File: vispoly.f

package info (click to toggle)
felt 3.06-9
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 17,512 kB
  • ctags: 7,946
  • sloc: ansic: 85,476; fortran: 3,614; yacc: 2,803; lex: 1,178; makefile: 305; sh: 302
file content (1140 lines) | stat: -rw-r--r-- 33,392 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
C
C     The following code was excerpted from: vispol.f
C
      SUBROUTINE VISPOL(XEYE,YEYE,NVRT,XC,YC,NVIS,IVIS)
      IMPLICIT LOGICAL (A-Z)
      INTEGER NVIS,NVRT
      INTEGER IVIS(0:NVRT)
      DOUBLE PRECISION XEYE,YEYE
      DOUBLE PRECISION XC(0:NVRT),YC(0:NVRT)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Compute the visibility polygon VP from an eyepoint in
C        the interior or blocked exterior of a simple polygon P or
C        on the boundary of a simply connected polygonal region P.
C	 In the latter case, the interior angles at all vertices must
C        be strictly between 0 and 2*PI.
C
C     Input parameters:
C        XEYE,YEYE - coordinates of eyepoint; must be a simple vertex
C              if it lies on the boundary (i.e. occurs only once)
C	 NVRT - upper subscript of XC, YC (approx number of vertices)
C	 XC(0:NVRT),YC(0:NVRT) - If eyepoint is interior or blocked
C              exterior then arrays contain coordinates in CCW or CW
C              order, respectively, with (XC(0),YC(0)) = (XC(NVRT),
C              YC(NVRT)); (XC(0),YC(0)) is a vertex visible from
C              (XEYE,YEYE), e.g. as computed by routine ROTIPG.
C              If eyepoint is a vertex of P then arrays contain
C	       coordinates in CCW order; (XC(0),YC(0)) is successor
C              vertex of (XEYE,YEYE); (XC(NVRT),YC(NVRT)) is
C              predecessor vertex of (XEYE,YEYE).
C
C     Updated parameters:
C        XC(0:NVIS),YC(0:NVIS) - vertices of VP in CCW order;
C              if eyepoint is interior or blocked exterior then
C              (XC(0),YC(0)) = (XC(NVIS),YC(NVIS)), else (XC(0),YC(0))
C              and (XC(NVIS),YC(NVIS)) are the successor and
C              predecessor vertices of (XEYE,YEYE) in VP
C
C     Output parameters:
C	 NVIS - upper subscript of XC, YC on output (approx number
C              of vertices of VP); NVIS <= NVRT
C        IVIS(0:NVIS) - contains information about the vertices of VP
C              w.r.t. the vertices of P; IVIS(I) = K if (XC(I),YC(I))
C              is the vertex of index K in the input polygon; IVIS(I)
C              = -K if (XC(I),YC(I)) is on the interior of the edge
C              joining vertices of index K-1 and K in input polygon
C
C     Note about algorithm:
C        On input, XC and YC contain vertex coordinates of P. During
C        the algorithm, part of XC, YC is used as a stack, which, on
C        output, contains the vertex coordinates of VP. The stack
C        vertices overwrite the input vertices as the input vertices
C        are scanned. Elements of IVIS are set when vertices are added
C        to the stack; these values may have +NV or -NV added to them
C        to indicate that stack point has same angle as previous one.
C
C     Reference: 
C        B. Joe and R. B. Simpson, BIT 27 (1987), pp. 458-473.
C
C     Abnormal return:
C        IERR is set to 206, 207, 208, 209, or 210
C
C     Routines called:
C        LRLINE, VPLEFT, VPRGHT, VPSCNA, VPSCNB, VPSCNC, VPSCND
C
      INTEGER CUR,IERR,NV,OPER,TOP
      DOUBLE PRECISION XE,XW,YE,YW
      LOGICAL BEYE
      COMMON /GERROR/ IERR
      COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
      SAVE /GERROR/,/GVPVAR/
C
C     Variables in common block GVPVAR:
C        NV - NVRT
C        OPER - operation code 1 to 7 for LEFT, RIGHT, SCANA, SCANB,
C              SCANC, SCAND, FINISH
C        CUR - index of current vertex of P in XC, YC arrays
C        TOP - index of top vertex of stack in XC, YC arrays
C              (TOP <= CUR is always satisfied)
C        XE,YE - XEYE,YEYE
C        XW,YW - coordinates of point on last or second-last edge
C              processed (needed for routines VPSCNB, VPSCNC, VPSCND)
C        BEYE - .TRUE. iff eyepoint is on boundary
C
      INTEGER I,LR,LRLINE
C
      BEYE = XC(0) .NE. XC(NVRT) .OR. YC(0) .NE. YC(NVRT)
      NV = NVRT
      XE = XEYE
      YE = YEYE
      IVIS(0) = 0
      CUR = 1
      IF (.NOT. BEYE) GO TO 20
   10 CONTINUE
	 LR = LRLINE(XC(NV-1),YC(NV-1),XE,YE,XC(NV),YC(NV),0.0D0)
	 IF (LR .EQ. 0) THEN
	    NV = NV - 1
	    GO TO 10
	 ENDIF
C
   20 CONTINUE
         LR = LRLINE(XC(CUR),YC(CUR),XE,YE,XC(0),YC(0),0.0D0)
	 IF (LR .EQ. 0) THEN
	    CUR = CUR + 1
	    GO TO 20
	 ENDIF
      IF (LR .EQ. -1) THEN
	 OPER = 1
	 IF (CUR .EQ. 1) THEN
            TOP = 1
            IVIS(1) = CUR
	 ELSE IF (BEYE) THEN
	    TOP = 1
	    XC(0) = XC(CUR-1)
	    YC(0) = YC(CUR-1)
	    IVIS(0) = CUR - 1
	    XC(1) = XC(CUR)
	    YC(1) = YC(CUR)
	    IVIS(1) = CUR
	 ELSE
	    TOP = 2
	    XC(1) = XC(CUR-1)
	    YC(1) = YC(CUR-1)
	    IVIS(1) = CUR - 1 + NV
	    XC(2) = XC(CUR)
	    YC(2) = YC(CUR)
	    IVIS(2) = CUR
	 ENDIF
      ELSE
	 OPER = 3
	 TOP = 0
	 IF (BEYE .AND. CUR. GT. 1) THEN
	    XC(0) = XC(CUR-1)
	    YC(0) = YC(CUR-1)
	    IVIS(0) = CUR - 1
	 ENDIF
      ENDIF
C
C     Angular displacement of stack points are in nondecreasing order,
C     with at most two consecutive points having the same displacement.
