1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
|
// Copyright (c) 2020-2024 Chris Richardson, Matthew Scroggs and Garth . Wells
// FEniCS Project
// SPDX-License-Identifier: MIT
#pragma once
#include "cell.h"
#include "element-families.h"
#include "maps.h"
#include "mdspan.hpp"
#include "polyset.h"
#include "precompute.h"
#include "sobolev-spaces.h"
#include <array>
#include <concepts>
#include <cstdint>
#include <functional>
#include <map>
#include <numeric>
#include <span>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
/// Basix: FEniCS runtime basis evaluation library
namespace basix
{
namespace impl
{
template <typename T, std::size_t d>
using mdspan_t = md::mdspan<T, md::dextents<std::size_t, d>>;
template <typename T, std::size_t d>
using mdarray_t
= md::MDSPAN_IMPL_PROPOSED_NAMESPACE::mdarray<T,
md::dextents<std::size_t, d>>;
/// Create a container of cmdspan2_t objects from a container of
/// mdarray2_t objects
template <typename T>
std::array<std::vector<mdspan_t<const T, 2>>, 4>
to_mdspan(std::array<std::vector<mdarray_t<T, 2>>, 4>& x)
{
std::array<std::vector<mdspan_t<const T, 2>>, 4> x1;
for (std::size_t i = 0; i < x.size(); ++i)
for (std::size_t j = 0; j < x[i].size(); ++j)
x1[i].emplace_back(x[i][j].data(), x[i][j].extents());
return x1;
}
/// Create a container of cmdspan4_t objects from a container of
/// mdarray4_t objects
template <typename T>
std::array<std::vector<mdspan_t<const T, 4>>, 4>
to_mdspan(std::array<std::vector<mdarray_t<T, 4>>, 4>& M)
{
std::array<std::vector<mdspan_t<const T, 4>>, 4> M1;
for (std::size_t i = 0; i < M.size(); ++i)
for (std::size_t j = 0; j < M[i].size(); ++j)
M1[i].emplace_back(M[i][j].data(), M[i][j].extents());
return M1;
}
/// Create a container of cmdspan2_t objects from containers holding
/// data buffers and shapes
template <typename T>
std::array<std::vector<mdspan_t<const T, 2>>, 4>
to_mdspan(const std::array<std::vector<std::vector<T>>, 4>& x,
const std::array<std::vector<std::array<std::size_t, 2>>, 4>& shape)
{
std::array<std::vector<mdspan_t<const T, 2>>, 4> x1;
for (std::size_t i = 0; i < x.size(); ++i)
for (std::size_t j = 0; j < x[i].size(); ++j)
x1[i].push_back(mdspan_t<const T, 2>(x[i][j].data(), shape[i][j]));
return x1;
}
/// Create a container of cmdspan4_t objects from containers holding
/// data buffers and shapes
template <typename T>
std::array<std::vector<mdspan_t<const T, 4>>, 4>
to_mdspan(const std::array<std::vector<std::vector<T>>, 4>& M,
const std::array<std::vector<std::array<std::size_t, 4>>, 4>& shape)
{
std::array<std::vector<mdspan_t<const T, 4>>, 4> M1;
for (std::size_t i = 0; i < M.size(); ++i)
for (std::size_t j = 0; j < M[i].size(); ++j)
M1[i].push_back(mdspan_t<const T, 4>(M[i][j].data(), shape[i][j]));
return M1;
}
} // namespace impl
namespace element
{
/// Typedef for mdspan
template <typename T, std::size_t d>
using mdspan_t = impl::mdspan_t<T, d>;
/// Create a version of the interpolation points, interpolation
/// matrices and entity transformation that represent a discontinuous
/// version of the element. This discontinuous version will have the
/// same DOFs but they will all be associated with the interior of the
/// reference cell.
/// @param[in] x Interpolation points. Indices are (tdim, entity index,
/// point index, dim)
/// @param[in] M The interpolation matrices. Indices are (tdim, entity
/// index, dof, vs, point_index, derivative)
/// @param[in] tdim The topological dimension of the cell the element is
/// defined on
/// @param[in] value_size The value size of the element
/// @return (xdata, xshape, Mdata, Mshape), where the x and M data are
/// for a discontinuous version of the element (with the same shapes as
/// x and M)
template <std::floating_point T>
std::tuple<std::array<std::vector<std::vector<T>>, 4>,
std::array<std::vector<std::array<std::size_t, 2>>, 4>,
std::array<std::vector<std::vector<T>>, 4>,
std::array<std::vector<std::array<std::size_t, 4>>, 4>>
make_discontinuous(const std::array<std::vector<mdspan_t<const T, 2>>, 4>& x,
const std::array<std::vector<mdspan_t<const T, 4>>, 4>& M,
std::size_t tdim, std::size_t value_size);
} // namespace element
/// @brief A finite element.
