1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
|
C
C The following code was excerpted from: vispol.f
C
SUBROUTINE VISPOL(XEYE,YEYE,NVRT,XC,YC,NVIS,IVIS)
IMPLICIT LOGICAL (A-Z)
INTEGER NVIS,NVRT
INTEGER IVIS(0:NVRT)
DOUBLE PRECISION XEYE,YEYE
DOUBLE PRECISION XC(0:NVRT),YC(0:NVRT)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Compute the visibility polygon VP from an eyepoint in
C the interior or blocked exterior of a simple polygon P or
C on the boundary of a simply connected polygonal region P.
C In the latter case, the interior angles at all vertices must
C be strictly between 0 and 2*PI.
C
C Input parameters:
C XEYE,YEYE - coordinates of eyepoint; must be a simple vertex
C if it lies on the boundary (i.e. occurs only once)
C NVRT - upper subscript of XC, YC (approx number of vertices)
C XC(0:NVRT),YC(0:NVRT) - If eyepoint is interior or blocked
C exterior then arrays contain coordinates in CCW or CW
C order, respectively, with (XC(0),YC(0)) = (XC(NVRT),
C YC(NVRT)); (XC(0),YC(0)) is a vertex visible from
C (XEYE,YEYE), e.g. as computed by routine ROTIPG.
C If eyepoint is a vertex of P then arrays contain
C coordinates in CCW order; (XC(0),YC(0)) is successor
C vertex of (XEYE,YEYE); (XC(NVRT),YC(NVRT)) is
C predecessor vertex of (XEYE,YEYE).
C
C Updated parameters:
C XC(0:NVIS),YC(0:NVIS) - vertices of VP in CCW order;
C if eyepoint is interior or blocked exterior then
C (XC(0),YC(0)) = (XC(NVIS),YC(NVIS)), else (XC(0),YC(0))
C and (XC(NVIS),YC(NVIS)) are the successor and
C predecessor vertices of (XEYE,YEYE) in VP
C
C Output parameters:
C NVIS - upper subscript of XC, YC on output (approx number
C of vertices of VP); NVIS <= NVRT
C IVIS(0:NVIS) - contains information about the vertices of VP
C w.r.t. the vertices of P; IVIS(I) = K if (XC(I),YC(I))
C is the vertex of index K in the input polygon; IVIS(I)
C = -K if (XC(I),YC(I)) is on the interior of the edge
C joining vertices of index K-1 and K in input polygon
C
C Note about algorithm:
C On input, XC and YC contain vertex coordinates of P. During
C the algorithm, part of XC, YC is used as a stack, which, on
C output, contains the vertex coordinates of VP. The stack
C vertices overwrite the input vertices as the input vertices
C are scanned. Elements of IVIS are set when vertices are added
C to the stack; these values may have +NV or -NV added to them
C to indicate that stack point has same angle as previous one.
C
C Reference:
C B. Joe and R. B. Simpson, BIT 27 (1987), pp. 458-473.
C
C Abnormal return:
C IERR is set to 206, 207, 208, 209, or 210
C
C Routines called:
C LRLINE, VPLEFT, VPRGHT, VPSCNA, VPSCNB, VPSCNC, VPSCND
C
INTEGER CUR,IERR,NV,OPER,TOP
DOUBLE PRECISION XE,XW,YE,YW
LOGICAL BEYE
COMMON /GERROR/ IERR
COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
SAVE /GERROR/,/GVPVAR/
C
C Variables in common block GVPVAR:
C NV - NVRT
C OPER - operation code 1 to 7 for LEFT, RIGHT, SCANA, SCANB,
C SCANC, SCAND, FINISH
C CUR - index of current vertex of P in XC, YC arrays
C TOP - index of top vertex of stack in XC, YC arrays
C (TOP <= CUR is always satisfied)
C XE,YE - XEYE,YEYE
C XW,YW - coordinates of point on last or second-last edge
C processed (needed for routines VPSCNB, VPSCNC, VPSCND)
C BEYE - .TRUE. iff eyepoint is on boundary
C
INTEGER I,LR,LRLINE
C
BEYE = XC(0) .NE. XC(NVRT) .OR. YC(0) .NE. YC(NVRT)
NV = NVRT
XE = XEYE
YE = YEYE
IVIS(0) = 0
CUR = 1
IF (.NOT. BEYE) GO TO 20
10 CONTINUE
LR = LRLINE(XC(NV-1),YC(NV-1),XE,YE,XC(NV),YC(NV),0.0D0)
IF (LR .EQ. 0) THEN
NV = NV - 1
GO TO 10
ENDIF
C
20 CONTINUE
LR = LRLINE(XC(CUR),YC(CUR),XE,YE,XC(0),YC(0),0.0D0)
IF (LR .EQ. 0) THEN
CUR = CUR + 1
GO TO 20
ENDIF
IF (LR .EQ. -1) THEN
OPER = 1
IF (CUR .EQ. 1) THEN
TOP = 1
IVIS(1) = CUR
ELSE IF (BEYE) THEN
TOP = 1
XC(0) = XC(CUR-1)
YC(0) = YC(CUR-1)
IVIS(0) = CUR - 1
XC(1) = XC(CUR)
YC(1) = YC(CUR)
IVIS(1) = CUR
ELSE
TOP = 2
XC(1) = XC(CUR-1)
YC(1) = YC(CUR-1)
IVIS(1) = CUR - 1 + NV
XC(2) = XC(CUR)
YC(2) = YC(CUR)
IVIS(2) = CUR
ENDIF
ELSE
OPER = 3
TOP = 0
IF (BEYE .AND. CUR. GT. 1) THEN
XC(0) = XC(CUR-1)
YC(0) = YC(CUR-1)
IVIS(0) = CUR - 1
ENDIF
ENDIF
C
C Angular displacement of stack points are in nondecreasing order,
C with at most two consecutive points having the same displacement.
