal return:
C IERR is set to 231
C
INTEGER IERR
COMMON /GERROR/ IERR
SAVE /GERROR/
C
INTEGER I,J,K
C
C Search from end of array TEDG.
C
K = 1
J = 1
I = MXTR
10 CONTINUE
IF (TEDG(J,I) .NE. IEDG) THEN
J = J + 1
IF (J .GT. 3) THEN
J = 1
I = I - 1
IF (I .LE. 0) THEN
IERR = 231
RETURN
ENDIF
ENDIF
GO TO 10
ENDIF
ITR(K) = I
IND(K) = J
IF (K .EQ. 2) RETURN
K = 2
IF (SFLAG) THEN
J = 1
I = I - 1
IF (I .LE. 0) THEN
IERR = 231
RETURN
ENDIF
GO TO 10
ENDIF
C
C Search from beginning of array TEDG for second triangle.
C
J = 1
I = 1
20 CONTINUE
IF (I .GE. ITR(1)) THEN
IERR = 231
RETURN
ENDIF
30 CONTINUE
IF (TEDG(J,I) .NE. IEDG) THEN
J = J + 1
IF (J .GT. 3) THEN
J = 1
I = I + 1
GO TO 20
ELSE
GO TO 30
ENDIF
ENDIF
ITR(2) = I
IND(2) = J
END
C
C The following code was excerpted from: inttri.f
C
SUBROUTINE INTTRI(NVRT,XC,YC,H,IBOT,COSTH,SINTH,LDV,NVC,NTRI,
$ MAXVC,MAXTI,MAXCW,VCL,TIL,NCW,CWALK)
IMPLICIT LOGICAL (A-Z)
INTEGER IBOT,LDV,MAXCW,MAXTI,MAXVC,NCW,NTRI,NVC,NVRT
INTEGER CWALK(0:MAXCW),TIL(3,MAXTI)
DOUBLE PRECISION COSTH,H,SINTH
DOUBLE PRECISION VCL(LDV,MAXVC),XC(0:NVRT),YC(0:NVRT)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Generate triangles inside convex polygon using quasi-
C uniform grid of spacing H. It is assumed that diameter of
C polygon is parallel to y-axis.
C
C Input parameters:
C NVRT - number of vertices on the boundary of convex polygon
C XC(0:NVRT),YC(0:NVRT) - vertex coordinates in CCW order;
C (XC(0),YC(0)) = (XC(NVRT),YC(NVRT))
C H - spacing of mesh vertices in polygon
C IBOT - index of bottom vertex; diameter contains vertices
C (XC(0),YC(0)) and (XC(IBOT),YC(IBOT))
C COSTH,SINTH - COS(THETA), SIN(THETA) where THETA in [-PI,PI]
C is rotation angle to get diameter parallel to y-axis
C LDV - leading dimension of VCL in calling routine
C NVC - number of coordinates or positions used in VCL array
C NTRI - number of triangles or positions used in TIL
C MAXVC - maximum size available for VCL array
C MAXTI - maximum size available for TIL array
C MAXCW - maximum size available for CWALK array; assumed to be
C >= 6*(1 + INT((YC(0) - YC(IBOT))/H))
C VCL(1:2,1:NVC) - vertex coordinate list
C TIL(1:3,1:NTRI) - triangle incidence list
C
C Updated parameters:
C NVC,NTRI,VCL,TIL
C
C Output parameters:
C NCW - number of mesh vertices in closed walk, except NCW = 0
C for 1 vertex
C CWALK(0:NCW) - indices in VCL of mesh vertices of closed
C walk; CWALK(0) = CWALK(NCW)
C
C Abnormal return:
C IERR is set to 3, 9, or 10
C
INTEGER IERR
DOUBLE PRECISION PI,TOL
COMMON /GERROR/ IERR
COMMON /GCONST/ PI,TOL
SAVE /GERROR/,/GCONST/
C
INTEGER I,IL,IM1L,IM1R,IR,J,K,L,L0,L1,LW,M,N,P,R,R0,R1,RW
DOUBLE PRECISION A,B,CY,SY,X,XJ,XK,XL,XM1L,XM1R,XR,Y
C
IL = 0
IM1L = 0
IM1R = 0
IR = 0
LW = 0
M = 0
RW = 0
XM1L = 0.0
XM1R = 0.0
N = INT((YC(0) - YC(IBOT))/H)
Y = YC(0) - 0.5D0*(YC(0) - YC(IBOT) - DBLE(N)*H)
L = 0
R = NVRT
DO 110 I = 0,N
C
C Determine left and right x-coordinates of polygon for
C scan line with y-coordinate Y, and generate mesh vertices.