///
/// The basis of a finite element is stored as a set of coefficients,
/// which are applied to the underlying expansion set for that cell
/// type, when tabulating.
template <std::floating_point F>
class FiniteElement
{
template <typename T, std::size_t d>
using mdspan_t = md::mdspan<T, md::dextents<std::size_t, d>>;
public:
/// Scalar type.
using scalar_type = F;
/// @brief Construct a finite element.
///
/// Initialising a finite element calculates the basis functions of
/// the finite element, in terms of the polynomial basis.
///
/// The below explanation uses Einstein notation.
///
/// The basis functions @f${\phi_i}@f$ of a finite element are represented
/// as a linear combination of polynomials @f$\{p_j\}@f$ in an underlying
/// polynomial basis that span the space of all d-dimensional polynomials up
/// to order @f$k \ (P_k^d)@f$:
/// \f[ \phi_i = c_{ij} p_j \f]
///
/// In some cases, the basis functions @f$\{\phi_i\}@f$ do not span the
/// full space @f$P_k@f$, in which case we denote space spanned by the
/// basis functions by @f$\{q_k\}@f$, which can be represented by:
/// @f[ q_i = b_{ij} p_j. @f]
/// This leads to
/// @f[ \phi_i = c^{\prime}_{ij} q_j = c^{\prime}_{ij} b_{jk} p_k, @f]
/// and in matrix form:
/// \f[
/// \phi = C^{\prime} B p
/// \f]
///
/// If the basis functions span the full space, then @f$ B @f$ is simply
/// the identity.
///
/// The basis functions @f$\phi_i@f$ are defined by a dual set of functionals
/// @f$\{f_i\}@f$. The basis functions are the functions in span{@f$q_k@f$}
/// such that
/// @f[ f_i(\phi_j) = \delta_{ij} @f]
/// and inserting the expression for @f$\phi_{j}@f$:
/// @f[ f_i(c^{\prime}_{jk}b_{kl}p_{l}) = c^{\prime}_{jk} b_{kl} f_i \left(
/// p_{l} \right) @f]
///
/// Defining a matrix D given by applying the functionals to each
/// polynomial @f$p_j@f$:
/// @f[ [D] = d_{ij},\mbox{ where } d_{ij} = f_i(p_j), @f]
/// we have:
/// @f[ C^{\prime} B D^{T} = I @f]
///
/// and
///
/// @f[ C^{\prime} = (B D^{T})^{-1}. @f]
///
/// Recalling that @f$C = C^{\prime} B@f$, where @f$C@f$ is the matrix
/// form of @f$c_{ij}@f$,
///
/// @f[ C = (B D^{T})^{-1} B @f]
///
/// This function takes the matrices @f$B@f$ (`wcoeffs`) and @f$D@f$ (`M`) as
/// inputs and will internally compute @f$C@f$.
///
/// The matrix @f$BD^{T}@f$ can be obtained from an element by using
/// dual_matrix(). The matrix @f$C@f$ can be obtained from an element
/// by using coefficient_matrix().
///
/// Example: Order 1 Lagrange elements on a triangle
/// ------------------------------------------------
/// On a triangle, the scalar expansion basis is:
/// @f[ p_0 = \sqrt{2}/2 \qquad
/// p_1 = \sqrt{3}(2x + y - 1) \qquad
/// p_2 = 3y - 1 @f]
/// These span the space @f$P_1@f$.