C
   30 CONTINUE
	 IF (OPER .EQ. 1) THEN
	    CALL VPLEFT(XC,YC,IVIS)
	 ELSE IF (OPER .EQ. 2) THEN
	    CALL VPRGHT(XC,YC,IVIS)
	 ELSE IF (OPER .EQ. 3) THEN
	    CALL VPSCNA(XC,YC,IVIS)
	 ELSE IF (OPER .EQ. 4) THEN
	    CALL VPSCNB(XC,YC,IVIS)
	 ELSE IF (OPER .EQ. 5) THEN
	    CALL VPSCNC(XC,YC,IVIS)
	 ELSE
	    CALL VPSCND(XC,YC,IVIS)
	 ENDIF
	 IF (IERR .NE. 0) THEN
	    NVIS = TOP
	    RETURN
	 ENDIF
      IF (OPER .LE. 6) GO TO 30
C
C     Add or subtract NV from those IVIS values which are used to
C     indicate that stack point has same angle as previous one.
C
      DO 40 I = 1,TOP
	 IF (IVIS(I) .GT. NV) THEN
	    IVIS(I) = IVIS(I) - NV
	 ELSE IF (IVIS(I) .LT. -NV) THEN
	    IVIS(I) = IVIS(I) + NV
	 ENDIF
   40 CONTINUE
      NVIS = TOP
      END
C
C     The following code was excerpted from: visvrt.f
C
      SUBROUTINE VISVRT(ANGSPC,XEYE,YEYE,NVIS,XC,YC,IVIS,MAXN,NVSVRT,
     $   THETA)
      IMPLICIT LOGICAL (A-Z)
      INTEGER MAXN,NVIS,NVSVRT
      INTEGER IVIS(0:MAXN)
      DOUBLE PRECISION ANGSPC,XEYE,YEYE
      DOUBLE PRECISION THETA(0:MAXN),XC(0:MAXN),YC(0:MAXN)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Determine a list of visible vertices, ordered by
C        increasing "polar angle", on the boundary of the visibilty
C        polygon from boundary eyepoint (XEYE,YEYE). This list
C        includes the vertices of visibility polygon such that a
C        line segment from (XEYE,YEYE) to vertex lies in interior
C        of polygon, as well as extra points on edges which subtend
C        an angle >= 2*ANGSPC at (XEYE,YEYE). These extra points are
C        at an equal angular spacing of >= ANGSPC and < 2*ANGSPC. The
C        successor and predecessor of eyepoint are included in list.
C
C     Input parameters:
C        ANGSPC - angle spacing parameter in radians which controls
C              how many extra points become visible vertices
C        XEYE,YEYE - coordinates of boundary eyepoint
C        NVIS - (number of vertices of visibility polygon) - 2
C        XC(0:NVIS),YC(0:NVIS) - the coordinates of the vertices of
C              visibility polygon in CCW order; (XC(0),YC(0)) and
C              (XC(NVIS),YC(NVIS)) are the successor and predecessor
C              vertices of eyepoint in visibility polygon; at most 2
C              consecutive vertices have same polar angle wrt eyepoint
C        IVIS(0:NVIS) - contains information about the vertices of
C              XC, YC arrays with respect to the original polygon from
C              which visibility polygon is computed; if IVIS(I) >= 0
C              then (XC(I),YC(I)) has index I in original polygon;
C              if IVIS(I) < 0 then (XC(I),YC(I)) is on the edge
C              ending at vertex of index -IVIS(I) in original polygon;
C              indexing starts at 0 from successor of eyepoint
C        MAXN - upper bound on NVSVRT; should be at least
C              NVIS + INT(PHI/ANGSPC) where PHI is the interior
C              angle at (XEYE,YEYE)
C
C     Updated parameters:
C        XC(0:NVSVRT),YC(0:NVSVRT) - coordinates of visible vertices
C              which overwrite the input coordinates
C        IVIS(0:NVSVRT) - contains information about the output
C              vertices of XC, YC arrays as described above for input
C
C     Output parameters:
C        NVSVRT - (number of visible vertices) - 1
C        THETA(0:NVSVRT) - polar angles of visible vertices wrt (XEYE,
C              YEYE) at origin and (XC(0),YC(0)) on positive x-axis
C
C     Routines called:
C        ANGLE, LRLINE
C
      DOUBLE PRECISION PI,TOL
      COMMON /GCONST/ PI,TOL
      SAVE /GCONST/
C
      INTEGER CUR,I,IND,K,LR,LRLINE,N,TOP
      DOUBLE PRECISION ALPHA,ANG,ANG1,ANG2,ANGDIF,ANGLE,ANGSP2
      DOUBLE PRECISION COSANG,DIFF,DX,DY,NUMER,R,SINANG
C
C     Shift input vertices right, and possibly remove first and last
C     vertices due to collinearity with eyepoint.