C
30 CONTINUE
IF (OPER .EQ. 1) THEN
CALL VPLEFT(XC,YC,IVIS)
ELSE IF (OPER .EQ. 2) THEN
CALL VPRGHT(XC,YC,IVIS)
ELSE IF (OPER .EQ. 3) THEN
CALL VPSCNA(XC,YC,IVIS)
ELSE IF (OPER .EQ. 4) THEN
CALL VPSCNB(XC,YC,IVIS)
ELSE IF (OPER .EQ. 5) THEN
CALL VPSCNC(XC,YC,IVIS)
ELSE
CALL VPSCND(XC,YC,IVIS)
ENDIF
IF (IERR .NE. 0) THEN
NVIS = TOP
RETURN
ENDIF
IF (OPER .LE. 6) GO TO 30
C
C Add or subtract NV from those IVIS values which are used to
C indicate that stack point has same angle as previous one.
C
DO 40 I = 1,TOP
IF (IVIS(I) .GT. NV) THEN
IVIS(I) = IVIS(I) - NV
ELSE IF (IVIS(I) .LT. -NV) THEN
IVIS(I) = IVIS(I) + NV
ENDIF
40 CONTINUE
NVIS = TOP
END
C
C The following code was excerpted from: visvrt.f
C
SUBROUTINE VISVRT(ANGSPC,XEYE,YEYE,NVIS,XC,YC,IVIS,MAXN,NVSVRT,
$ THETA)
IMPLICIT LOGICAL (A-Z)
INTEGER MAXN,NVIS,NVSVRT
INTEGER IVIS(0:MAXN)
DOUBLE PRECISION ANGSPC,XEYE,YEYE
DOUBLE PRECISION THETA(0:MAXN),XC(0:MAXN),YC(0:MAXN)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Determine a list of visible vertices, ordered by
C increasing "polar angle", on the boundary of the visibilty
C polygon from boundary eyepoint (XEYE,YEYE). This list
C includes the vertices of visibility polygon such that a
C line segment from (XEYE,YEYE) to vertex lies in interior
C of polygon, as well as extra points on edges which subtend
C an angle >= 2*ANGSPC at (XEYE,YEYE). These extra points are
C at an equal angular spacing of >= ANGSPC and < 2*ANGSPC. The
C successor and predecessor of eyepoint are included in list.
C
C Input parameters:
C ANGSPC - angle spacing parameter in radians which controls
C how many extra points become visible vertices
C XEYE,YEYE - coordinates of boundary eyepoint
C NVIS - (number of vertices of visibility polygon) - 2
C XC(0:NVIS),YC(0:NVIS) - the coordinates of the vertices of
C visibility polygon in CCW order; (XC(0),YC(0)) and
C (XC(NVIS),YC(NVIS)) are the successor and predecessor
C vertices of eyepoint in visibility polygon; at most 2
C consecutive vertices have same polar angle wrt eyepoint
C IVIS(0:NVIS) - contains information about the vertices of
C XC, YC arrays with respect to the original polygon from
C which visibility polygon is computed; if IVIS(I) >= 0
C then (XC(I),YC(I)) has index I in original polygon;
C if IVIS(I) < 0 then (XC(I),YC(I)) is on the edge
C ending at vertex of index -IVIS(I) in original polygon;
C indexing starts at 0 from successor of eyepoint
C MAXN - upper bound on NVSVRT; should be at least
C NVIS + INT(PHI/ANGSPC) where PHI is the interior
C angle at (XEYE,YEYE)
C
C Updated parameters:
C XC(0:NVSVRT),YC(0:NVSVRT) - coordinates of visible vertices
C which overwrite the input coordinates
C IVIS(0:NVSVRT) - contains information about the output
C vertices of XC, YC arrays as described above for input
C
C Output parameters:
C NVSVRT - (number of visible vertices) - 1
C THETA(0:NVSVRT) - polar angles of visible vertices wrt (XEYE,
C YEYE) at origin and (XC(0),YC(0)) on positive x-axis
C
C Routines called:
C ANGLE, LRLINE
C
DOUBLE PRECISION PI,TOL
COMMON /GCONST/ PI,TOL
SAVE /GCONST/
C
INTEGER CUR,I,IND,K,LR,LRLINE,N,TOP
DOUBLE PRECISION ALPHA,ANG,ANG1,ANG2,ANGDIF,ANGLE,ANGSP2
DOUBLE PRECISION COSANG,DIFF,DX,DY,NUMER,R,SINANG
C
C Shift input vertices right, and possibly remove first and last
C vertices due to collinearity with eyepoint.