C
10 CONTINUE
IF (YC(L+1) .GT. Y) THEN
L = L + 1
GO TO 10
ENDIF
20 CONTINUE
IF (YC(R-1) .GT. Y) THEN
R = R - 1
GO TO 20
ENDIF
XL = XC(L) + (XC(L+1) - XC(L))*(Y - YC(L))/(YC(L+1) - YC(L))
XR = XC(R) + (XC(R-1) - XC(R))*(Y - YC(R))/(YC(R-1) - YC(R))
M = INT((XR - XL)/H)
X = XL + 0.5D0*(XR - XL - DBLE(M)*H)
IF (NVC + M + 1 .GT. MAXVC) THEN
IERR = 3
RETURN
ENDIF
CY = COSTH*Y
SY = SINTH*Y
IL = NVC + 1
XL = X
DO 30 J = 0,M
NVC = NVC + 1
VCL(1,NVC) = COSTH*X + SY
VCL(2,NVC) = CY - SINTH*X
X = X + H
30 CONTINUE
IR = NVC
XR = X - H
IF (N .EQ. 0) THEN
NCW = 0
CWALK(0) = NVC
RETURN
ELSE IF (I .EQ. 0) THEN
LW = 0
CWALK(LW) = IL
RW = MAXCW + 1
DO 40 J = IL,IR
RW = RW - 1
CWALK(RW) = J
40 CONTINUE
GO TO 100
ENDIF
C
C Generate triangles between scan lines Y+H and Y.
C
A = MAX(XL,XM1L)
B = MIN(XR,XM1R)
IF (XM1L .EQ. A) THEN
L0 = IM1L
X = (XM1L - XL)/H
J = INT(X + TOL)
IF (ABS(X - DBLE(J)) .LE. TOL) J = J - 1
IF (J .LT. 0) J = 0
L1 = IL + J
ELSE
L1 = IL
X = (XL - XM1L)/H
J = INT(X + TOL)
IF (ABS(X - DBLE(J)) .LE. TOL) J = J - 1
IF (J .LT. 0) J = 0
L0 = IM1L + J
ENDIF
IF (XM1R .EQ. B) THEN
R0 = IM1R
X = (XR - XM1R)/H
J = INT(X + TOL)
IF (ABS(X - DBLE(J)) .LE. TOL) J = J - 1
IF (J .LT. 0) J = 0
R1 = IR - J
ELSE
R1 = IR
X = (XM1R - XR)/H
J = INT(X + TOL)
IF (ABS(X - DBLE(J)) .LE. TOL) J = J - 1
IF (J .LT. 0) J = 0
R0 = IM1R - J
ENDIF
IF (L0 .LT. R0 .OR. L1 .LT. R1) THEN
J = L0
K = L1
XJ = XM1L + DBLE(J-IM1L)*H
XK = XL + DBLE(K-IL)*H
50 CONTINUE
IF (K .LT. R1 .AND. (XK .LE. XJ .OR. J .EQ. R0)) THEN
P = K
K = K + 1
XK = XK + H
ELSE
P = J
J = J + 1
XJ = XJ + H
ENDIF
NTRI = NTRI + 1
IF (NTRI .GT. MAXTI) THEN
IERR = 9
RETURN
ENDIF
TIL(1,NTRI) = J
TIL(2,NTRI) = P
TIL(3,NTRI) = K
IF (J .LT. R0 .OR. K .LT. R1) GO TO 50
ENDIF
C
C Generate paths of closed walk between scan lines Y+H and Y.
C
IF (XM1L .LT. XL) THEN
DO 60 J = IM1L+1,L0
LW = LW + 1
CWALK(LW) = J
60 CONTINUE
LW = LW + 1
CWALK(LW) = IL
ELSE
DO 70 J = L1,IL,-1
LW = LW + 1
CWALK(LW) = J
70 CONTINUE
ENDIF
IF (XM1R .GT. XR) THEN
DO 80 J = IM1R-1,R0,-1
RW = RW - 1
CWALK(RW) = J
80 CONTINUE
RW = RW - 1
CWALK(RW) = IR
ELSE
DO 90 J = R1,IR
RW = RW - 1
CWALK(RW) = J
90 CONTINUE
ENDIF
100 CONTINUE
Y = Y - H
IM1L = IL
IM1R = IR
XM1L = XL
XM1R = XR
110 CONTINUE
C
C Add last path of left walk and shift indices of right walk.