C
      ANGSP2 = 2.0D0*ANGSPC
      CUR = MAXN + 1
      N = MAXN
      DO 10 I = NVIS,0,-1
	 CUR = CUR - 1
	 XC(CUR) = XC(I)
	 YC(CUR) = YC(I)
	 IVIS(CUR) = IVIS(I)
   10 CONTINUE
      LR = LRLINE(XC(CUR+1),YC(CUR+1),XEYE,YEYE,XC(CUR),YC(CUR),0.0D0)
      IF (LR .GE. 0) THEN
	 CUR = CUR + 1
	 XC(0) = XC(CUR)
	 YC(0) = YC(CUR)
	 IVIS(0) = IVIS(CUR)
      ENDIF
      LR = LRLINE(XC(N-1),YC(N-1),XEYE,YEYE,XC(N),YC(N),0.0D0)
      IF (LR .LE. 0) N = N - 1
      ALPHA = ATAN2(YC(0)-YEYE,XC(0)-XEYE)
      ANG2 = 0.0D0
      THETA(0) = 0.0D0
      TOP = 0
      CUR = CUR + 1
C
C     Process edge from vertices of indices CUR-1, CUR.
C
   20 CONTINUE
	 ANG1 = ANG2
	 ANG2 = ANGLE(XC(CUR),YC(CUR),XEYE,YEYE,XC(0),YC(0))
         ANGDIF = ANG2 - ANG1
         IF (ANGDIF .LE. TOL) THEN
   	    DIFF = ((XC(CUR) - XEYE)**2 + (YC(CUR) - YEYE)**2) -
     $         ((XC(CUR-1) - XEYE)**2 + (YC(CUR-1) - YEYE)**2)
   	    IF (DIFF .LT. 0.0D0) THEN
   	       XC(TOP) = XC(CUR)
   	       YC(TOP) = YC(CUR)
   	       IVIS(TOP) = IVIS(CUR)
	       THETA(TOP) = ANG2
   	    ENDIF
         ELSE
	    IF (ANGDIF .GE. ANGSP2) THEN
   	       K = INT(ANGDIF/ANGSPC)
   	       IND = -ABS(IVIS(CUR))
   	       ANGDIF = ANGDIF/DBLE(K)
   	       DX = XC(CUR) - XC(CUR-1)
   	       DY = YC(CUR) - YC(CUR-1)
   	       NUMER = (XC(CUR) - XEYE)*DY - (YC(CUR) - YEYE)*DX
   	       DO 30 I = 1,K-1
   	          TOP = TOP + 1
		  THETA(TOP) = ANG1 + DBLE(I)*ANGDIF
		  ANG = THETA(TOP) + ALPHA
   	          COSANG = COS(ANG)
   	          SINANG = SIN(ANG)
   	          R = NUMER/(DY*COSANG - DX*SINANG)
   	          XC(TOP) = R*COSANG + XEYE
   	          YC(TOP) = R*SINANG + YEYE
   	          IVIS(TOP) = IND
   30          CONTINUE
	    ENDIF
   	    TOP = TOP + 1
   	    XC(TOP) = XC(CUR)
   	    YC(TOP) = YC(CUR)
   	    IVIS(TOP) = IVIS(CUR)
	    THETA(TOP) = ANG2
         ENDIF
         CUR = CUR + 1
      IF (CUR .LE. N) GO TO 20
      NVSVRT = TOP
      END
C
C     The following code was excerpted from: vornbr.f
C
      SUBROUTINE VORNBR(XEYE,YEYE,NVRT,XC,YC,NVOR,IVOR,XVOR,YVOR)
      IMPLICIT LOGICAL (A-Z)
      INTEGER NVOR,NVRT
      INTEGER IVOR(0:NVRT)
      DOUBLE PRECISION XEYE,YEYE
      DOUBLE PRECISION XC(0:NVRT),XVOR(0:NVRT),YC(0:NVRT),YVOR(0:NVRT)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: Determine the Voronoi neighbours of (XEYE,YEYE) from a
C        list of vertices which are in increasing "polar angle" order.
C        The Voronoi neighbours are a sublist of this list. The
C        Voronoi polygon is restricted to the sector formed from the
C        the edges joining (XEYE,YEYE) to the first and last vertices
C        of this list. Each Voronoi neighbour corresponds to an edge
C        of the Voronoi polygon.
C
C     Input parameters:
C        XEYE,YEYE - coordinates of eyepoint
C        NVRT - (number of vertices in list) - 1
C        XC(0:NVRT),YC(0:NVRT) - vertex coordinates from which
C              Voronoi neighbours are determined; (XC(0),YC(0)),...,
C              (XC(NVRT),YC(NVRT)) are in increasing angular
C              displacement order w.r.t. (XEYE,YEYE)
C
C     Output parameters:
C        NVOR - (number of Voronoi neighbours) - 1 [<= NVRT]
C        IVOR(0:NVOR) - indices of Voronoi neighbours in XC, YC
C               arrays; 0 <= IVOR(0) < ... < IVOR(NVOR) <= NVRT
C
C     Working parameters:
C        XVOR(0:NVRT),YVOR(0:NVRT) - arrays for storing the vertex
C              coordinates of the Voronoi polygon
C
C     Abnormal return:
C        IERR is set to 212
C
C     Routines called:
C        LRLINE
C
      INTEGER IERR
      DOUBLE PRECISION PI,TOL
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      SAVE /GERROR/,/GCONST/
C
      INTEGER IM,K,LR,LRLINE,M
      DOUBLE PRECISION A11,A12,A21,A22,B1,B2,DET,TOLABS,XI,YI
C
      K = 1
      M = 0
      IVOR(0) = 0
      XVOR(0) = (XEYE + XC(0))*0.5D0
      YVOR(0) = (YEYE + YC(0))*0.5D0
C
C     Beginning of main loop
C
   10 CONTINUE
      IF (K .GT. NVRT) GO TO 20
C
C        Determine the intersection of the perpendicular bisectors
C        of edges from (XEYE,YEYE) to (XC(K),YC(K)) and from
C        (XEYE,YEYE) to (XC(IM),YC(IM)).