///
/// Lagrange order 1 elements span the space P_1, so in this example,
/// B (span_coeffs) is the identity matrix:
/// @f[ B = \begin{bmatrix}
/// 1 & 0 & 0 \\
/// 0 & 1 & 0 \\
/// 0 & 0 & 1 \end{bmatrix} @f]
///
/// The functionals defining the Lagrange order 1 space are point
/// evaluations at the three vertices of the triangle. The matrix D
/// (dual) given by applying these to p_0 to p_2 is:
/// @f[ \mbox{dual} = \begin{bmatrix}
/// \sqrt{2}/2 & -\sqrt{3} & -1 \\
/// \sqrt{2}/2 & \sqrt{3} & -1 \\
/// \sqrt{2}/2 & 0 & 2 \end{bmatrix} @f]
///
/// For this example, this function outputs the matrix:
/// @f[ C = \begin{bmatrix}
/// \sqrt{2}/3 & -\sqrt{3}/6 & -1/6 \\
/// \sqrt{2}/3 & \sqrt{3}/6 & -1/6 \\
/// \sqrt{2}/3 & 0 & 1/3 \end{bmatrix} @f]
/// The basis functions of the finite element can be obtained by applying
/// the matrix C to the vector @f$[p_0, p_1, p_2]@f$, giving:
/// @f[ \begin{bmatrix} 1 - x - y \\ x \\ y \end{bmatrix} @f]
///
/// Example: Order 1 Raviart-Thomas on a triangle
/// ---------------------------------------------
/// On a triangle, the 2D vector expansion basis is:
/// @f[ \begin{matrix}
/// p_0 & = & (\sqrt{2}/2, 0) \\
/// p_1 & = & (\sqrt{3}(2x + y - 1), 0) \\
/// p_2 & = & (3y - 1, 0) \\
/// p_3 & = & (0, \sqrt{2}/2) \\
/// p_4 & = & (0, \sqrt{3}(2x + y - 1)) \\
/// p_5 & = & (0, 3y - 1)
/// \end{matrix}
/// @f]
/// These span the space @f$ P_1^2 @f$.
///
/// Raviart-Thomas order 1 elements span a space smaller than @f$ P_1^2 @f$,
/// so B (span_coeffs) is not the identity. It is given by:
/// @f[ B = \begin{bmatrix}
/// 1 & 0 & 0 & 0 & 0 & 0 \\
/// 0 & 0 & 0 & 1 & 0 & 0 \\
/// 1/12 & \sqrt{6}/48 & -\sqrt{2}/48 & 1/12 & 0 & \sqrt{2}/24
/// \end{bmatrix}
/// @f]
/// Applying the matrix B to the vector @f$[p_0, p_1, ..., p_5]@f$ gives the
/// basis of the polynomial space for Raviart-Thomas:
/// @f[ \begin{bmatrix}
/// \sqrt{2}/2 & 0 \\
/// 0 & \sqrt{2}/2 \\
/// \sqrt{2}x/8 & \sqrt{2}y/8
/// \end{bmatrix} @f]
///
/// The functionals defining the Raviart-Thomas order 1 space are integral
/// of the normal components along each edge. The matrix D (dual) given
/// by applying these to @f$p_0@f$ to @f$p_5@f$ is:
/// @f[ D = \begin{bmatrix}
/// -\sqrt{2}/2 & -\sqrt{3}/2 & -1/2 & -\sqrt{2}/2 & -\sqrt{3}/2 & -1/2 \\
/// -\sqrt{2}/2 & \sqrt{3}/2 & -1/2 & 0 & 0 & 0 \\
/// 0 & 0 & 0 & \sqrt{2}/2 & 0 & -1
/// \end{bmatrix} @f]
///
/// In this example, this function outputs the matrix:
/// @f[ C = \begin{bmatrix}
/// -\sqrt{2}/2 & -\sqrt{3}/2 & -1/2 & -\sqrt{2}/2 & -\sqrt{3}/2 & -1/2 \\
/// -\sqrt{2}/2 & \sqrt{3}/2 & -1/2 & 0 & 0 & 0 \\
/// 0 & 0 & 0 & \sqrt{2}/2 & 0 & -1
/// \end{bmatrix} @f]
/// The basis functions of the finite element can be obtained by applying
/// the matrix C to the vector @f$[p_0, p_1, ..., p_5]@f$, giving:
/// @f[ \begin{bmatrix}
/// -x & -y \\
/// x - 1 & y \\
/// -x & 1 - y \end{bmatrix} @f]
///
/// @param[in] family The element family
/// @param[in] cell_type The cell type
/// @param[in] poly_type The polyset type
/// @param[in] degree The degree of the element
/// @param[in] interpolation_nderivs The number of derivatives that
/// need to be used during interpolation
/// @param[in] value_shape The value shape of the element
/// @param[in] wcoeffs Matrices for the kth value index containing the
/// expansion coefficients defining a polynomial basis spanning the
/// polynomial space for this element. Shape is (dim(finite element
/// polyset), dim(Legendre polynomials))
/// @param[in] x Interpolation points. Indices are (tdim, entity
/// index, point index, dim)
/// @param[in] M The interpolation matrices. Indices are (tdim, entity
/// index, dof, vs, point_index, derivative)
/// @param[in] map_type The type of map to be used to map values from
/// the reference to a cell
/// @param[in] sobolev_space The underlying Sobolev space for the
/// element
/// @param[in] discontinuous Indicates whether or not this is the
/// discontinuous version of the element
/// @param[in] embedded_subdegree The highest degree n such that
/// a Lagrange (or vector Lagrange) element of degree n is a subspace
/// of this element
/// @param[in] embedded_superdegree The highest degree n such that at least
/// one polynomial of degree n is included in this element's
/// polymonial set
/// @param[in] lvariant The Lagrange variant of the element