C
IF (M .EQ. 0) THEN
RW = RW + 1
ELSE
DO 120 J = IL+1,IR-1
LW = LW + 1
CWALK(LW) = J
120 CONTINUE
ENDIF
IF (RW .LE. LW) THEN
IERR = 10
RETURN
ENDIF
DO 130 J = RW,MAXCW
LW = LW + 1
CWALK(LW) = CWALK(J)
130 CONTINUE
NCW = LW
END
C
C The following code was excerpted from: lop.f
C
SUBROUTINE LOP(ITR,IND,MXEDG,TOP,LDV,VCL,TIL,TEDG,SPTR)
IMPLICIT LOGICAL (A-Z)
INTEGER IND(2),ITR(2),LDV,MXEDG,TOP
INTEGER SPTR(*),TEDG(3,*),TIL(3,*)
DOUBLE PRECISION VCL(LDV,*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Apply local optimization procedure to two triangles
C indicated by ITR(1) and ITR(2). This may result in swapping
C diagonal edge of quadrilateral.
C
C Input parameters:
C ITR(1),ITR(2) - indices of triangles for LOP
C IND(1),IND(2) - indices indicating common edge of triangles
C MXEDG - maximum index of edge to be considered for LOP
C TOP - index of SPTR indicating top of stack
C LDV - leading dimension of VCL in calling routine
C VCL(1:2,1:*) - vertex coordinate list
C TIL(1:3,1:*) - triangle incidence list
C TEDG(1:3,1:*) - triangle edge indices; see routine CVDTRI
C SPTR(1:*) - stack pointers; see routine CVDTRI
C
C Updated parameters:
C TOP,TIL,TEDG,SPTR - updated due diagonal edge swaps
C
C Routines called:
C DIAEDG
C
INTEGER A,B,C,D,DIAEDG,I,IEDG,IN,IND1M1,IND1P1,IND2M1,IND2P1,J
C
C Common edge is BC, other two vertices are A and D.
C
IEDG = TEDG(IND(1),ITR(1))
SPTR(IEDG) = -1
IND1M1 = IND(1) - 1
IF (IND1M1 .LE. 0) IND1M1 = 3
IND1P1 = IND(1) + 1
IF (IND1P1 .GE. 4) IND1P1 = 1
IND2M1 = IND(2) - 1
IF (IND2M1 .LE. 0) IND2M1 = 3
IND2P1 = IND(2) + 1
IF (IND2P1 .GE. 4) IND2P1 = 1
B = TIL(IND(1),ITR(1))
C = TIL(IND1P1,ITR(1))
A = TIL(IND1M1,ITR(1))
D = TIL(IND2M1,ITR(2))
IN = DIAEDG(VCL(1,D),VCL(2,D),VCL(1,C),VCL(2,C),VCL(1,A),VCL(2,A),
$ VCL(1,B),VCL(2,B))
IF (IN .EQ. 1) THEN
C
C Check if four edges of quadrilateral should be put on LOP
C stack, and swap edge BC for AD.
C
I = TEDG(IND1M1,ITR(1))
DO 10 J = 1,4
IF (J .EQ. 2) THEN
I = TEDG(IND1P1,ITR(1))
ELSE IF (J .EQ. 3) THEN
I = TEDG(IND2M1,ITR(2))
ELSE IF (J .EQ. 4) THEN
I = TEDG(IND2P1,ITR(2))
ENDIF
IF (I .LE. MXEDG) THEN
IF (SPTR(I) .EQ. -1) THEN
SPTR(I) = TOP
TOP = I
ENDIF
ENDIF
10 CONTINUE
TIL(IND1P1,ITR(1)) = D
TIL(IND2P1,ITR(2)) = A
TEDG(IND(1),ITR(1)) = TEDG(IND2P1,ITR(2))
TEDG(IND(2),ITR(2)) = TEDG(IND1P1,ITR(1))
TEDG(IND1P1,ITR(1)) = IEDG
TEDG(IND2P1,ITR(2)) = IEDG
ENDIF
END
C
C The following code was excerpted from: mtredg.f
C
SUBROUTINE MTREDG(UTYPE,I1,I2,I3,IBNDRY,NT,TIL,TEDG)
IMPLICIT LOGICAL (A-Z)
LOGICAL UTYPE
INTEGER I1,I2,I3,IBNDRY,NT
INTEGER TEDG(3,*),TIL(3,*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Set fields for triangle as needed by routine TMERGE.