C
	 IM = IVOR(M)
	 A11 = XC(K) - XEYE
	 A12 = YC(K) - YEYE
	 A21 = XC(IM) - XEYE
	 A22 = YC(IM) - YEYE
	 TOLABS = TOL*MAX(ABS(A11),ABS(A12),ABS(A21),ABS(A22))
	 DET = A11*A22 - A21*A12
	 IF (ABS(DET) .LE. TOLABS) THEN
	    IERR = 212
	    RETURN
	 ENDIF
	 B1 = (A11**2 + A12**2)*0.5D0
	 B2 = (A21**2 + A22**2)*0.5D0
	 XI = (B1*A22 - B2*A12)/DET
	 YI = (B2*A11 - B1*A21)/DET
C
C        Determine whether (XVOR(M+1),YVOR(M+1)) is to the left of or
C        on the directed line from (XEYE,YEYE) to (XVOR(M),YVOR(M)).
C
	 XVOR(M+1) = XI + XEYE
	 YVOR(M+1) = YI + YEYE
	 LR = LRLINE(XVOR(M+1),YVOR(M+1),XEYE,YEYE,XVOR(M),YVOR(M),
     1      0.0D0)
	 IF (LR .LE. 0) THEN
	    M = M + 1
	    IVOR(M) = K
	    K = K + 1
	 ELSE IF (M .GT. 0) THEN
	    M = M - 1
	 ELSE
C
C           Determine the intersection of edge from (XEYE,YEYE) to
C           (XC(0),YC(0)) and the perpendicular bisector of the edge
C           from (XEYE,YEYE) to (XC(K),YC(K)).
C
	    A11 = XC(K) - XEYE
	    A12 = YC(K) - YEYE
	    A21 = YC(0) - YEYE
	    A22 = XEYE - XC(0)
	    TOLABS = TOL*MAX(ABS(A11),ABS(A12),ABS(A21),ABS(A22))
	    DET = A11*A22 - A21*A12
	    IF (ABS(DET) .LE. TOLABS) THEN
	       IERR = 212
	       RETURN
	    ENDIF
	    B1 = (A11**2 + A12**2)*0.5D0
	    B2 = 0.0D0
	    XI = (B1*A22 - B2*A12)/DET
	    YI = (B2*A11 - B1*A21)/DET
	    XVOR(M) = XI + XEYE
	    YVOR(M) = YI + YEYE
	    IVOR(M) = K
	    K = K + 1
	 ENDIF
      GO TO 10
C
C     The following short loop determines which vertices at the end
C     of list are not Voronoi neighbours.
C
   20 CONTINUE
	 LR = LRLINE(XVOR(M),YVOR(M),XEYE,YEYE,XC(NVRT),YC(NVRT),0.0D0)
	 IF (LR .GE. 0) GO TO 30
	 M = M - 1
      IF (M .GE. 0) GO TO 20
   30 CONTINUE
      NVOR = M
      END
C
C     The following code was excerpted from: vpleft.f
C
      SUBROUTINE VPLEFT(XC,YC,IVIS)
      IMPLICIT LOGICAL (A-Z)
      INTEGER IVIS(0:*)
      DOUBLE PRECISION XC(0:*),YC(0:*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: This routine is called by routine VISPOL for the LEFT
C        operation (OPER = 1).
C
C     Input and updated parameters:
C        XC,YC,IVIS - see comments in routine VISPOL
C
C     Routines called:
C        LRLINE, XEDGE
C
      INTEGER CUR,NV,OPER,TOP
      DOUBLE PRECISION XE,XW,YE,YW
      LOGICAL BEYE
      COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
      SAVE /GVPVAR/
C
      INTEGER J,LR,LR1,LR2,LRLINE
      DOUBLE PRECISION XU,YU
      LOGICAL INTSCT
C
C     EYE-V(CUR-1)-V(CUR) is a left turn, S(TOP) = V(CUR), TOP <= CUR,
C     S(TOP-1) = V(CUR-1) or on interior of edge V(CUR-1)-V(CUR).
C
   10 CONTINUE
      IF (CUR .EQ. NV) THEN
	 OPER = 7
	 RETURN
      ENDIF
      IF (.NOT. BEYE .AND. TOP .LE. 2) GO TO 20
C
C     Check if angular displacement of stack chain >= 2*PI or
C     interior angle at boundary viewpoint.
C
      CALL XEDGE(1,XE,YE,XC(NV),YC(NV),XC(TOP-1),YC(TOP-1),XC(TOP),
     $   YC(TOP),XU,YU,INTSCT)
      IF (INTSCT) THEN
	 OPER = 4
	 XW = XC(CUR)
	 YW = YC(CUR)
         LR = LRLINE(XC(TOP),YC(TOP),XE,YE,XC(NV),YC(NV),0.0D0)
	 IF (LR .EQ. -1) THEN
	    XC(TOP) = XU
	    YC(TOP) = YU
	    IVIS(TOP) = -CUR
	 ENDIF
	 RETURN
      ENDIF
C
C     Process next edge.
C
   20 CONTINUE
      LR = LRLINE(XC(CUR+1),YC(CUR+1),XE,YE,XC(CUR),YC(CUR),0.0D0)
      IF (LR .EQ. -1) THEN
	 CUR = CUR + 1
	 TOP = TOP + 1
	 XC(TOP) = XC(CUR)
	 YC(TOP) = YC(CUR)
	 IVIS(TOP) = CUR
      ELSE
	 J = CUR + 1
         LR1 = LRLINE(XC(J),YC(J),XC(TOP-1),YC(TOP-1),XC(CUR),YC(CUR),
     $      0.0D0)
	 IF (LR1 .EQ. 1) THEN
	    OPER = 3
	    CUR = J
	 ELSE
	    IF (LR .EQ. 1) THEN
	       LR2 = 1
	       GO TO 40
	    ENDIF
   30       CONTINUE
	       J = J + 1
	       LR2 = LRLINE(XC(J),YC(J),XE,YE,XC(CUR),YC(CUR),0.0D0)
	    IF (LR2 .EQ. 0) GO TO 30
   40       CONTINUE
	    IF (LR2 .EQ. -1) THEN
	       TOP = TOP + 1
	       XC(TOP) = XC(J-1)
	       YC(TOP) = YC(J-1)
	       IVIS(TOP) = J - 1 + NV
	       TOP = TOP + 1
	       XC(TOP) = XC(J)
	       YC(TOP) = YC(J)
	       IVIS(TOP) = J
	    ELSE
	       OPER = 2
	    ENDIF
	    CUR = J
	 ENDIF
      ENDIF
C
C     This test avoids extra subroutine calls.