C
ANGSP2 = 2.0D0*ANGSPC
CUR = MAXN + 1
N = MAXN
DO 10 I = NVIS,0,-1
CUR = CUR - 1
XC(CUR) = XC(I)
YC(CUR) = YC(I)
IVIS(CUR) = IVIS(I)
10 CONTINUE
LR = LRLINE(XC(CUR+1),YC(CUR+1),XEYE,YEYE,XC(CUR),YC(CUR),0.0D0)
IF (LR .GE. 0) THEN
CUR = CUR + 1
XC(0) = XC(CUR)
YC(0) = YC(CUR)
IVIS(0) = IVIS(CUR)
ENDIF
LR = LRLINE(XC(N-1),YC(N-1),XEYE,YEYE,XC(N),YC(N),0.0D0)
IF (LR .LE. 0) N = N - 1
ALPHA = ATAN2(YC(0)-YEYE,XC(0)-XEYE)
ANG2 = 0.0D0
THETA(0) = 0.0D0
TOP = 0
CUR = CUR + 1
C
C Process edge from vertices of indices CUR-1, CUR.
C
20 CONTINUE
ANG1 = ANG2
ANG2 = ANGLE(XC(CUR),YC(CUR),XEYE,YEYE,XC(0),YC(0))
ANGDIF = ANG2 - ANG1
IF (ANGDIF .LE. TOL) THEN
DIFF = ((XC(CUR) - XEYE)**2 + (YC(CUR) - YEYE)**2) -
$ ((XC(CUR-1) - XEYE)**2 + (YC(CUR-1) - YEYE)**2)
IF (DIFF .LT. 0.0D0) THEN
XC(TOP) = XC(CUR)
YC(TOP) = YC(CUR)
IVIS(TOP) = IVIS(CUR)
THETA(TOP) = ANG2
ENDIF
ELSE
IF (ANGDIF .GE. ANGSP2) THEN
K = INT(ANGDIF/ANGSPC)
IND = -ABS(IVIS(CUR))
ANGDIF = ANGDIF/DBLE(K)
DX = XC(CUR) - XC(CUR-1)
DY = YC(CUR) - YC(CUR-1)
NUMER = (XC(CUR) - XEYE)*DY - (YC(CUR) - YEYE)*DX
DO 30 I = 1,K-1
TOP = TOP + 1
THETA(TOP) = ANG1 + DBLE(I)*ANGDIF
ANG = THETA(TOP) + ALPHA
COSANG = COS(ANG)
SINANG = SIN(ANG)
R = NUMER/(DY*COSANG - DX*SINANG)
XC(TOP) = R*COSANG + XEYE
YC(TOP) = R*SINANG + YEYE
IVIS(TOP) = IND
30 CONTINUE
ENDIF
TOP = TOP + 1
XC(TOP) = XC(CUR)
YC(TOP) = YC(CUR)
IVIS(TOP) = IVIS(CUR)
THETA(TOP) = ANG2
ENDIF
CUR = CUR + 1
IF (CUR .LE. N) GO TO 20
NVSVRT = TOP
END
C
C The following code was excerpted from: vornbr.f
C
SUBROUTINE VORNBR(XEYE,YEYE,NVRT,XC,YC,NVOR,IVOR,XVOR,YVOR)
IMPLICIT LOGICAL (A-Z)
INTEGER NVOR,NVRT
INTEGER IVOR(0:NVRT)
DOUBLE PRECISION XEYE,YEYE
DOUBLE PRECISION XC(0:NVRT),XVOR(0:NVRT),YC(0:NVRT),YVOR(0:NVRT)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: Determine the Voronoi neighbours of (XEYE,YEYE) from a
C list of vertices which are in increasing "polar angle" order.
C The Voronoi neighbours are a sublist of this list. The
C Voronoi polygon is restricted to the sector formed from the
C the edges joining (XEYE,YEYE) to the first and last vertices
C of this list. Each Voronoi neighbour corresponds to an edge
C of the Voronoi polygon.
C
C Input parameters:
C XEYE,YEYE - coordinates of eyepoint
C NVRT - (number of vertices in list) - 1
C XC(0:NVRT),YC(0:NVRT) - vertex coordinates from which
C Voronoi neighbours are determined; (XC(0),YC(0)),...,
C (XC(NVRT),YC(NVRT)) are in increasing angular
C displacement order w.r.t. (XEYE,YEYE)
C
C Output parameters:
C NVOR - (number of Voronoi neighbours) - 1 [<= NVRT]
C IVOR(0:NVOR) - indices of Voronoi neighbours in XC, YC
C arrays; 0 <= IVOR(0) < ... < IVOR(NVOR) <= NVRT
C
C Working parameters:
C XVOR(0:NVRT),YVOR(0:NVRT) - arrays for storing the vertex
C coordinates of the Voronoi polygon
C
C Abnormal return:
C IERR is set to 212
C
C Routines called:
C LRLINE
C
INTEGER IERR
DOUBLE PRECISION PI,TOL
COMMON /GERROR/ IERR
COMMON /GCONST/ PI,TOL
SAVE /GERROR/,/GCONST/
C
INTEGER IM,K,LR,LRLINE,M
DOUBLE PRECISION A11,A12,A21,A22,B1,B2,DET,TOLABS,XI,YI
C
K = 1
M = 0
IVOR(0) = 0
XVOR(0) = (XEYE + XC(0))*0.5D0
YVOR(0) = (YEYE + YC(0))*0.5D0
C
C Beginning of main loop
C
10 CONTINUE
IF (K .GT. NVRT) GO TO 20
C
C Determine the intersection of the perpendicular bisectors
C of edges from (XEYE,YEYE) to (XC(K),YC(K)) and from
C (XEYE,YEYE) to (XC(IM),YC(IM)).