C
C Input parameters:
C UTYPE - .TRUE. iff triangle contains two 'U' vertices
C I1, I2, I3 - indices of 3 triangle vertices in VCL; the first
C 2 indices also belong to the next merge edge
C IBNDRY - index of boundary edge for TEDG
C NT - number of entries in TIL, TEDG so far
C TIL(1:NT) - triangle incidence list
C TEDG(1:NT) - triangle edge indices; see routine TMERGE
C
C Updated parameters:
C NT,TIL,TEDG - one more triangle is added at end of arrays
C
NT = NT + 1
TIL(1,NT) = I1
TIL(2,NT) = I2
TIL(3,NT) = I3
TEDG(1,NT) = NT
IF (UTYPE) THEN
TEDG(2,NT) = NT - 1
TEDG(3,NT) = IBNDRY
ELSE
TEDG(2,NT) = IBNDRY
TEDG(3,NT) = NT - 1
ENDIF
END
C
C The following code was excerpted from: rotpg.f
C
SUBROUTINE ROTPG(NVRT,XC,YC,I1,I2,IBOT,COSTH,SINTH)
IMPLICIT LOGICAL (A-Z)
INTEGER I1,I2,IBOT,NVRT
DOUBLE PRECISION COSTH,SINTH,XC(0:NVRT),YC(0:NVRT)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Rotate convex polygon so that a line segment joining two
C of its vertices is parallel to y-axis.
C
C Input parameters:
C NVRT - number of vertices on the boundary of convex polygon
C XC(0:NVRT),YC(0:NVRT) - vertex coordinates in CCW order;
C (XC(0),YC(0)) = (XC(NVRT),YC(NVRT))
C I1,I2 - index of vertices of line segment; I1, I2 > 0
C
C Output parameters:
C XC(0:NVRT),YC(0:NVRT) - rotated vertex coordinates; indices are
C also rotated so that (XC(0),YC(0)) = (XC(NVRT),YC(NVRT))
C is top vertex and (XC(IBOT),YC(IBOT)) is bottom vertex
C IBOT - index of bottom vertex
C COSTH,SINTH - COS(THETA) and SIN(THETA) where THETA in
C [-PI,PI] is rotation angle
C
DOUBLE PRECISION PI,TOL
COMMON /GCONST/ PI,TOL
SAVE /GCONST/
C
INTEGER A,B,I,ITOP,J,K,L,M,R
DOUBLE PRECISION THETA,X0,Y0
C
ITOP = I1
IBOT = I2
IF (YC(I1) .EQ. YC(I2)) THEN
IF (XC(I1) .LT. XC(I2)) THEN
THETA = -PI/2.0D0
ELSE
THETA = PI/2.0D0
ENDIF
ELSE
IF (YC(I1) .LT. YC(I2)) THEN
ITOP = I2
IBOT = I1
ENDIF
THETA = PI/2.0D0 - ATAN2(YC(ITOP)-YC(IBOT), XC(ITOP)-XC(IBOT))
ENDIF
COSTH = COS(THETA)
SINTH = SIN(THETA)
DO 10 I = 1,NVRT
X0 = XC(I)
XC(I) = COSTH*X0 - SINTH*YC(I)
YC(I) = SINTH*X0 + COSTH*YC(I)
10 CONTINUE
C
C Rotate indices.
C
IF (ITOP .EQ. NVRT) GO TO 50
A = NVRT
B = ITOP
20 CONTINUE
R = MOD(A,B)
A = B
B = R
IF (R .GT. 0) GO TO 20
M = NVRT/A - 1
DO 40 I = 1,A
X0 = XC(I)
Y0 = YC(I)
K = I
DO 30 J = 1,M
L = K + ITOP
IF (L .GT. NVRT) L = L - NVRT
XC(K) = XC(L)
YC(K) = YC(L)
K = L
30 CONTINUE
XC(K) = X0
YC(K) = Y0
40 CONTINUE
IBOT = IBOT - ITOP
IF (IBOT .LT. 0) IBOT = IBOT + NVRT
50 CONTINUE
XC(0) = XC(NVRT)
YC(0) = YC(NVRT)
END
C
C The following code was excerpted from: tmerge.f
C
SUBROUTINE TMERGE(INTER,NBL,NCR,CHBL,CHCR,LDV,VCL,TIL,TEDG)
IMPLICIT LOGICAL (A-Z)
LOGICAL INTER
INTEGER LDV,NBL,NCR
INTEGER CHBL(0:NBL),CHCR(0:NCR),TEDG(3,NBL+NCR),TIL(3,NBL+NCR)
DOUBLE PRECISION VCL(LDV,*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Form triangles in strip near boundary of polygon or
C inside polygon by merging two chains of vertices.