C
      IF (OPER .EQ. 1) GO TO 10
      END
C
C     The following code was excerpted from: vprght.f
C
      SUBROUTINE VPRGHT(XC,YC,IVIS)
      IMPLICIT LOGICAL (A-Z)
      INTEGER IVIS(0:*)
      DOUBLE PRECISION XC(0:*),YC(0:*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: This routine is called by routine VISPOL for the RIGHT
C        operation (OPER = 2).
C
C     Input and updated parameters:
C        XC,YC,IVIS - see comments in routine VISPOL
C
C     Abnormal return:
C        IERR is set to 206
C
C     Routines called:
C        LRLINE, XEDGE
C
      INTEGER CUR,IERR,NV,OPER,TOP
      DOUBLE PRECISION XE,XW,YE,YW
      LOGICAL BEYE
      COMMON /GERROR/ IERR
      COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
      SAVE /GERROR/,/GVPVAR/
C
      INTEGER CASE,J,LR,LR1,LR2,LRLINE
      DOUBLE PRECISION XU,YU
      LOGICAL INTSCT
C
C     EYE-V(CUR-1)-V(CUR) is a right turn, EYE-S(TOP)-V(CUR) is a right
C     turn, EYE-S(TOP-1)-S(TOP) is a left turn, TOP < CUR, S(TOP) =
C     V(CUR-1) and S(TOP-1)-S(TOP)-V(CUR) is a left turn or S(TOP) is
C     not on edge V(CUR-1)-V(CUR) and V(CUR-1)-V(CUR) intersects
C     EYE-S(TOP).
C     Pop points from stack. If BEYE, it is not possible for
C     (XC(CUR),YC(CUR)) to be identical to any stack points.
C
   10 CONTINUE
      CASE = 0
      J = TOP
   20 CONTINUE
	 IF (ABS(IVIS(J)) .LE. NV) THEN
	    LR = LRLINE(XC(CUR),YC(CUR),XE,YE,XC(J-1),YC(J-1),0.0D0)
	    IF (LR .EQ. -1) THEN
	       CASE = 1
	    ELSE IF (LR .EQ. 0) THEN
	       IF (ABS(IVIS(J-1)) .LE. NV) THEN
		  J = J - 1
		  CASE = 2
	       ELSE IF ((XC(J-2) - XE)**2 + (YC(J-2) - YE)**2 .GE.
     $            (XC(J-1) - XE)**2 + (YC(J-1) - YE)**2) THEN
		  J = J - 2
		  CASE = 2
	       ELSE
		  CASE = -1
	       ENDIF
	    ENDIF
	 ELSE IF (CASE .EQ. -1) THEN
	    IF ((XC(J-1) - XE)**2 + (YC(J-1) - YE)**2 .GE.
     $         (XC(CUR) - XE)**2 + (YC(CUR) - YE)**2) THEN
	       J = J - 1
	       CASE = 2
	    ELSE
	       XW = XC(CUR)
	       YW = YC(CUR)
	       CASE = 3
	    ENDIF
	 ELSE
	    CALL XEDGE(0,XC(CUR-1),YC(CUR-1),XC(CUR),YC(CUR),
     $         XC(J-1),YC(J-1),XC(J),YC(J),XW,YW,INTSCT)
	    IF (INTSCT) CASE = 3
	 ENDIF
	 IF (CASE .GT. 0) GO TO 30
	 J = J - 1
      IF (J .GE. 1) GO TO 20
C
C     Error from no more edges in stack.
C
      IERR = 206
      RETURN
C
C     Process next edge.
C
   30 CONTINUE
      IF (CASE .EQ. 3) THEN
	 OPER = 6
	 TOP = J - 1
      ELSE
	 TOP = J
	 XW = XC(CUR-1)
	 YW = YC(CUR-1)
	 IF (CASE .EQ. 1) THEN
	    CALL XEDGE(1,XE,YE,XC(CUR),YC(CUR),XC(TOP-1),YC(TOP-1),
     $         XC(TOP),YC(TOP),XU,YU,INTSCT)
	    XC(TOP) = XU
	    YC(TOP) = YU
	    IVIS(TOP) = -ABS(IVIS(TOP))
	 ENDIF
	 LR = LRLINE(XC(CUR+1),YC(CUR+1),XE,YE,XC(CUR),YC(CUR),0.0D0)
	 IF (LR .EQ. 1) THEN
	    CUR = CUR + 1
	 ELSE
	    J = CUR + 1
	    LR1 = LRLINE(XC(J),YC(J),XW,YW,XC(CUR),YC(CUR),0.0D0)
	    IF (LR1 .EQ. -1) THEN
	       OPER = 5
	       CUR = J
	    ELSE
	       IF (LR .EQ. -1) THEN
		  LR2 = -1
		  GO TO 50
	       ENDIF
   40          CONTINUE
		  J = J + 1
		  LR2 = LRLINE(XC(J),YC(J),XE,YE,XC(CUR),YC(CUR),0.0D0)
	       IF (LR2 .EQ. 0) GO TO 40
   50          CONTINUE
	       IF (LR2 .EQ. -1) THEN
	          OPER = 1
	          TOP = TOP + 1
	          XC(TOP) = XC(J-1)
	          YC(TOP) = YC(J-1)
	          IVIS(TOP) = J - 1 + NV
	          TOP = TOP + 1
	          XC(TOP) = XC(J)
	          YC(TOP) = YC(J)
	          IVIS(TOP) = J
	       ENDIF
	       CUR = J
	    ENDIF
	 ENDIF
      ENDIF
C
C     This test avoids extra subroutine calls.