C
IM = IVOR(M)
A11 = XC(K) - XEYE
A12 = YC(K) - YEYE
A21 = XC(IM) - XEYE
A22 = YC(IM) - YEYE
TOLABS = TOL*MAX(ABS(A11),ABS(A12),ABS(A21),ABS(A22))
DET = A11*A22 - A21*A12
IF (ABS(DET) .LE. TOLABS) THEN
IERR = 212
RETURN
ENDIF
B1 = (A11**2 + A12**2)*0.5D0
B2 = (A21**2 + A22**2)*0.5D0
XI = (B1*A22 - B2*A12)/DET
YI = (B2*A11 - B1*A21)/DET
C
C Determine whether (XVOR(M+1),YVOR(M+1)) is to the left of or
C on the directed line from (XEYE,YEYE) to (XVOR(M),YVOR(M)).
C
XVOR(M+1) = XI + XEYE
YVOR(M+1) = YI + YEYE
LR = LRLINE(XVOR(M+1),YVOR(M+1),XEYE,YEYE,XVOR(M),YVOR(M),
1 0.0D0)
IF (LR .LE. 0) THEN
M = M + 1
IVOR(M) = K
K = K + 1
ELSE IF (M .GT. 0) THEN
M = M - 1
ELSE
C
C Determine the intersection of edge from (XEYE,YEYE) to
C (XC(0),YC(0)) and the perpendicular bisector of the edge
C from (XEYE,YEYE) to (XC(K),YC(K)).
C
A11 = XC(K) - XEYE
A12 = YC(K) - YEYE
A21 = YC(0) - YEYE
A22 = XEYE - XC(0)
TOLABS = TOL*MAX(ABS(A11),ABS(A12),ABS(A21),ABS(A22))
DET = A11*A22 - A21*A12
IF (ABS(DET) .LE. TOLABS) THEN
IERR = 212
RETURN
ENDIF
B1 = (A11**2 + A12**2)*0.5D0
B2 = 0.0D0
XI = (B1*A22 - B2*A12)/DET
YI = (B2*A11 - B1*A21)/DET
XVOR(M) = XI + XEYE
YVOR(M) = YI + YEYE
IVOR(M) = K
K = K + 1
ENDIF
GO TO 10
C
C The following short loop determines which vertices at the end
C of list are not Voronoi neighbours.
C
20 CONTINUE
LR = LRLINE(XVOR(M),YVOR(M),XEYE,YEYE,XC(NVRT),YC(NVRT),0.0D0)
IF (LR .GE. 0) GO TO 30
M = M - 1
IF (M .GE. 0) GO TO 20
30 CONTINUE
NVOR = M
END
C
C The following code was excerpted from: vpleft.f
C
SUBROUTINE VPLEFT(XC,YC,IVIS)
IMPLICIT LOGICAL (A-Z)
INTEGER IVIS(0:*)
DOUBLE PRECISION XC(0:*),YC(0:*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: This routine is called by routine VISPOL for the LEFT
C operation (OPER = 1).
C
C Input and updated parameters:
C XC,YC,IVIS - see comments in routine VISPOL
C
C Routines called:
C LRLINE, XEDGE
C
INTEGER CUR,NV,OPER,TOP
DOUBLE PRECISION XE,XW,YE,YW
LOGICAL BEYE
COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
SAVE /GVPVAR/
C
INTEGER J,LR,LR1,LR2,LRLINE
DOUBLE PRECISION XU,YU
LOGICAL INTSCT
C
C EYE-V(CUR-1)-V(CUR) is a left turn, S(TOP) = V(CUR), TOP <= CUR,
C S(TOP-1) = V(CUR-1) or on interior of edge V(CUR-1)-V(CUR).
C
10 CONTINUE
IF (CUR .EQ. NV) THEN
OPER = 7
RETURN
ENDIF
IF (.NOT. BEYE .AND. TOP .LE. 2) GO TO 20
C
C Check if angular displacement of stack chain >= 2*PI or
C interior angle at boundary viewpoint.
C
CALL XEDGE(1,XE,YE,XC(NV),YC(NV),XC(TOP-1),YC(TOP-1),XC(TOP),
$ YC(TOP),XU,YU,INTSCT)
IF (INTSCT) THEN
OPER = 4
XW = XC(CUR)
YW = YC(CUR)
LR = LRLINE(XC(TOP),YC(TOP),XE,YE,XC(NV),YC(NV),0.0D0)
IF (LR .EQ. -1) THEN
XC(TOP) = XU
YC(TOP) = YU
IVIS(TOP) = -CUR
ENDIF
RETURN
ENDIF
C
C Process next edge.