/// @param[in] dvariant The DPC variant of the element
/// @param[in] dof_ordering DOF reordering: a mapping from the
/// reference order to a new permuted order
FiniteElement(element::family family, cell::type cell_type,
polyset::type poly_type, int degree,
const std::vector<std::size_t>& value_shape,
mdspan_t<const F, 2> wcoeffs,
const std::array<std::vector<mdspan_t<const F, 2>>, 4>& x,
const std::array<std::vector<mdspan_t<const F, 4>>, 4>& M,
int interpolation_nderivs, maps::type map_type,
sobolev::space sobolev_space, bool discontinuous,
int embedded_subdegree, int embedded_superdegree,
element::lagrange_variant lvariant,
element::dpc_variant dvariant,
std::vector<int> dof_ordering = {});
/// Copy constructor
FiniteElement(const FiniteElement& element) = default;
/// Move constructor
FiniteElement(FiniteElement&& element) = default;
/// Destructor
~FiniteElement() = default;
/// Assignment operator
FiniteElement& operator=(const FiniteElement& element) = default;
/// Move assignment operator
FiniteElement& operator=(FiniteElement&& element) = default;
/// @brief Check if two elements are the same
/// @note This operator compares the element properties, e.g. family,
/// degree, etc, and not computed numerical data
/// @return True if elements are the same
bool operator==(const FiniteElement& e) const;
/// Get a unique hash of this element
std::size_t hash() const;
/// @brief Array shape for tabulate basis values and derivatives at
/// set of points.
///
/// @param[in] nd The order of derivatives, up to and including, to
/// compute. Use 0 for the basis functions only.
/// @param[in] num_points Number of points that basis will be computed
/// at.
/// @return The shape of the array to will filled when passed to
/// tabulate().
std::array<std::size_t, 4> tabulate_shape(std::size_t nd,
std::size_t num_points) const
{
std::size_t ndsize = 1;
for (std::size_t i = 1; i <= nd; ++i)
ndsize *= (_cell_tdim + i);
for (std::size_t i = 1; i <= nd; ++i)
ndsize /= i;
std::size_t vs = std::accumulate(_value_shape.begin(), _value_shape.end(),
1, std::multiplies{});
std::size_t ndofs = _coeffs.second[0];
return {ndsize, num_points, ndofs, vs};
}
/// @brief Compute basis values and derivatives at set of points.
///
/// @note The version of tabulate() with the basis data as an out
/// argument should be preferred for repeated call where performance
/// is critical.
///
/// @param[in] nd The order of derivatives, up to and including, to
/// compute. Use 0 for the basis functions only.
/// @param[in] x The points at which to compute the basis functions.
/// The shape of x is (number of points, geometric dimension).
/// @return The basis functions (and derivatives). The shape is
/// (derivative, point, basis fn index, value index).
/// - The first index is the derivative, with higher derivatives are
/// stored in triangular (2D) or tetrahedral (3D) ordering, ie for
/// the (x,y) derivatives in 2D: (0,0), (1,0), (0,1), (2,0), (1,1),
/// (0,2), (3,0)... The function basix::indexing::idx can be used to find the
/// appropriate derivative.
/// - The second index is the point index
/// - The third index is the basis function index
/// - The fourth index is the basis function component. Its has size
/// one for scalar basis functions.
std::pair<std::vector<F>, std::array<std::size_t, 4>>
tabulate(int nd, impl::mdspan_t<const F, 2> x) const;
/// @brief Compute basis values and derivatives at set of points.
///
/// @note The version of tabulate() with the basis data as an out
/// argument should be preferred for repeated call where performance
/// is critical
///
/// @param[in] nd The order of derivatives, up to and including, to
/// compute. Use 0 for the basis functions only.
/// @param[in] x The points at which to compute the basis functions
/// (row-major storage).
/// @param[in] shape The shape `(number of points, geometric
/// dimension)` of the `x` array.
/// @return The basis functions (and derivatives). The shape is
/// (derivative, point, basis fn index, value index).
/// - The first index is the derivative, with higher derivatives are
/// stored in triangular (2D) or tetrahedral (3D) ordering, ie for
/// the (x,y) derivatives in 2D: (0,0), (1,0), (0,1), (2,0), (1,1),
/// (0,2), (3,0)... The function indexing::idx can be used to find the
/// appropriate derivative.