C
      IF (OPER .EQ. 2) GO TO 10
      END
C
C     The following code was excerpted from: vpscna.f
C
      SUBROUTINE VPSCNA(XC,YC,IVIS)
      IMPLICIT LOGICAL (A-Z)
      INTEGER IVIS(0:*)
      DOUBLE PRECISION XC(0:*),YC(0:*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: This routine is called by routine VISPOL for the SCANA
C        operation (OPER = 3).
C
C     Input and updated parameters:
C        XC,YC,IVIS - see comments in routine VISPOL
C
C     Abnormal return:
C        IERR is set to 207
C
C     Routines called:
C        LRLINE, XEDGE
C
      INTEGER CUR,IERR,NV,OPER,TOP
      DOUBLE PRECISION XE,XW,YE,YW
      LOGICAL BEYE
      COMMON /GERROR/ IERR
      COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
      SAVE /GERROR/,/GVPVAR/
C
      INTEGER CASE,J,K,LR,LR1,LR2,LR3,LRLINE
      LOGICAL INTSCT
C
C     EYE-V(CUR-1)-V(CUR) is a right turn or forward move, S(TOP) =
C     V(CUR-1) or EYE-S(TOP)-V(CUR-1) is a forward move and TOP = 0,
C     TOP < CUR; S(TOP-1)-S(TOP)-V(CUR) is a right turn if TOP >= 1
C     or EYE-S(TOP)-V(CUR) is a right turn if TOP = 0.
C     If BEYE, it is possible that (XC(TOP),YC(TOP)) is a non-simple
C     vertex but any edge incident on this vertex encountered during
C     scan must be invisible from (XE,YE).
C
      K = CUR
   10 CONTINUE
	 IF (XC(K+1) .EQ. XC(TOP) .AND. YC(K+1) .EQ. YC(TOP)) THEN
	    K = K + 2
	 ELSE
	    CALL XEDGE(1,XE,YE,XC(TOP),YC(TOP),XC(K),YC(K),XC(K+1),
     $         YC(K+1),XW,YW,INTSCT)
	    IF (INTSCT) THEN
	       LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(K),YC(K),0.0D0)
	       IF (LR .EQ. 1) THEN
		  IF ((XC(TOP) - XE)**2 + (YC(TOP) - YE)**2 .GE.
     $               (XW - XE)**2 + (YW - YE)**2) THEN
		     IF (TOP .GT. 0) THEN
		        CASE = 1
			GO TO 20
		     ENDIF
		  ELSE
	             LR1 = LRLINE(XC(K),YC(K),XE,YE,XC(TOP),YC(TOP),
     $                  0.0D0)
		     IF (LR1 .EQ. -1) THEN
		        CASE = 2
		        GO TO 20
		     ENDIF
		  ENDIF
	       ELSE
	          LR1 = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(TOP),YC(TOP),
     $               0.0D0)
		  IF (LR1 .EQ. -1) THEN
		     CASE = 3
		     GO TO 20
		  ENDIF
	       ENDIF
	    ENDIF
	    K = K + 1
	 ENDIF
      IF (K .LT. NV) GO TO 10
C
C     Error from unsuccessful scan.
C
      IERR = 207
      RETURN
C
C     Process current edge.
C
   20 CONTINUE
      IF (CASE .EQ. 3) THEN
	 OPER = 1
	 CUR = K + 1
	 LR = LRLINE(XC(K),YC(K),XE,YE,XC(TOP),YC(TOP),0.0D0)
	 TOP = TOP + 1
	 IF (LR .EQ. 0) THEN
	    XC(TOP) = XC(K)
	    YC(TOP) = YC(K)
	    IVIS(TOP) = K + NV
	 ELSE
	    XC(TOP) = XW
	    YC(TOP) = YW
	    IVIS(TOP) = -(K + 1 + NV)
	 ENDIF
	 TOP = TOP + 1
	 XC(TOP) = XC(CUR)
	 YC(TOP) = YC(CUR)
	 IVIS(TOP) = CUR
      ELSE IF (CASE .EQ. 1) THEN
	 CUR = K + 1
	 LR = LRLINE(XC(CUR),YC(CUR),XE,YE,XC(TOP),YC(TOP),0.0D0)
	 IF (LR .EQ. 1) THEN
	    OPER = 2
	 ELSE
	    J = CUR + 1
	    LR1 = LRLINE(XC(J),YC(J),XE,YE,XC(CUR),YC(CUR),0.0D0)
	    LR2 = LRLINE(XC(J),YC(J),XC(K),YC(K),XC(CUR),YC(CUR),0.0D0)
	    IF (LR1 .LE. 0 .AND. LR2 .EQ. -1) THEN
	       OPER = 5
	       XW = XC(K)
	       YW = YC(K)
	       CUR = J
	    ELSE
	       IF (LR1 .NE. 0) THEN
		  LR3 = LR1
		  GO TO 40
	       ENDIF
   30          CONTINUE
		  J = J + 1
		  LR3 = LRLINE(XC(J),YC(J),XE,YE,XC(CUR),YC(CUR),0.0D0)
	       IF (LR3 .EQ. 0) GO TO 30
   40          CONTINUE
	       IF (LR3 .EQ. 1) THEN
		  OPER = 2
	       ELSE
		  OPER = 1
		  TOP = TOP + 1
		  XC(TOP) = XC(J-1)
		  YC(TOP) = YC(J-1)
		  IVIS(TOP) = J - 1 + NV
		  TOP = TOP + 1
		  XC(TOP) = XC(J)
		  YC(TOP) = YC(J)
		  IVIS(TOP) = J
	       ENDIF
	       CUR = J
	    ENDIF
	 ENDIF
      ELSE
	 OPER = 6
	 CUR = K + 1
	 LR = LRLINE(XC(CUR),YC(CUR),XE,YE,XC(TOP),YC(TOP),0.0D0)
	 IF (LR .EQ. 0) THEN
	    XW = XC(CUR)
	    YW = YC(CUR)
	 ENDIF
      ENDIF
      END
C
C     The following code was excerpted from: vpscnb.f
C
      SUBROUTINE VPSCNB(XC,YC,IVIS)
      IMPLICIT LOGICAL (A-Z)
      INTEGER IVIS(0:*)
      DOUBLE PRECISION XC(0:*),YC(0:*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: This routine is called by routine VISPOL for the SCANB
C        operation (OPER = 4).