C
C Input parameters:
C INTER - .TRUE. iff at least one interior mesh vertex
C NBL - number of vertices on boundary cycle if INTER,
C otherwise on left boundary chain
C NCR - number of vertices on closed walk if INTER,
C otherwise on right boundary chain
C CHBL(0:NBL) - indices in VCL of vertices on boundary cycle
C or left boundary chain; if INTER, CHBL(NBL) = CHBL(0)
C CHCR(0:NCR) - indices in VCL of vertices on closed walk
C or right boundary chain; if INTER, CHCR(NCR) = CHCR(0),
C otherwise CHCR(0) is not referenced
C LDV - leading dimension of VCL in calling routine
C VCL(1:2,1:*) - vertex coordinate list
C
C Output parameters:
C TIL(1:3,1:NT) - triangle incidence list, where NT =
C NBL + NCR - K where K = 0 if INTER, else K = 2
C TEDG(1:3,1:NT) - TEDG(J,I) refers to edge with vertices
C TIL(J:J+1,I) and contains index of merge edge or
C NBL+NCR+1 for edge of chains
C [Note: It is assumed there is enough space in 2 arrays.]
C
C Abnormal return:
C IERR is set to 230
C
C Routines called:
C DIAEDG, LRLINE, MTREDG
C
INTEGER IERR
COMMON /GERROR/ IERR
SAVE /GERROR/
C
INTEGER DIAEDG,I,IBNDRY,IN,J,LRI,LRIP1,LRLINE,NL,NR,NT
DOUBLE PRECISION XI,XIP1,XJ,XJP1,YI,YIP1,YJ,YJP1
C
IBNDRY = NBL + NCR + 1
NT = 0
LRI = 0
LRIP1 = 0
IF (INTER) THEN
NL = NBL
NR = NCR
I = 0
J = 0
ELSE
CALL MTREDG(.TRUE.,CHBL(1),CHCR(1),CHBL(0),IBNDRY,NT,TIL,TEDG)
TEDG(2,1) = IBNDRY
IF (NBL + NCR .LE. 3) RETURN
NL = NBL - 1
NR = NCR - 1
I = 1
J = 1
LRI = 1
LRIP1 = 1
ENDIF
C
C Main while loop for determining next triangle and edge.
C
10 CONTINUE
IF (I .GE. NL .OR. J .GE. NR) GO TO 20
XI = VCL(1,CHBL(I))
YI = VCL(2,CHBL(I))
XIP1 = VCL(1,CHBL(I+1))
YIP1 = VCL(2,CHBL(I+1))
XJ = VCL(1,CHCR(J))
YJ = VCL(2,CHCR(J))
XJP1 = VCL(1,CHCR(J+1))
YJP1 = VCL(2,CHCR(J+1))
IN = DIAEDG(XJP1,YJP1,XJ,YJ,XI,YI,XIP1,YIP1)
IF (INTER) THEN
LRI = LRLINE(XI,YI,XJ,YJ,XJP1,YJP1,0.0D0)
LRIP1 = LRLINE(XIP1,YIP1,XJ,YJ,XJP1,YJP1,0.0D0)
ENDIF
IF (IN .LE. 0 .OR. LRI .LE. 0 .AND. LRIP1 .LE. 0) THEN
CALL MTREDG(.TRUE.,CHBL(I+1),CHCR(J),CHBL(I),IBNDRY,NT,TIL,
$ TEDG)
I = I + 1
ELSE
CALL MTREDG(.FALSE.,CHBL(I),CHCR(J+1),CHCR(J),IBNDRY,NT,TIL,
$ TEDG)
J = J + 1
ENDIF
GO TO 10
C
C Add remaining triangles at end of strip or bottom of polygon.
C
20 CONTINUE
IF (I .LT. NL) THEN
IF (.NOT. INTER .AND. J .EQ. NR) NL = NL + 1
30 CONTINUE
CALL MTREDG(.TRUE.,CHBL(I+1),CHCR(J),CHBL(I),IBNDRY,NT,TIL,
$ TEDG)
I = I + 1
IF (I .LT. NL) GO TO 30
ELSE
C J < NR .OR. I = NL = J = NR = 1
IF (.NOT. INTER .AND. I .EQ. NL) NR = NR + 1
40 CONTINUE
CALL MTREDG(.FALSE.,CHBL(I),CHCR(J+1),CHCR(J),IBNDRY,NT,TIL,
$ TEDG)
IF (INTER) THEN
LRI = LRLINE(VCL(1,CHBL(I)),VCL(2,CHBL(I)),
$ VCL(1,CHCR(J+1)),VCL(2,CHCR(J+1)),VCL(1,CHCR(J)),
$ VCL(2,CHCR(J)),0.0D0)
IF (LRI .GE. 0) THEN
IERR = 230
RETURN
ENDIF
ENDIF
J = J + 1
IF (J .LT. NR) GO TO 40
ENDIF
C
IF (INTER) THEN
IF (TEDG(2,1) .EQ. 0) THEN
TEDG(2,1) = NBL + NCR
ELSE
TEDG(3,1) = NBL + NCR
ENDIF
ENDIF
END
C
C The following code was excerpted from: tripr2.f
C
SUBROUTINE TRIPR2(NVC,NPOLG,NVERT,MAXVC,MAXTI,MAXIW,MAXWK,H,VCL,
$ HVL,PVL,IANG,NTRI,TIL,VSTART,VNUM,TSTART,IWK,WK)
IMPLICIT LOGICAL (A-Z)
INTEGER MAXIW,MAXTI,MAXVC,MAXWK,NPOLG,NTRI,NVC,NVERT
INTEGER HVL(NPOLG),IWK(MAXIW),PVL(4,NVERT),TIL(3,MAXTI)
INTEGER TSTART(NPOLG),VNUM(NVERT),VSTART(NVERT)
DOUBLE PRECISION H(NPOLG),IANG(NVERT),VCL(2,MAXVC),WK(MAXWK)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Generate mesh vertices and triangles inside each convex
C polygon of decomposition according to mesh spacings in H array
C to get a triangulation of a polygonal region.
