1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// Copyright (c) 2020 Chris Richardson & Matthew Scroggs
// FEniCS Project
// SPDX-License-Identifier: MIT
#include "e-bubble.h"
#include "element-families.h"
#include "lattice.h"
#include "maps.h"
#include "polyset.h"
#include "quadrature.h"
#include "sobolev-spaces.h"
#include <array>
#include <vector>
using namespace basix;
//----------------------------------------------------------------------------
template <std::floating_point T>
FiniteElement<T> basix::element::create_bubble(cell::type celltype, int degree,
bool discontinuous)
{
if (discontinuous)
throw std::runtime_error("Cannot create a discontinuous bubble element.");
switch (celltype)
{
case cell::type::interval:
if (degree < 2)
throw std::runtime_error(
"Bubble element on an interval must have degree at least 2");
break;
case cell::type::triangle:
if (degree < 3)
throw std::runtime_error(
"Bubble element on a triangle must have degree at least 3");
break;
case cell::type::tetrahedron:
if (degree < 4)
throw std::runtime_error(
"Bubble element on a tetrahedron must have degree at least 4");
break;
case cell::type::quadrilateral:
if (degree < 2)
throw std::runtime_error("Bubble element on a quadrilateral interval "
"must have degree at least 2");
break;
case cell::type::hexahedron:
if (degree < 2)
throw std::runtime_error(
"Bubble element on a hexahedron must have degree at least 2");
break;
default:
throw std::runtime_error("Unsupported cell type");
}
const std::size_t tdim = cell::topological_dimension(celltype);
std::array<std::vector<impl::mdarray_t<T, 2>>, 4> x;
std::array<std::vector<impl::mdarray_t<T, 4>>, 4> M;
for (std::size_t i = 0; i < tdim; ++i)
{
const std::size_t num_ent = cell::num_sub_entities(celltype, i);
x[i] = std::vector(num_ent, impl::mdarray_t<T, 2>(0, tdim));
M[i] = std::vector(num_ent, impl::mdarray_t<T, 4>(0, 1, 0, 1));
}
// Evaluate the expansion polynomials at the quadrature points
const auto [_pts, wts] = quadrature::make_quadrature<T>(
quadrature::type::Default, celltype, polyset::type::standard, 2 * degree);
impl::mdspan_t<const T, 2> pts(_pts.data(), wts.size(),
_pts.size() / wts.size());
const auto [_phi, shape]
= polyset::tabulate(celltype, polyset::type::standard, degree, 0, pts);
impl::mdspan_t<const T, 3> phi(_phi.data(), shape);
// The number of order (degree) polynomials
const std::size_t psize = phi.extent(1);
// Create points at nodes on interior
std::size_t ndofs = 0;
{
const auto [points, pshape] = lattice::create<T>(
celltype, degree, lattice::type::equispaced, false);
ndofs = pshape[0];
x[tdim].emplace_back(pshape, points);
}
auto create_phi1 = [](auto& phi, auto& buffer)
{
buffer.resize(phi.extent(1) * phi.extent(2));
impl::mdspan_t<T, 2> phi1(buffer.data(), phi.extent(1), phi.extent(2));
for (std::size_t i = 0; i < phi1.extent(0); ++i)
for (std::size_t j = 0; j < phi1.extent(1); ++j)
phi1(i, j) = phi(0, i, j);
return phi1;
};
// Create coefficients for order (degree-1) vector polynomials
std::vector<T> phi1_buffer;
impl::mdspan_t<T, 2> phi1;
std::vector<T> bubble;
switch (celltype)
{
case cell::type::interval:
{
const auto [_phi1, shape] = polyset::tabulate(
celltype, polyset::type::standard, degree - 2, 0, pts);
impl::mdspan_t<const T, 3> p1(_phi1.data(), shape);
phi1 = create_phi1(p1, phi1_buffer);
for (std::size_t i = 0; i < pts.extent(0); ++i)
{
T x0 = pts(i, 0);
bubble.push_back(x0 * (1.0 - x0));
}
break;
}
case cell::type::triangle:
{
const auto [_phi1, shape] = polyset::tabulate(
celltype, polyset::type::standard, degree - 3, 0, pts);
impl::mdspan_t<const T, 3> p1(_phi1.data(), shape);
phi1 = create_phi1(p1, phi1_buffer);
for (std::size_t i = 0; i < pts.extent(0); ++i)
{
T x0 = pts(i, 0);
T x1 = pts(i, 1);
bubble.push_back(x0 * x1 * (1.0 - x0 - x1));
}
break;
}
case cell::type::tetrahedron:
{
const auto [_phi1, shape] = polyset::tabulate(
celltype, polyset::type::standard, degree - 4, 0, pts);
impl::mdspan_t<const T, 3> p1(_phi1.data(), shape);
phi1 = create_phi1(p1, phi1_buffer);
for (std::size_t i = 0; i < pts.extent(0); ++i)
{
T x0 = pts(i, 0);
T x1 = pts(i, 1);
T x2 = pts(i, 2);
bubble.push_back(x0 * x1 * x2 * (1 - x0 - x1 - x2));
}
break;
}
case cell::type::quadrilateral:
{
const auto [_phi1, shape] = polyset::tabulate(
celltype, polyset::type::standard, degree - 2, 0, pts);
impl::mdspan_t<const T, 3> p1(_phi1.data(), shape);
phi1 = create_phi1(p1, phi1_buffer);
for (std::size_t i = 0; i < pts.extent(0); ++i)
{
T x0 = pts(i, 0);
T x1 = pts(i, 1);
bubble.push_back(x0 * (1 - x0) * x1 * (1 - x1));
}
break;
}
case cell::type::hexahedron:
{
const auto [_phi1, shape] = polyset::tabulate(
celltype, polyset::type::standard, degree - 2, 0, pts);
impl::mdspan_t<const T, 3> p1(_phi1.data(), shape);
phi1 = create_phi1(p1, phi1_buffer);
for (std::size_t i = 0; i < pts.extent(0); ++i)
{
T x0 = pts(i, 0);
T x1 = pts(i, 1);
T x2 = pts(i, 2);
bubble.push_back(x0 * (1 - x0) * x1 * (1 - x1) * x2 * (1 - x2));
}
break;
}
default:
throw std::runtime_error("Unknown cell type.");
}
impl::mdarray_t<T, 2> wcoeffs(ndofs, psize);
for (std::size_t i = 0; i < phi1.extent(0); ++i)
for (std::size_t j = 0; j < psize; ++j)
for (std::size_t k = 0; k < wts.size(); ++k)
wcoeffs(i, j) += wts[k] * phi1(i, k) * bubble[k] * phi(0, j, k);
math::orthogonalise<T>(wcoeffs);
auto& _M = M[tdim].emplace_back(ndofs, 1, ndofs, 1);
for (std::size_t i = 0; i < _M.extent(0); ++i)
_M(i, 0, i, 0) = 1.0;
impl::mdspan_t<T, 2> wview(wcoeffs.data(), wcoeffs.extents());
sobolev::space space
= discontinuous ? sobolev::space::L2 : sobolev::space::H1;
return FiniteElement<T>(
element::family::bubble, celltype, polyset::type::standard, degree, {},
wview, impl::to_mdspan(x), impl::to_mdspan(M), 0, maps::type::identity,
space, discontinuous, -1, degree, element::lagrange_variant::unset,
element::dpc_variant::unset);
}
//-----------------------------------------------------------------------------
template FiniteElement<float> element::create_bubble(cell::type, int, bool);
template FiniteElement<double> element::create_bubble(cell::type, int, bool);
//-----------------------------------------------------------------------------
|