C
C     Input and updated parameters:
C        XC,YC,IVIS - see comments in routine VISPOL
C
C     Abnormal return:
C        IERR is set to 208
C
C     Routines called:
C        LRLINE, XEDGE
C
      INTEGER CUR,IERR,NV,OPER,TOP
      DOUBLE PRECISION PI,TOL,XE,XW,YE,YW
      LOGICAL BEYE
      COMMON /GERROR/ IERR
      COMMON /GCONST/ PI,TOL
      COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
      SAVE /GERROR/,/GCONST/,/GVPVAR/
C
      INTEGER K,LR,LR1,LRLINE
      DOUBLE PRECISION TOLABS,XU,YU
      LOGICAL INTSCT
C
C     EYE-V(CUR-1)-V(CUR) is a left turn, S(TOP) = V(CUR) or S(TOP) is
C     on interior of edge V(CUR-1)-V(CUR), TOP <= CUR, S(TOP) has
C     angular displacement of 2*PI or interior angle at boundary eye.
C     (XW,YW) is the input version of (XC(CUR),YC(CUR)).
C     If BEYE, it is possible that (XC(TOP),YC(TOP)) is a non-simple
C     point but any edge containing this point encountered during scan
C     must be invisible from (XE,YE), except for 1 case where K = CUR.
C
      TOLABS = TOL*((XC(NV) - XC(TOP))**2 + (YC(NV) - YC(TOP))**2)
      K = CUR
      IF (IVIS(TOP) .LT. 0 .OR. K + 1 .EQ. NV) GO TO 10
      LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(TOP),YC(TOP),0.0D0)
      LR1 = LRLINE(XC(K+1),YC(K+1),XC(TOP-1),YC(TOP-1),XC(TOP),YC(TOP),
     $   0.0D0)
      IF (LR .EQ. 1 .AND. LR1 .EQ. -1) THEN
	 OPER = 2
	 CUR = K + 1
	 RETURN
      ELSE
	 K = K + 1
      ENDIF
C
   10 CONTINUE
	 IF (K + 1 .EQ. NV) THEN
	    OPER = 7
	    CUR = NV
	    TOP = TOP + 1
	    XC(TOP) = XC(NV)
	    YC(TOP) = YC(NV)
	    IVIS(TOP) = NV
	    RETURN
	 ELSE
	    IF (K .EQ. CUR) THEN
	       CALL XEDGE(0,XC(NV),YC(NV),XC(TOP),YC(TOP),XW,YW,
     $            XC(K+1),YC(K+1),XU,YU,INTSCT)
	    ELSE
	       CALL XEDGE(0,XC(NV),YC(NV),XC(TOP),YC(TOP),XC(K),YC(K),
     $            XC(K+1),YC(K+1),XU,YU,INTSCT)
	    ENDIF
	    IF (INTSCT) THEN
	       IF ((XC(TOP) - XU)**2 + (YC(TOP) - YU)**2 .LE. TOLABS)
     $            GO TO 20
	       LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(NV),YC(NV),0.0D0)
	       IF (LR .EQ. 1) THEN
		  OPER = 2
		  CUR = K + 1
		  RETURN
	       ENDIF
	    ENDIF
   20       CONTINUE
	    K = K + 1
	 ENDIF
      IF (K .LT. NV) GO TO 10
C
C     Error from unsuccessful scan.
C
      IERR = 208
      END
C
C     The following code was excerpted from: vpscnc.f
C
      SUBROUTINE VPSCNC(XC,YC,IVIS)
      IMPLICIT LOGICAL (A-Z)
      INTEGER IVIS(0:*)
      DOUBLE PRECISION XC(0:*),YC(0:*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: This routine is called by routine VISPOL for the SCANC
C        operation (OPER = 5).
C
C     Input and updated parameters:
C        XC,YC,IVIS - see comments in routine VISPOL
C
C     Abnormal return:
C        IERR is set to 209
C
C     Routines called:
C        LRLINE, XEDGE
C
      INTEGER CUR,IERR,NV,OPER,TOP
      DOUBLE PRECISION XE,XW,YE,YW
      LOGICAL BEYE
      COMMON /GERROR/ IERR
      COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
      SAVE /GERROR/,/GVPVAR/
C
      INTEGER J,K,LR,LR1,LR2,LRLINE
      DOUBLE PRECISION XP,XU,YP,YU
      LOGICAL INTSCT
C
C     EYE-V(CUR-1)-V(CUR) is a left turn or forward move, EYE-V(CUR-2)-
C     V(CUR-1) is a right turn, V(CUR-2)-V(CUR-1)-V(CUR) is a left turn,
C     TOP < CUR-1, W = V(CUR-2), S(TOP) is not on V(CUR-1)-V(CUR), EYE-
C     S(TOP)-V(CUR-1) is a backward move, EYE-S(TOP-1)-S(TOP) is a left
C     turn. If BEYE, it is possible that V(CUR-1) is a non-simple point,
C     but intersection at (XC(TOP),YC(TOP)) cannot occur.
