1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// Copyright (c) 2020-2025 Chris Richardson, Matthew Scroggs
// FEniCS Project
// SPDX-License-Identifier: MIT
#include "e-crouzeix-raviart.h"
#include "cell.h"
#include "element-families.h"
#include "maps.h"
#include "math.h"
#include "mdspan.hpp"
#include "quadrature.h"
#include "sobolev-spaces.h"
#include <array>
#include <vector>
using namespace basix;
//-----------------------------------------------------------------------------
template <std::floating_point T>
FiniteElement<T> basix::element::create_cr(cell::type celltype, int degree,
bool discontinuous)
{
if (degree != 1)
throw std::runtime_error("Degree must be 1 for Crouzeix-Raviart");
const std::size_t tdim = cell::topological_dimension(celltype);
if (tdim < 2)
{
throw std::runtime_error(
"topological dim must be 2 or 3 for Crouzeix-Raviart");
}
if (celltype != cell::type::triangle and celltype != cell::type::tetrahedron
and celltype != cell::type::quadrilateral
and celltype != cell::type::hexahedron)
{
throw std::runtime_error("Crouzeix-Raviart is only defined on triangles, "
"quadrilaterals, tetrahedra and hexahedra.");
}
const std::vector<std::vector<std::vector<int>>> topology
= cell::topology(celltype);
const std::vector<std::vector<int>>& facet_topology = topology[tdim - 1];
const std::size_t ndofs = facet_topology.size();
const auto [gdata, shape] = cell::geometry<T>(celltype);
impl::mdspan_t<const T, 2> geometry(gdata.data(), shape);
std::array<std::vector<impl::mdarray_t<T, 2>>, 4> x;
std::array<std::vector<impl::mdarray_t<T, 4>>, 4> M;
for (std::size_t i = 0; i < tdim - 1; ++i)
{
const std::size_t num_ent = topology[i].size();
x[i] = std::vector(num_ent, impl::mdarray_t<T, 2>(0, tdim));
M[i] = std::vector(num_ent, impl::mdarray_t<T, 4>(0, 1, 0, 1));
}
x[tdim - 1]
= std::vector(facet_topology.size(), impl::mdarray_t<T, 2>(1, tdim));
M[tdim - 1] = std::vector(
facet_topology.size(),
impl::mdarray_t<T, 4>(std::array<std::size_t, 4>{1, 1, 1, 1}, 1));
// Compute facet midpoints
for (std::size_t f = 0; f < facet_topology.size(); ++f)
{
const std::vector<int>& ft = facet_topology[f];
auto& _x = x[tdim - 1][f];
for (std::size_t i = 0; i < ft.size(); ++i)
{
for (std::size_t j = 0; j < geometry.extent(1); ++j)
_x(0, j) += geometry(ft[i], j) / ft.size();
}
}
x[tdim] = std::vector(topology[tdim].size(), impl::mdarray_t<T, 2>(0, tdim));
M[tdim]
= std::vector(topology[tdim].size(), impl::mdarray_t<T, 4>(0, 1, 0, 1));
std::array<std::vector<mdspan_t<const T, 2>>, 4> xview = impl::to_mdspan(x);
std::array<std::vector<mdspan_t<const T, 4>>, 4> Mview = impl::to_mdspan(M);
std::array<std::vector<std::vector<T>>, 4> xbuffer;
std::array<std::vector<std::vector<T>>, 4> Mbuffer;
if (discontinuous)
{
std::array<std::vector<std::array<std::size_t, 2>>, 4> xshape;
std::array<std::vector<std::array<std::size_t, 4>>, 4> Mshape;
std::tie(xbuffer, xshape, Mbuffer, Mshape)
= element::make_discontinuous(xview, Mview, tdim, 1);
xview = impl::to_mdspan(xbuffer, xshape);