C
C Input parameters:
C NVC - number of vertex coordinates or positions used in VCL
C array
C NPOLG - number of polygonal subregions or positions used in
C HVL array
C NVERT - number of polygon vertices or positions used in PVL
C array
C MAXVC - maximum size available for VCL array, should be >=
C number of mesh vertices in triangulation of region
C MAXTI - maximum size available for TIL array, should be >=
C number of triangles in triangulation of region
C MAXIW - maximum size available for IWK array, should be >=
C 5*(NBC+NCW)+2 where NBC is maximum number of mesh edges
C on boundary of a polygon, NCW is maximum number of edges
C on boundary of interior triangulation
C MAXWK - maximum size available for WK array, should be >=
C 5*NVRT+4 where NVRT is max no. of vertices in a polygon
C H(1:NPOLG) - mesh spacings for polygons of decomposition
C HVL(1:NPOLG) - head vertex list
C PVL(1:4,1:NVERT),IANG(1:NVERT) - polygon vertex list and
C interior angles; see routine DSPGDC for more details
C
C Updated parameters:
C NVC,VCL - updated due to generation of mesh vertices
C
C Output parameters:
C NTRI - number of triangles in triangulation of region
C TIL(1:3,1:NTRI) - triangle incidence list; TIL(1:3,I) contains
C indices in VCL of 3 vertices of Ith triangle in CCW order
C VSTART(1:NVERT) - start location in VCL for mesh vertices on
C each edge in PVL if there are any, else 0
C VNUM(1:NVERT) - number of mesh vertices on interior of each
C edge in PVL; entry is negated if mesh vertices are
C listed in backward order in VCL
C TSTART(1:NPOLG) - start location in TIL of triangles in
C each polygon; TIL(1:3,I) for I=TSTRT(K),...,TSTRT(K+1)-1
C are the triangles in Kth polygon
C
C Working parameters:
C IWK(1:MAXIW) - integer work array
C WK(1:MAXWK) - double precision work array
C
C Abnormal return:
C IERR is set to 3, 6, 7, 9, 10, 200, 202, 230, or 231
C
C Routines called:
C BEDGMV, TRPOLG
C
INTEGER IERR
DOUBLE PRECISION PI,TOL
COMMON /GERROR/ IERR
COMMON /GCONST/ PI,TOL
SAVE /GERROR/,/GCONST/
C
INTEGER EDGV,LOC,POLG,SUCC
PARAMETER (LOC = 1, POLG = 2, SUCC = 3, EDGV = 4)
C
INTEGER BNDCYC,I,J,K,NBC,NVRT,XC,YC
DOUBLE PRECISION PIMTOL
C
NTRI = 0
PIMTOL = PI - TOL
CALL BEDGMV(NVC,NPOLG,NVERT,MAXVC,H,VCL,HVL,PVL,VSTART,VNUM)
IF (IERR .NE. 0) RETURN
DO 50 K = 1,NPOLG
NVRT = 0
NBC = 0
I = HVL(K)
10 CONTINUE
IF (IANG(I) .LT. PIMTOL) NVRT = NVRT + 1
NBC = NBC + 1 + ABS(VNUM(I))
I = PVL(SUCC,I)
IF (I .NE. HVL(K)) GO TO 10
IF (NBC + 1 .GT. MAXIW) THEN
IERR = 6
RETURN
ELSE IF (2*NVRT + 2 .GT. MAXWK) THEN
IERR = 7
RETURN
ENDIF
XC = 1
YC = XC + NVRT + 1
BNDCYC = 1
20 CONTINUE
J = PVL(LOC,I)
IF (IANG(I) .LT. PIMTOL) THEN
WK(XC) = VCL(1,J)
WK(YC) = VCL(2,J)
XC = XC + 1
YC = YC + 1
ENDIF
IWK(BNDCYC) = J
BNDCYC = BNDCYC + 1
IF (VNUM(I) .GE. 0) THEN
DO 30 J = VSTART(I),VSTART(I)+VNUM(I)-1
IWK(BNDCYC) = J
BNDCYC = BNDCYC + 1
30 CONTINUE
ELSE
DO 40 J = VSTART(I)-VNUM(I)-1,VSTART(I),-1
IWK(BNDCYC) = J
BNDCYC = BNDCYC + 1
40 CONTINUE
ENDIF
I = PVL(SUCC,I)
IF (I .NE. HVL(K)) GO TO 20
WK(XC) = WK(1)
WK(YC) = WK(NVRT+2)
IWK(BNDCYC) = IWK(1)
XC = 1
YC = XC + NVRT + 1
BNDCYC = 1
TSTART(K) = NTRI + 1