C
      XP = XC(CUR-1)
      YP = YC(CUR-1)
      K = CUR
   10 CONTINUE
	 IF (XC(K+1) .EQ. XP .AND. YC(K+1) .EQ. YP) THEN
	    GO TO 40
	 ELSE IF (XC(K) .EQ. XP .AND. YC(K) .EQ. YP) THEN
	    J = K + 1
	    LR = LRLINE(XC(J),YC(J),XE,YE,XP,YP,0.0D0)
	    LR1 = LRLINE(XC(J),YC(J),XW,YW,XP,YP,0.0D0)
	    IF (LR .LE. 0 .AND. LR1 .EQ. -1) GO TO 40
	    IF (LR .NE. 0) THEN
	       LR2 = LR
	       GO TO 30
	    ENDIF
   20       CONTINUE
	       J = J + 1
	       LR2 = LRLINE(XC(J),YC(J),XE,YE,XP,YP,0.0D0)
	    IF (LR2 .EQ. 0) GO TO 20
   30       CONTINUE
	    IF (LR2 .EQ. 1) THEN
	       OPER = 2
	    ELSE
	       OPER = 1
	       TOP = TOP + 1
	       XC(TOP) = XC(J-1)
	       YC(TOP) = YC(J-1)
	       IVIS(TOP) = J - 1 + NV
	       TOP = TOP + 1
	       XC(TOP) = XC(J)
	       YC(TOP) = YC(J)
	       IVIS(TOP) = J
	    ENDIF
	    CUR = J
	    RETURN
	 ELSE
	    CALL XEDGE(0,XP,YP,XC(TOP),YC(TOP),XC(K),YC(K),XC(K+1),
     $         YC(K+1),XU,YU,INTSCT)
	    IF (INTSCT) THEN
	       LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XP,YP,0.0D0)
	       IF (LR .EQ. 1) THEN
		  OPER = 2
		  CUR = K + 1
		  RETURN
	       ENDIF
	    ENDIF
	 ENDIF
   40    CONTINUE
	 K = K + 1
      IF (K .LT. NV) GO TO 10
C
C     Error from unsuccessful scan.
C
      IERR = 209
      END
C
C     The following code was excerpted from: vpscnd.f
C
      SUBROUTINE VPSCND(XC,YC,IVIS)
      IMPLICIT LOGICAL (A-Z)
      INTEGER IVIS(0:*)
      DOUBLE PRECISION XC(0:*),YC(0:*)
C
C     Written and copyright by:
C        Barry Joe, Dept. of Computing Science, Univ. of Alberta
C        Edmonton, Alberta, Canada  T6G 2H1
C        Phone: (403) 492-5757      Email: barry@cs.ualberta.ca
C
C     Purpose: This routine is called by routine VISPOL for the SCAND
C        operation (OPER = 6).
C
C     Input and updated parameters:
C        XC,YC,IVIS - see comments in routine VISPOL
C
C     Abnormal return:
C        IERR is set to 210
C
C     Routines called:
C        LRLINE, XEDGE
C
      INTEGER CUR,IERR,NV,OPER,TOP
      DOUBLE PRECISION XE,XW,YE,YW
      LOGICAL BEYE
      COMMON /GERROR/ IERR
      COMMON /GVPVAR/ NV,OPER,CUR,TOP,XE,YE,XW,YW,BEYE
      SAVE /GERROR/,/GVPVAR/
C
      INTEGER K,LR,LR1,LR2,LRLINE
      DOUBLE PRECISION XP,XU,YP,YU
      LOGICAL INTSCT
C
C     EYE-V(CUR-1)-V(CUR) is a right turn, S(TOP) is a V vertex not on
C     V(CUR-1)-V(CUR), TOP < CUR, W is intersection of V(CUR-1)-V(CUR)
C     and ray EYE-S(TOP), EYE-S(TOP)-W is a forward move, and
C     EYE-S(TOP-1)-S(TOP) is a left turn if TOP >= 1.
C     If BEYE, it is possible that (XW,YW) is a non-simple point,
C     but intersection at (XC(TOP),YC(TOP)) cannot occur.
C
      XP = XC(CUR-1)
      YP = YC(CUR-1)
      K = CUR
   10 CONTINUE
	 CALL XEDGE(0,XW,YW,XC(TOP),YC(TOP),XC(K),YC(K),XC(K+1),
     $      YC(K+1),XU,YU,INTSCT)
	 IF (INTSCT) THEN
	    LR = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(K),YC(K),0.0D0)
	    LR1 = LRLINE(XC(K+1),YC(K+1),XE,YE,XC(TOP),YC(TOP),0.0D0)
	    IF (LR .EQ. -1 .AND. LR1 .EQ. -1) THEN
	       IF (XC(K) .NE. XW .OR. YC(K) .NE. YW) GO TO 20
	       LR2 = LRLINE(XC(K+1),YC(K+1),XP,YP,XW,YW,0.0D0)
	       IF (LR2 .EQ. -1) GO TO 30
   20          CONTINUE
	       OPER = 1
	       CUR = K + 1
	       LR2 = LRLINE(XC(K),YC(K),XE,YE,XC(TOP),YC(TOP),0.0D0)
	       TOP = TOP + 1
	       IF (LR2 .EQ. 0) THEN
		  XC(TOP) = XC(K)
		  YC(TOP) = YC(K)
		  IVIS(TOP) = K + NV
	       ELSE
		  XC(TOP) = XU
		  YC(TOP) = YU
		  IVIS(TOP) = -(K + 1 + NV)
	       ENDIF
	       TOP = TOP + 1
	       XC(TOP) = XC(CUR)
	       YC(TOP) = YC(CUR)
	       IVIS(TOP) = CUR
	       RETURN
	    ENDIF
	 ENDIF
   30    CONTINUE
	 K = K + 1
      IF (K .LT. NV) GO TO 10
C
C     Error from unsuccessful scan.
C
      IERR = 210
      END