C
20 CONTINUE
LR = LRLINE(XC(CUR+1),YC(CUR+1),XE,YE,XC(CUR),YC(CUR),0.0D0)
IF (LR .EQ. -1) THEN
CUR = CUR + 1
TOP = TOP + 1
XC(TOP) = XC(CUR)
YC(TOP) = YC(CUR)
IVIS(TOP) = CUR
ELSE
J = CUR + 1
LR1 = LRLINE(XC(J),YC(J),XC(TOP-1),YC(TOP-1),XC(CUR),YC(CUR),
$ 0.0D0)
IF (LR1 .EQ. 1) THEN
OPER = 3
CUR = J
ELSE
IF (LR .EQ. 1) THEN
LR2 = 1
GO TO 40
ENDIF
30 CONTINUE
J = J + 1
LR2 = LRLINE(XC(J),YC(J),XE,YE,XC(CUR),YC(CUR),0.0D0)
IF (LR2 .EQ. 0) GO TO 30
40 CONTINUE
IF (LR2 .EQ. -1) THEN
TOP = TOP + 1
XC(TOP) = XC(J-1)
YC(TOP) = YC(J-1)
IVIS(TOP) = J - 1 + NV
TOP = TOP + 1
XC(TOP) = XC(J)
YC(TOP) = YC(J)
IVIS(TOP) = J
ELSE
OPER = 2
ENDIF
CUR = J
ENDIF
ENDIF
C
C This test avoids extra subroutine calls.
C
IF (OPER .EQ. 1) GO TO 10
END
C
C The following code was excerpted from: vprght.f
C
SUBROUTINE VPRGHT(XC,YC,IVIS)
IMPLICIT LOGICAL (A-Z)
INTEGER IVIS(0:*)
DOUBLE PRECISION XC(0:*),YC(0:*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: This routine is called by routine VISPOL for the RIGHT
C operation (OPER = 2).
C
C Input and updated parameters:
C XC,YC,IVIS - see comments in routine VISPOL
C
C Abnormal return:
C IERR is set to 206
C
C Routines called:
C LRLINE, XEDGE
C
INTEGER CUR,IERR,NV,OPER,TOP
DOUBLE PRECISION XE,XW,YE,YW
LOGICAL BEYE
COMMON /GERROR/ IERR
COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
SAVE /GERROR/,/GVPVAR/
C
INTEGER CASE,J,LR,LR1,LR2,LRLINE
DOUBLE PRECISION XU,YU
LOGICAL INTSCT
C
C EYE-V(CUR-1)-V(CUR) is a right turn, EYE-S(TOP)-V(CUR) is a right
C turn, EYE-S(TOP-1)-S(TOP) is a left turn, TOP < CUR, S(TOP) =
C V(CUR-1) and S(TOP-1)-S(TOP)-V(CUR) is a left turn or S(TOP) is
C not on edge V(CUR-1)-V(CUR) and V(CUR-1)-V(CUR) intersects
C EYE-S(TOP).
C Pop points from stack. If BEYE, it is not possible for
C (XC(CUR),YC(CUR)) to be identical to any stack points.
C
10 CONTINUE
CASE = 0
J = TOP
20 CONTINUE
IF (ABS(IVIS(J)) .LE. NV) THEN
LR = LRLINE(XC(CUR),YC(CUR),XE,YE,XC(J-1),YC(J-1),0.0D0)
IF (LR .EQ. -1) THEN
CASE = 1
ELSE IF (LR .EQ. 0) THEN
IF (ABS(IVIS(J-1)) .LE. NV) THEN
J = J - 1
CASE = 2
ELSE IF ((XC(J-2) - XE)**2 + (YC(J-2) - YE)**2 .GE.
$ (XC(J-1) - XE)**2 + (YC(J-1) - YE)**2) THEN
J = J - 2
CASE = 2
ELSE
CASE = -1
ENDIF
ENDIF
ELSE IF (CASE .EQ. -1) THEN
IF ((XC(J-1) - XE)**2 + (YC(J-1) - YE)**2 .GE.
$ (XC(CUR) - XE)**2 + (YC(CUR) - YE)**2) THEN
J = J - 1
CASE = 2
ELSE
XW = XC(CUR)
YW = YC(CUR)
CASE = 3
ENDIF
ELSE
CALL XEDGE(0,XC(CUR-1),YC(CUR-1),XC(CUR),YC(CUR),
$ XC(J-1),YC(J-1),XC(J),YC(J),XW,YW,INTSCT)
IF (INTSCT) CASE = 3
ENDIF
IF (CASE .GT. 0) GO TO 30
J = J - 1
IF (J .GE. 1) GO TO 20
C
C Error from no more edges in stack.
C
IERR = 206
RETURN
C
C Process next edge.
C
30 CONTINUE
IF (CASE .EQ. 3) THEN
OPER = 6
TOP = J - 1
ELSE
TOP = J
XW = XC(CUR-1)
YW = YC(CUR-1)
IF (CASE .EQ. 1) THEN
CALL XEDGE(1,XE,YE,XC(CUR),YC(CUR),XC(TOP-1),YC(TOP-1),
$ XC(TOP),YC(TOP),XU,YU,INTSCT)
XC(TOP) = XU
YC(TOP) = YU
IVIS(TOP) = -ABS(IVIS(TOP))
ENDIF
LR = LRLINE(XC(CUR+1),YC(CUR+1),XE,YE,XC(CUR),YC(CUR),0.0D0)
IF (LR .EQ. 1) THEN
CUR = CUR + 1
ELSE
J = CUR + 1
LR1 = LRLINE(XC(J),YC(J),XW,YW,XC(CUR),YC(CUR),0.0D0)
IF (LR1 .EQ. -1) THEN
OPER = 5
CUR = J
ELSE
IF (LR .EQ. -1) THEN
LR2 = -1
GO TO 50
ENDIF
40 CONTINUE
J = J + 1
LR2 = LRLINE(XC(J),YC(J),XE,YE,XC(CUR),YC(CUR),0.0D0)
IF (LR2 .EQ. 0) GO TO 40
50 CONTINUE
IF (LR2 .EQ. -1) THEN
OPER = 1
TOP = TOP + 1
XC(TOP) = XC(J-1)
YC(TOP) = YC(J-1)
IVIS(TOP) = J - 1 + NV
TOP = TOP + 1
XC(TOP) = XC(J)
YC(TOP) = YC(J)
IVIS(TOP) = J
ENDIF
CUR = J
ENDIF
ENDIF
ENDIF
C
C This test avoids extra subroutine calls.