/// - The second index is the point index
/// - The third index is the basis function index
/// - The fourth index is the basis function component. Its has size
/// one for scalar basis functions.
std::pair<std::vector<F>, std::array<std::size_t, 4>>
tabulate(int nd, std::span<const F> x,
std::array<std::size_t, 2> shape) const;
/// @brief Compute basis values and derivatives at set of points.
///
/// @note This function is designed to be called at runtime, so its
/// performance is critical.
///
/// @param[in] nd The order of derivatives, up to and including, to
/// compute. Use 0 for the basis functions only.
/// @param[in] x The points at which to compute the basis functions.
/// The shape of x is (number of points, geometric dimension).
/// @param [out] basis Memory location to fill. It must be allocated
/// with shape `(num_derivatives, num_points, num basis functions,
/// value_size)`. The function tabulate_shape() can be used to get the
/// required shape.
/// - The first index is the derivative, with higher derivatives are
/// stored in triangular (2D) or tetrahedral (3D) ordering, ie for
/// the (x,y) derivatives in 2D: (0,0), (1,0), (0,1), (2,0), (1,1),
/// (0,2), (3,0)... The function indexing::idx can be used to
/// find the appropriate derivative.
/// - The second index is the point index
/// - The third index is the basis function index
/// - The fourth index is the basis function component. Its has size
/// one for scalar basis functions.
///
/// @todo Remove all internal dynamic memory allocation, pass scratch
/// space as required
void tabulate(int nd, impl::mdspan_t<const F, 2> x,
mdspan_t<F, 4> basis) const;
/// @brief Compute basis values and derivatives at set of points.
///
/// @note This function is designed to be called at runtime, so its
/// performance is critical.
///
/// @param[in] nd The order of derivatives, up to and including, to
/// compute. Use 0 for the basis functions only.
/// @param[in] x The points at which to compute the basis functions
/// (row-major storage). The shape of `x` is `(number of points,
/// geometric dimension)`.
/// @param[in] xshape The shape `(number of points, geometric
/// dimension)` of `x`.
/// @param [out] basis Memory location to fill. It must be allocated
/// with shape `(num_derivatives, num_points, num basis functions,
/// value_size)`. The function tabulate_shape() can be used to get the
/// required shape.
/// - The first index is the derivative, with higher derivatives are
/// stored in triangular (2D) or tetrahedral (3D) ordering, ie for the
/// (x,y) derivatives in 2D: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2),
/// (3,0)... The function indexing::idx can be used to find the
/// appropriate derivative.
/// - The second index is the point index
/// - The third index is the basis function index
/// - The fourth index is the basis function component. Its has size
/// one for scalar basis functions.
void tabulate(int nd, std::span<const F> x, std::array<std::size_t, 2> xshape,
std::span<F> basis) const;
/// @brief Get the element cell type.
/// @return The cell type
cell::type cell_type() const { return _cell_type; }
/// @brief Get the element polyset type.
/// @return The polyset
polyset::type polyset_type() const { return _poly_type; }
/// @brief Get the element polynomial degree.
/// @return Polynomial degree
int degree() const { return _degree; }
/// @brief Lowest degree `n` such that the highest degree polynomial in this
/// element is contained in a Lagrange (or vector Lagrange) element of
/// degree `n`.
/// @return Polynomial degree
int embedded_superdegree() const { return _embedded_superdegree; }
/// @brief Highest degree `n` such that a Lagrange (or vector Lagrange)
/// element of degree n is a subspace of this element.
/// @return Polynomial degree
int embedded_subdegree() const { return _embedded_subdegree; }
/// @brief Element value tensor shape.
///
/// For example, returns `{}` for scalars, `{3}` for vectors in 3D,
/// `{2, 2}` for a rank-2 tensor in 2D.
/// @return Value shape
const std::vector<std::size_t>& value_shape() const { return _value_shape; }
/// @brief Dimension of the finite element space.
///
/// The dimension is the number of degrees-of-freedom for the element.
/// @return Number of degrees of freedom
int dim() const { return _coeffs.second[0]; }
/// @brief The finite element family.
/// @return The family
element::family family() const { return _family; }
/// @brief Lagrange variant of the element.
/// @return The Lagrange variant.
element::lagrange_variant lagrange_variant() const
{
return _lagrange_variant;
}
/// @brief DPC variant of the element.
/// @return The DPC variant.
element::dpc_variant dpc_variant() const { return _dpc_variant; }
/// @brief Map type for the element.
/// @return The map type.
maps::type map_type() const { return _map_type; }
/// @brief Underlying Sobolev space for this element.
/// @return The Sobolev space.
sobolev::space sobolev_space() const { return _sobolev_space; }
/// @brief Indicates whether this element is the discontinuous
/// variant.