Mview = impl::to_mdspan(Mbuffer, Mshape);
}
if (celltype == cell::type::triangle or celltype == cell::type::tetrahedron)
{
return FiniteElement<T>(
element::family::CR, celltype, polyset::type::standard, 1, {},
impl::mdspan_t<T, 2>(math::eye<T>(ndofs).data(), ndofs, ndofs), xview,
Mview, 0, maps::type::identity, sobolev::space::L2, discontinuous,
degree, degree, element::lagrange_variant::unset,
element::dpc_variant::unset);
}
else if (celltype == cell::type::quadrilateral)
{
const auto [_pts, wts] = quadrature::make_quadrature<T>(
quadrature::type::Default, cell::type::quadrilateral,
polyset::type::standard, 6);
impl::mdspan_t<const T, 2> pts(_pts.data(), wts.size(),
_pts.size() / wts.size());
const auto [_phi, shape] = polyset::tabulate(
cell::type::quadrilateral, polyset::type::standard, degree + 1, 0, pts);
impl::mdspan_t<const T, 3> phi(_phi.data(), shape);
impl::mdarray_t<T, 2> wcoeffs(ndofs, 9);
wcoeffs(0, 0) = 1;
wcoeffs(1, 1) = 1;
wcoeffs(2, 3) = 1;
for (int i = 2; i < 9; ++i)
{
if (i != 3)
{
wcoeffs(3, i) = 0.0;
for (std::size_t k = 0; k < wts.size(); ++k)
wcoeffs(3, i) += wts[k] * (pts(k, 0) + pts(k, 1))
* (pts(k, 0) - pts(k, 1)) * phi(0, i, k);
}
}
math::orthogonalise<T>(wcoeffs, 3);
return FiniteElement<T>(
element::family::CR, celltype, polyset::type::standard, 1, {}, wcoeffs,
xview, Mview, 0, maps::type::identity, sobolev::space::L2,
discontinuous, 0, degree + 1, element::lagrange_variant::unset,
element::dpc_variant::unset);
}
else if (celltype == cell::type::hexahedron)
{
const auto [_pts, wts] = quadrature::make_quadrature<T>(
quadrature::type::Default, cell::type::hexahedron,
polyset::type::standard, 6);
impl::mdspan_t<const T, 2> pts(_pts.data(), wts.size(),
_pts.size() / wts.size());
const auto [_phi, shape] = polyset::tabulate(
cell::type::hexahedron, polyset::type::standard, degree + 1, 0, pts);
impl::mdspan_t<const T, 3> phi(_phi.data(), shape);
impl::mdarray_t<T, 2> wcoeffs(ndofs, 27);
wcoeffs(0, 0) = 1;
wcoeffs(1, 1) = 1;
wcoeffs(2, 3) = 1;
wcoeffs(3, 9) = 1;
for (int i = 2; i < 27; ++i)
{
if (i != 3 and i != 9)
{
wcoeffs(4, i) = 0.0;
wcoeffs(5, i) = 0.0;
for (std::size_t k = 0; k < wts.size(); ++k)
{
wcoeffs(4, i) += wts[k] * (pts(k, 0) + pts(k, 1))
* (pts(k, 0) - pts(k, 1)) * phi(0, i, k);
wcoeffs(5, i) += wts[k] * (pts(k, 0) + pts(k, 2))
* (pts(k, 0) - pts(k, 2)) * phi(0, i, k);
}
}
}
math::orthogonalise<T>(wcoeffs, 4);
return FiniteElement<T>(
element::family::CR, celltype, polyset::type::standard, 1, {}, wcoeffs,
xview, Mview, 0, maps::type::identity, sobolev::space::L2,
discontinuous, 0, degree + 1, element::lagrange_variant::unset,
element::dpc_variant::unset);
}
else
{
throw std::runtime_error("Invalid cell type");
}
}
//-----------------------------------------------------------------------------
template FiniteElement<float> element::create_cr(cell::type, int, bool);
template FiniteElement<double> element::create_cr(cell::type, int, bool);
//-----------------------------------------------------------------------------
|