C
IF (OPER .EQ. 2) GO TO 10
END
C
C The following code was excerpted from: vpscna.f
C
SUBROUTINE VPSCNA(XC,YC,IVIS)
IMPLICIT LOGICAL (A-Z)
INTEGER IVIS(0:*)
DOUBLE PRECISION XC(0:*),YC(0:*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: This routine is called by routine VISPOL for the SCANA
C operation (OPER = 3).
C
C Input and updated parameters:
C XC,YC,IVIS - see comments in routine VISPOL
C
C Abnormal return:
C IERR is set to 207
C
C Routines called:
C LRLINE, XEDGE
C
INTEGER CUR,IERR,NV,OPER,TOP
DOUBLE PRECISION XE,XW,YE,YW
LOGICAL BEYE
COMMON /GERROR/ IERR
COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
SAVE /GERROR/,/GVPVAR/
C
INTEGER CASE,J,K,LR,LR1,LR2,LR3,LRLINE
LOGICAL INTSCT
C
C EYE-V(CUR-1)-V(CUR) is a right turn or forward move, S(TOP) =
C V(CUR-1) or EYE-S(TOP)-V(CUR-1) is a forward move and TOP = 0,
C TOP < CUR; S(TOP-1)-S(TOP)-V(CUR) is a right turn if TOP >= 1
C or EYE-S(TOP)-V(CUR) is a right turn if TOP = 0.
C If BEYE, it is possible that (XC(TOP),YC(TOP)) is a non-simple
C vertex but any edge incident on this vertex encountered during
C scan must be invisible from (XE,YE).
C
K = CUR
10 CONTINUE
IF (XC(K+1) .EQ. XC(TOP) .AND. YC(K+1) .EQ. YC(TOP)) THEN
K = K + 2
ELSE
CALL XEDGE(1,XE,YE,XC(TOP),YC(TOP),XC(K),YC(K),XC(K+1),
$ YC(K+1),XW,YW,INTSCT)
IF (INTSCT) THEN
LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(K),YC(K),0.0D0)
IF (LR .EQ. 1) THEN
IF ((XC(TOP) - XE)**2 + (YC(TOP) - YE)**2 .GE.
$ (XW - XE)**2 + (YW - YE)**2) THEN
IF (TOP .GT. 0) THEN
CASE = 1
GO TO 20
ENDIF
ELSE
LR1 = LRLINE(XC(K),YC(K),XE,YE,XC(TOP),YC(TOP),
$ 0.0D0)
IF (LR1 .EQ. -1) THEN
CASE = 2
GO TO 20
ENDIF
ENDIF
ELSE
LR1 = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(TOP),YC(TOP),
$ 0.0D0)
IF (LR1 .EQ. -1) THEN
CASE = 3
GO TO 20
ENDIF
ENDIF
ENDIF
K = K + 1
ENDIF
IF (K .LT. NV) GO TO 10
C
C Error from unsuccessful scan.
C
IERR = 207
RETURN
C
C Process current edge.
C
20 CONTINUE
IF (CASE .EQ. 3) THEN
OPER = 1
CUR = K + 1
LR = LRLINE(XC(K),YC(K),XE,YE,XC(TOP),YC(TOP),0.0D0)
TOP = TOP + 1
IF (LR .EQ. 0) THEN
XC(TOP) = XC(K)
YC(TOP) = YC(K)
IVIS(TOP) = K + NV
ELSE
XC(TOP) = XW
YC(TOP) = YW
IVIS(TOP) = -(K + 1 + NV)
ENDIF
TOP = TOP + 1
XC(TOP) = XC(CUR)
YC(TOP) = YC(CUR)
IVIS(TOP) = CUR
ELSE IF (CASE .EQ. 1) THEN
CUR = K + 1
LR = LRLINE(XC(CUR),YC(CUR),XE,YE,XC(TOP),YC(TOP),0.0D0)
IF (LR .EQ. 1) THEN
OPER = 2
ELSE
J = CUR + 1
LR1 = LRLINE(XC(J),YC(J),XE,YE,XC(CUR),YC(CUR),0.0D0)
LR2 = LRLINE(XC(J),YC(J),XC(K),YC(K),XC(CUR),YC(CUR),0.0D0)
IF (LR1 .LE. 0 .AND. LR2 .EQ. -1) THEN
OPER = 5
XW = XC(K)
YW = YC(K)
CUR = J
ELSE
IF (LR1 .NE. 0) THEN
LR3 = LR1
GO TO 40
ENDIF
30 CONTINUE
J = J + 1
LR3 = LRLINE(XC(J),YC(J),XE,YE,XC(CUR),YC(CUR),0.0D0)
IF (LR3 .EQ. 0) GO TO 30
40 CONTINUE
IF (LR3 .EQ. 1) THEN
OPER = 2
ELSE
OPER = 1
TOP = TOP + 1
XC(TOP) = XC(J-1)
YC(TOP) = YC(J-1)
IVIS(TOP) = J - 1 + NV
TOP = TOP + 1
XC(TOP) = XC(J)
YC(TOP) = YC(J)
IVIS(TOP) = J
ENDIF
CUR = J
ENDIF
ENDIF
ELSE
OPER = 6
CUR = K + 1
LR = LRLINE(XC(CUR),YC(CUR),XE,YE,XC(TOP),YC(TOP),0.0D0)
IF (LR .EQ. 0) THEN
XW = XC(CUR)
YW = YC(CUR)
ENDIF
ENDIF
END
C
C The following code was excerpted from: vpscnb.f
C
SUBROUTINE VPSCNB(XC,YC,IVIS)
IMPLICIT LOGICAL (A-Z)
INTEGER IVIS(0:*)
DOUBLE PRECISION XC(0:*),YC(0:*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: This routine is called by routine VISPOL for the SCANB
C operation (OPER = 4).