/// @return True if this element is a discontinuous version of the
/// element.
bool discontinuous() const { return _discontinuous; }
/// @brief Indicates if the degree-of-freedom transformations are all
/// permutations.
bool dof_transformations_are_permutations() const
{
return _dof_transformations_are_permutations;
}
/// @brief Indicates is the dof transformations are all the identity.
bool dof_transformations_are_identity() const
{
return _dof_transformations_are_identity;
}
/// @brief Map function values from the reference to a physical cell.
///
/// This function can perform the mapping for multiple points, grouped
/// by points that share a common Jacobian.
/// @param[in] U The function values on the reference. The indices are
/// `[Jacobian index, point index, components]`.
/// @param[in] J The Jacobian of the mapping. The indices are
/// `[Jacobian index, J_i, J_j]`.
/// @param[in] detJ The determinant of the Jacobian of the mapping. It
/// has length `J.shape(0)`
/// @param[in] K The inverse of the Jacobian of the mapping. The
/// indices are `[Jacobian index, K_i, K_j]`.
/// @return The function values on the cell. The indices are [Jacobian
/// index, point index, components].
std::pair<std::vector<F>, std::array<std::size_t, 3>>
push_forward(impl::mdspan_t<const F, 3> U, impl::mdspan_t<const F, 3> J,
std::span<const F> detJ, impl::mdspan_t<const F, 3> K) const;
/// @brief Map function values from a physical cell to the reference.
/// @param[in] u The function values on the cell
/// @param[in] J The Jacobian of the mapping
/// @param[in] detJ The determinant of the Jacobian of the mapping
/// @param[in] K The inverse of the Jacobian of the mapping
/// @return The function values on the reference. The indices are
/// [Jacobian index, point index, components].
std::pair<std::vector<F>, std::array<std::size_t, 3>>
pull_back(impl::mdspan_t<const F, 3> u, impl::mdspan_t<const F, 3> J,
std::span<const F> detJ, impl::mdspan_t<const F, 3> K) const;
/// @brief Return a function that performs the appropriate
/// push-forward/pull-back for the element type.
///
/// @tparam O The type that hold the (computed) mapped data (ndim==2)
/// @tparam P The type that hold the data to be mapped (ndim==2)
/// @tparam Q The type that holds the Jacobian (or inverse) matrix (ndim==2)
/// @tparam R The type that holds the inverse of the `Q` data
/// (ndim==2)
///
/// @return A function that for a push-forward takes arguments
/// - `u` [out] The data on the physical cell after the
/// push-forward flattened with row-major layout, shape=(num_points,
/// value_size)
/// - `U` [in] The data on the reference cell physical field to push
/// forward, flattened with row-major layout, shape=(num_points,
/// ref_value_size)
/// - `J` [in] The Jacobian matrix of the map ,shape=(gdim, tdim)
/// - `detJ` [in] det(J)
/// - `K` [in] The inverse of the Jacobian matrix, shape=(tdim, gdim)
///
/// For a pull-back the arguments should be:
/// - `U` [out] The data on the reference cell after the pull-back,
/// flattened with row-major layout, shape=(num_points, ref
/// value_size)
/// - `u` [in] The data on the physical cell that should be pulled
/// back , flattened with row-major layout, shape=(num_points,
/// value_size)
/// - `K` [in] The inverse of the Jacobian matrix of the map
/// ,shape=(tdim, gdim)
/// - `detJ_inv` [in] 1/det(J)
/// - `J` [in] The Jacobian matrix, shape=(gdim, tdim)
template <typename O, typename P, typename Q, typename R>
std::function<void(O&, const P&, const Q&, F, const R&)> map_fn() const
{
switch (_map_type)
{
case maps::type::identity:
return [](O& u, const P& U, const Q&, F, const R&)
{
assert(U.extent(0) == u.extent(0));
assert(U.extent(1) == u.extent(1));
for (std::size_t i = 0; i < U.extent(0); ++i)
for (std::size_t j = 0; j < U.extent(1); ++j)
u(i, j) = U(i, j);
};
case maps::type::covariantPiola:
return [](O& u, const P& U, const Q& J, F detJ, const R& K)
{ maps::covariant_piola(u, U, J, detJ, K); };
case maps::type::contravariantPiola:
return [](O& u, const P& U, const Q& J, F detJ, const R& K)
{ maps::contravariant_piola(u, U, J, detJ, K); };
case maps::type::doubleCovariantPiola:
return [](O& u, const P& U, const Q& J, F detJ, const R& K)
{ maps::double_covariant_piola(u, U, J, detJ, K); };
case maps::type::doubleContravariantPiola:
return [](O& u, const P& U, const Q& J, F detJ, const R& K)
{ maps::double_contravariant_piola(u, U, J, detJ, K); };
default:
throw std::runtime_error("Map not implemented");
}
}
/// @brief Get the dofs on each topological entity: (vertices, edges,
/// faces, cell) in that order.