CALL TRPOLG(NVRT,WK(XC),WK(YC),H(K),NBC,IWK(BNDCYC),2,NVC,NTRI,
$ MAXVC,MAXTI,MAXIW-NBC-1,MAXWK-2*NVRT-2,VCL,TIL,IWK(NBC+2),
$ WK(2*NVRT+3))
IF (IERR .NE. 0) RETURN
50 CONTINUE
END
C
C The following code was excerpted from: trpolg.f
C
SUBROUTINE TRPOLG(NVRT,XC,YC,H,NBC,BNDCYC,LDV,NVC,NTRI,MAXVC,
$ MAXTI,MAXIW,MAXWK,VCL,TIL,IWK,WK)
IMPLICIT LOGICAL (A-Z)
INTEGER LDV,MAXIW,MAXTI,MAXVC,MAXWK,NBC,NTRI,NVC,NVRT
INTEGER BNDCYC(0:NBC),TIL(3,MAXTI),IWK(MAXIW)
DOUBLE PRECISION H,VCL(LDV,MAXVC),WK(MAXWK),XC(0:NVRT),YC(0:NVRT)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Generate Delaunay triangular mesh inside convex polygon
C using quasi-uniform grid of spacing H.
C
C Input parameters:
C NVRT - number of vertices on the boundary of convex polygon
C XC(0:NVRT),YC(0:NVRT) - vertex coordinates in CCW order;
C (XC(0),YC(0)) = (XC(NVRT),YC(NVRT)); it is assumed
C that all interior angles are < PI
C H - spacing of mesh vertices in polygon
C NBC - size of BNDCYC
C BNDCYC(0:NBC) - indices in VCL of mesh vertices of boundary
C cycle; BNDCYC(0) = BNDCYC(NBC); contains (XC(I),YC(I))
C LDV - leading dimension of VCL in calling routine
C NVC - number of coordinates or positions used in VCL array
C NTRI - number of triangles or positions used in TIL
C MAXVC - maximum size available for VCL array
C MAXTI - maximum size available for TIL array
C MAXIW - maximum size available for IWK array, should be >=
C 6*(1 + INT(DIAM/H)) + 4*(NBC + NCW) where DIAM is
C diameter of polygon, NCW is number of edges on boundary
C of interior triangulation
C MAXWK - maximum size available for WK array, should be >=
C 3*NVRT+2
C VCL(1:2,1:NVC) - vertex coordinate list
C TIL(1:3,1:NTRI) - triangle incidence list
C
C Updated parameters:
C BNDCYC(0:NBC) - elements of array may be rotated
C NVC,NTRI,VCL,TIL
C
C Working parameters:
C IWK(1:MAXIW) - integer work array
C WK(1:MAXWK) - double precision work array
C
C Abnormal return:
C IERR is set to 3, 6, 7, 9, 10, 200, 202, 230, or 231
C
C Routines called:
C CVDTRI, DIAM2, INTTRI, ROTIAR, ROTPG, SHRNK2, TMERGE
C
INTEGER IERR
COMMON /GERROR/ IERR
SAVE /GERROR/
C
INTEGER CWALK,I,I1,I2,IBOT,IEDGE,IND,MAXCW,MBC,NCW,NSHR,NT
INTEGER SDIST,SPTR,TEDG,XS,YS
DOUBLE PRECISION COSTH,DIST,HS,SINTH,SMDIST,X0,XI,Y0,YI,YR
LOGICAL INTER
CWALK = 0.0
YR = 0.0
C
IF (NVRT + 1 .GT. MAXIW) THEN
IERR = 6
RETURN
ELSE IF (3*NVRT + 2 .GT. MAXWK) THEN
IERR = 7
RETURN
ENDIF
XS = 1
YS = XS + NVRT + 1
SDIST = YS + NVRT + 1
IEDGE = 1
HS = H/SQRT(2.0D0)
DO 10 I = 0,NVRT-1
WK(SDIST+I) = HS
10 CONTINUE
CALL SHRNK2(NVRT,XC,YC,WK(SDIST),NSHR,WK(XS),WK(YS),IWK(IEDGE))
IF (IERR .NE. 0) RETURN
INTER = (NSHR .GT. 0)
C
IF (INTER) THEN
CALL DIAM2(NSHR,WK(XS+1),WK(YS+1),I1,I2,DIST)
IF (IERR .NE. 0) RETURN
CALL ROTPG(NSHR,WK(XS),WK(YS),I1,I2,IBOT,COSTH,SINTH)
MAXCW = 6*(1 + INT((WK(YS) - WK(YS+IBOT))/H))
IF (MAXCW + 1 .GT. MAXIW) THEN
IERR = 6
RETURN
ENDIF
CWALK = 1
CALL INTTRI(NSHR,WK(XS),WK(YS),H,IBOT,COSTH,SINTH,LDV,NVC,NTRI,
$ MAXVC,MAXTI,MAXCW,VCL,TIL,NCW,IWK(CWALK))
IF (IERR .NE. 0) RETURN
C
C Determine the mesh vertex which should be moved to front of
C BNDCYC - closest to CWALK(0) and also with y-coordinate >
C that of CWALK(0) when rotated if NCW > 0.