C
C Input and updated parameters:
C XC,YC,IVIS - see comments in routine VISPOL
C
C Abnormal return:
C IERR is set to 208
C
C Routines called:
C LRLINE, XEDGE
C
INTEGER CUR,IERR,NV,OPER,TOP
DOUBLE PRECISION PI,TOL,XE,XW,YE,YW
LOGICAL BEYE
COMMON /GERROR/ IERR
COMMON /GCONST/ PI,TOL
COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
SAVE /GERROR/,/GCONST/,/GVPVAR/
C
INTEGER K,LR,LR1,LRLINE
DOUBLE PRECISION TOLABS,XU,YU
LOGICAL INTSCT
C
C EYE-V(CUR-1)-V(CUR) is a left turn, S(TOP) = V(CUR) or S(TOP) is
C on interior of edge V(CUR-1)-V(CUR), TOP <= CUR, S(TOP) has
C angular displacement of 2*PI or interior angle at boundary eye.
C (XW,YW) is the input version of (XC(CUR),YC(CUR)).
C If BEYE, it is possible that (XC(TOP),YC(TOP)) is a non-simple
C point but any edge containing this point encountered during scan
C must be invisible from (XE,YE), except for 1 case where K = CUR.
C
TOLABS = TOL*((XC(NV) - XC(TOP))**2 + (YC(NV) - YC(TOP))**2)
K = CUR
IF (IVIS(TOP) .LT. 0 .OR. K + 1 .EQ. NV) GO TO 10
LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(TOP),YC(TOP),0.0D0)
LR1 = LRLINE(XC(K+1),YC(K+1),XC(TOP-1),YC(TOP-1),XC(TOP),YC(TOP),
$ 0.0D0)
IF (LR .EQ. 1 .AND. LR1 .EQ. -1) THEN
OPER = 2
CUR = K + 1
RETURN
ELSE
K = K + 1
ENDIF
C
10 CONTINUE
IF (K + 1 .EQ. NV) THEN
OPER = 7
CUR = NV
TOP = TOP + 1
XC(TOP) = XC(NV)
YC(TOP) = YC(NV)
IVIS(TOP) = NV
RETURN
ELSE
IF (K .EQ. CUR) THEN
CALL XEDGE(0,XC(NV),YC(NV),XC(TOP),YC(TOP),XW,YW,
$ XC(K+1),YC(K+1),XU,YU,INTSCT)
ELSE
CALL XEDGE(0,XC(NV),YC(NV),XC(TOP),YC(TOP),XC(K),YC(K),
$ XC(K+1),YC(K+1),XU,YU,INTSCT)
ENDIF
IF (INTSCT) THEN
IF ((XC(TOP) - XU)**2 + (YC(TOP) - YU)**2 .LE. TOLABS)
$ GO TO 20
LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(NV),YC(NV),0.0D0)
IF (LR .EQ. 1) THEN
OPER = 2
CUR = K + 1
RETURN
ENDIF
ENDIF
20 CONTINUE
K = K + 1
ENDIF
IF (K .LT. NV) GO TO 10
C
C Error from unsuccessful scan.
C
IERR = 208
END
C
C The following code was excerpted from: vpscnc.f
C
SUBROUTINE VPSCNC(XC,YC,IVIS)
IMPLICIT LOGICAL (A-Z)
INTEGER IVIS(0:*)
DOUBLE PRECISION XC(0:*),YC(0:*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: This routine is called by routine VISPOL for the SCANC
C operation (OPER = 5).
C
C Input and updated parameters:
C XC,YC,IVIS - see comments in routine VISPOL
C
C Abnormal return:
C IERR is set to 209
C
C Routines called:
C LRLINE, XEDGE
C
INTEGER CUR,IERR,NV,OPER,TOP
DOUBLE PRECISION XE,XW,YE,YW
LOGICAL BEYE
COMMON /GERROR/ IERR
COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
SAVE /GERROR/,/GVPVAR/
C
INTEGER J,K,LR,LR1,LR2,LRLINE
DOUBLE PRECISION XP,XU,YP,YU
LOGICAL INTSCT
C
C EYE-V(CUR-1)-V(CUR) is a left turn or forward move, EYE-V(CUR-2)-
C V(CUR-1) is a right turn, V(CUR-2)-V(CUR-1)-V(CUR) is a left turn,
C TOP < CUR-1, W = V(CUR-2), S(TOP) is not on V(CUR-1)-V(CUR), EYE-
C S(TOP)-V(CUR-1) is a backward move, EYE-S(TOP-1)-S(TOP) is a left
C turn. If BEYE, it is possible that V(CUR-1) is a non-simple point,
C but intersection at (XC(TOP),YC(TOP)) cannot occur.