///
/// For example, Lagrange degree 2 on a triangle has vertices: [[0],
/// [1], [2]], edges: [[3], [4], [5]], cell: [[]]
/// @return Dofs associated with an entity of a given topological
/// dimension. The shape is (tdim + 1, num_entities, num_dofs).
const std::vector<std::vector<std::vector<int>>>& entity_dofs() const
{
return _edofs;
}
/// @brief Get the dofs on the closure of each topological entity:
/// (vertices, edges, faces, cell) in that order.
///
/// For example, Lagrange degree 2 on a triangle has vertices: [[0],
/// [1], [2]], edges: [[1, 2, 3], [0, 2, 4], [0, 1, 5]], cell: [[0, 1,
/// 2, 3, 4, 5]]
/// @return Dofs associated with the closure of an entity of a given
/// topological dimension. The shape is `(tdim + 1, num_entities,
/// num_dofs)`.
const std::vector<std::vector<std::vector<int>>>& entity_closure_dofs() const
{
return _e_closure_dofs;
}
/// @brief Get the base transformations.
///
/// The base transformations represent the effect of rotating or reflecting
/// a subentity of the cell on the numbering and orientation of the DOFs.
/// This returns a list of matrices with one matrix for each subentity
/// permutation in the following order:
/// Reversing edge 0, reversing edge 1, ...
/// Rotate face 0, reflect face 0, rotate face 1, reflect face 1, ...
///
/// Example: Order 3 Lagrange on a triangle
/// ---------------------------------------
/// This space has 10 dofs arranged like:
/// ~~~~~~~~~~~~~~~~
/// 2
/// |\
/// 6 4
/// | \
/// 5 9 3
/// | \
/// 0-7-8-1
/// ~~~~~~~~~~~~~~~~
/// For this element, the base transformations are:
/// [Matrix swapping 3 and 4,
/// Matrix swapping 5 and 6,
/// Matrix swapping 7 and 8]
/// The first row shows the effect of reversing the diagonal edge. The
/// second row shows the effect of reversing the vertical edge. The third
/// row shows the effect of reversing the horizontal edge.
///
/// Example: Order 1 Raviart-Thomas on a triangle
/// ---------------------------------------------
/// This space has 3 dofs arranged like:
/// ~~~~~~~~~~~~~~~~
/// |\
/// | \
/// | \
/// <-1 0
/// | / \
/// | L ^ \
/// | | \
/// ---2---
/// ~~~~~~~~~~~~~~~~
/// These DOFs are integrals of normal components over the edges: DOFs 0 and 2
/// are oriented inward, DOF 1 is oriented outwards.
/// For this element, the base transformation matrices are:
/// ~~~~~~~~~~~~~~~~
/// 0: [[-1, 0, 0],
/// [ 0, 1, 0],
/// [ 0, 0, 1]]
/// 1: [[1, 0, 0],
/// [0, -1, 0],
/// [0, 0, 1]]
/// 2: [[1, 0, 0],
/// [0, 1, 0],
/// [0, 0, -1]]
/// ~~~~~~~~~~~~~~~~
/// The first matrix reverses DOF 0 (as this is on the first edge). The second
/// matrix reverses DOF 1 (as this is on the second edge). The third matrix
/// reverses DOF 2 (as this is on the third edge).
///
/// Example: DOFs on the face of Order 2 Nedelec first kind on a tetrahedron
/// ------------------------------------------------------------------------
/// On a face of this tetrahedron, this space has two face tangent DOFs:
/// ~~~~~~~~~~~~~~~~
/// |\ |\
/// | \ | \
/// | \ | ^\
/// | \ | | \
/// | 0->\ | 1 \
/// | \ | \
/// ------ ------
/// ~~~~~~~~~~~~~~~~
/// For these DOFs, the subblocks of the base transformation matrices are:
/// ~~~~~~~~~~~~~~~~
/// rotation: [[-1, 1],
/// [ 1, 0]]
/// reflection: [[0, 1],
/// [1, 0]]
/// ~~~~~~~~~~~~~~~~
/// @return The base transformations for this element. The shape is
/// (ntranformations, ndofs, ndofs)
std::pair<std::vector<F>, std::array<std::size_t, 3>>
base_transformations() const;
/// @brief Return the entity dof transformation matrices
/// @return The entity transformations for the sub-entities of this
/// element. The shape for each cell is (ntransformations, ndofs,
/// ndofs)
std::map<cell::type, std::pair<std::vector<F>, std::array<std::size_t, 3>>>
entity_transformations() const
{
return _entity_transformations;
}
/// @brief Permute indices associated with degree-of-freedoms on the
/// reference element ordering to the globally consistent physical
/// element degree-of-freedom ordering.