C
X0 = VCL(1,IWK(CWALK))
Y0 = VCL(2,IWK(CWALK))
IF (NCW .GT. 0) YR = SINTH*X0 + COSTH*Y0
SMDIST = 100000.0D0*H**2
DO 20 I = 0,NBC-1
XI = VCL(1,BNDCYC(I))
YI = VCL(2,BNDCYC(I))
IF (NCW .GT. 0) THEN
IF (SINTH*XI + COSTH*YI .LE. YR) GO TO 20
ENDIF
DIST = (XI - X0)**2 + (YI - Y0)**2
IF (DIST .LT. SMDIST) THEN
SMDIST = DIST
IND = I
ENDIF
20 CONTINUE
CALL ROTIAR(NBC,BNDCYC,IND)
BNDCYC(NBC) = BNDCYC(0)
NT = NBC + NCW
TEDG = CWALK + NCW + 1
ELSE
CALL DIAM2(NVRT,XC(1),YC(1),I1,I2,DIST)
IF (IERR .NE. 0) RETURN
IND = 0
30 CONTINUE
IF (IND .GE. NBC) GO TO 40
IF (XC(I1) .EQ. VCL(1,BNDCYC(IND)) .AND. YC(I1) .EQ.
$ VCL(2,BNDCYC(IND))) GO TO 40
IND = IND + 1
GO TO 30
40 CONTINUE
CALL ROTIAR(NBC,BNDCYC,IND)
BNDCYC(NBC) = BNDCYC(0)
MBC = 1
50 CONTINUE
IF (MBC .GE. NBC) GO TO 60
IF (XC(I2) .EQ. VCL(1,BNDCYC(MBC)) .AND. YC(I2) .EQ.
$ VCL(2,BNDCYC(MBC))) GO TO 60
MBC = MBC + 1
GO TO 50
60 CONTINUE
IND = NBC
DO 70 I = MBC+1,MBC+(NBC-MBC-1)/2
IND = IND - 1
I1 = BNDCYC(I)
BNDCYC(I) = BNDCYC(IND)
BNDCYC(IND) = I1
70 CONTINUE
BNDCYC(NBC) = BNDCYC(MBC)
NT = NBC - 2
TEDG = 1
C Left boundary chain contains mesh vertices BNDCYC(0:MBC)
C and right chain contains BNDCYC(0,MBC+1:NBC); MBC < NBC.
ENDIF
C
IF (NTRI + NT .GT. MAXTI) THEN
IERR = 9
RETURN
ELSE IF (TEDG + 4*NT - 1 .GT. MAXIW) THEN
IERR = 6
RETURN
ENDIF
IF (INTER) THEN
CALL TMERGE(INTER,NBC,NCW,BNDCYC,IWK(CWALK),LDV,VCL,
$ TIL(1,NTRI+1),IWK(TEDG))
ELSE
CALL TMERGE(INTER,MBC,NBC-MBC,BNDCYC,BNDCYC(MBC),LDV,VCL,
$ TIL(1,NTRI+1),IWK(TEDG))
ENDIF
IF (IERR .NE. 0) RETURN
SPTR = TEDG + 3*NT
CALL CVDTRI(INTER,LDV,NT,VCL,TIL(1,NTRI+1),IWK(TEDG),IWK(SPTR))
NTRI = NTRI + NT
END
|