C
XP = XC(CUR-1)
YP = YC(CUR-1)
K = CUR
10 CONTINUE
IF (XC(K+1) .EQ. XP .AND. YC(K+1) .EQ. YP) THEN
GO TO 40
ELSE IF (XC(K) .EQ. XP .AND. YC(K) .EQ. YP) THEN
J = K + 1
LR = LRLINE(XC(J),YC(J),XE,YE,XP,YP,0.0D0)
LR1 = LRLINE(XC(J),YC(J),XW,YW,XP,YP,0.0D0)
IF (LR .LE. 0 .AND. LR1 .EQ. -1) GO TO 40
IF (LR .NE. 0) THEN
LR2 = LR
GO TO 30
ENDIF
20 CONTINUE
J = J + 1
LR2 = LRLINE(XC(J),YC(J),XE,YE,XP,YP,0.0D0)
IF (LR2 .EQ. 0) GO TO 20
30 CONTINUE
IF (LR2 .EQ. 1) THEN
OPER = 2
ELSE
OPER = 1
TOP = TOP + 1
XC(TOP) = XC(J-1)
YC(TOP) = YC(J-1)
IVIS(TOP) = J - 1 + NV
TOP = TOP + 1
XC(TOP) = XC(J)
YC(TOP) = YC(J)
IVIS(TOP) = J
ENDIF
CUR = J
RETURN
ELSE
CALL XEDGE(0,XP,YP,XC(TOP),YC(TOP),XC(K),YC(K),XC(K+1),
$ YC(K+1),XU,YU,INTSCT)
IF (INTSCT) THEN
LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XP,YP,0.0D0)
IF (LR .EQ. 1) THEN
OPER = 2
CUR = K + 1
RETURN
ENDIF
ENDIF
ENDIF
40 CONTINUE
K = K + 1
IF (K .LT. NV) GO TO 10
C
C Error from unsuccessful scan.
C
IERR = 209
END
C
C The following code was excerpted from: vpscnd.f
C
SUBROUTINE VPSCND(XC,YC,IVIS)
IMPLICIT LOGICAL (A-Z)
INTEGER IVIS(0:*)
DOUBLE PRECISION XC(0:*),YC(0:*)
C
C Written and copyright by:
C Barry Joe, Dept. of Computing Science, Univ. of Alberta
C Edmonton, Alberta, Canada T6G 2H1
C Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
C
C Purpose: This routine is called by routine VISPOL for the SCAND
C operation (OPER = 6).
C
C Input and updated parameters:
C XC,YC,IVIS - see comments in routine VISPOL
C
C Abnormal return:
C IERR is set to 210
C
C Routines called:
C LRLINE, XEDGE
C
INTEGER CUR,IERR,NV,OPER,TOP
DOUBLE PRECISION XE,XW,YE,YW
LOGICAL BEYE
COMMON /GERROR/ IERR
COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
SAVE /GERROR/,/GVPVAR/
C
INTEGER K,LR,LR1,LR2,LRLINE
DOUBLE PRECISION XP,XU,YP,YU
LOGICAL INTSCT
C
C EYE-V(CUR-1)-V(CUR) is a right turn, S(TOP) is a V vertex not on
C V(CUR-1)-V(CUR), TOP < CUR, W is intersection of V(CUR-1)-V(CUR)
C and ray EYE-S(TOP), EYE-S(TOP)-W is a forward move, and
C EYE-S(TOP-1)-S(TOP) is a left turn if TOP >= 1.
C If BEYE, it is possible that (XW,YW) is a non-simple point,
C but intersection at (XC(TOP),YC(TOP)) cannot occur.
C
XP = XC(CUR-1)
YP = YC(CUR-1)
K = CUR
10 CONTINUE
CALL XEDGE(0,XW,YW,XC(TOP),YC(TOP),XC(K),YC(K),XC(K+1),
$ YC(K+1),XU,YU,INTSCT)
IF (INTSCT) THEN
LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(K),YC(K),0.0D0)
LR1 = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(TOP),YC(TOP),0.0D0)
IF (LR .EQ. -1 .AND. LR1 .EQ. -1) THEN
IF (XC(K) .NE. XW .OR. YC(K) .NE. YW) GO TO 20
LR2 = LRLINE(XC(K+1),YC(K+1),XP,YP,XW,YW,0.0D0)
IF (LR2 .EQ. -1) GO TO 30
20 CONTINUE
OPER = 1
CUR = K + 1
LR2 = LRLINE(XC(K),YC(K),XE,YE,XC(TOP),YC(TOP),0.0D0)
TOP = TOP + 1
IF (LR2 .EQ. 0) THEN
XC(TOP) = XC(K)
YC(TOP) = YC(K)
IVIS(TOP) = K + NV
ELSE
XC(TOP) = XU
YC(TOP) = YU
IVIS(TOP) = -(K + 1 + NV)
ENDIF
TOP = TOP + 1
XC(TOP) = XC(CUR)
YC(TOP) = YC(CUR)
IVIS(TOP) = CUR
RETURN
ENDIF
ENDIF
30 CONTINUE
K = K + 1
IF (K .LT. NV) GO TO 10
C
C Error from unsuccessful scan.
C
IERR = 210
END
|