///
/// Given an array \f$\tilde{d}\f$ that holds an integer associated
/// with each degree-of-freedom and following the reference element
/// degree-of-freedom ordering, this function computes
/// \f[
/// d = P \tilde{d},
/// \f]
/// where \f$P\f$ is a permutation matrix and \f$d\f$ holds the
/// integers in \f$\tilde{d}\f$ but permuted to follow the globally
/// consistent physical element degree-of-freedom ordering. The
/// permutation is computed in-place.
///
/// @note This function is designed to be called at runtime, so its
/// performance is critical.
///
/// @param[in,out] d Indices associated with each reference element
/// degree-of-freedom (in). Indices associated with each physical
/// element degree-of-freedom (out).
/// @param cell_info Permutation info for the cell
void permute(std::span<std::int32_t> d, std::uint32_t cell_info) const
{
if (!_dof_transformations_are_permutations)
{
throw std::runtime_error(
"The DOF transformations for this element are not permutations");
}
if (_dof_transformations_are_identity)
return;
else
permute_data<std::int32_t, false>(d, 1, cell_info, _eperm);
}
/// @brief Perform the inverse of the operation applied by permute().
///
/// Given an array \f$d\f$ that holds an integer associated with each
/// degree-of-freedom and following the globally consistent physical
/// element degree-of-freedom ordering, this function computes
/// \f[
/// \tilde{d} = P^{T} d,
/// \f]
/// where \f$P^{T}\f$ is a permutation matrix and \f$\tilde{d}\f$
/// holds the integers in \f$d\f$ but permuted to follow the reference
/// element degree-of-freedom ordering. The permutation is computed
/// in-place.
///
/// @param[in,out] d Indices associated with each physical element
/// degree-of-freedom [in]. Indices associated with each reference
/// element degree-of-freedom [out].
/// @param cell_info Permutation info for the cell
void permute_inv(std::span<std::int32_t> d, std::uint32_t cell_info) const
{
if (!_dof_transformations_are_permutations)
{
throw std::runtime_error(
"The DOF transformations for this element are not permutations");
}
if (_dof_transformations_are_identity)
return;
else
permute_data<std::int32_t, true>(d, 1, cell_info, _eperm_inv);
}
/// @brief Permute indices associated with degree-of-freedoms on the
/// closure of a sub-entity of the reference element
///
/// This function performs a similar permutation to permute() but
/// additionally permutes the positions of vertices and edges
///
/// @note This function is designed to be called at runtime, so its
/// performance is critical.
///
/// @param[in,out] d Indices associated with each reference element
/// degree-of-freedom (in). Indices associated with each physical
/// element degree-of-freedom (out).
/// @param cell_info Permutation info for the cell
/// @param entity_type The cell type of the sub-entity
/// @param entity_index The index of the entity
void permute_subentity_closure(std::span<std::int32_t> d,
std::uint32_t cell_info,
cell::type entity_type, int entity_index) const
{
const int entity_dim = cell::topological_dimension(entity_type);
int face_start = _cell_tdim == 3 ? 3 * _edofs[2].size() : 0;
std::uint32_t entity_info = 0;
switch (entity_dim)
{
case 0:
return;
case 1:
entity_info = cell_info >> (face_start + entity_index) & 1;
break;
case 2:
entity_info = cell_info >> (3 * entity_index) & 7;
break;
default:
throw std::runtime_error("Unsupported cell dimension");
}
permute_subentity_closure(d, entity_info, entity_type);
}
/// @brief Perform the inverse of the operation applied by
/// permute_subentity_closure().
///
/// @note This function is designed to be called at runtime, so its
/// performance is critical.
///
/// @param[in,out] d Indices associated with each reference element
/// degree-of-freedom (in). Indices associated with each physical
/// element degree-of-freedom (out).
/// @param cell_info Permutation info for the cell
/// @param entity_type The cell type of the sub-entity
/// @param entity_index The index of the entity
void permute_subentity_closure_inv(std::span<std::int32_t> d,
std::uint32_t cell_info,
cell::type entity_type,
int entity_index) const
{
const int entity_dim = cell::topological_dimension(entity_type);
int face_start = _cell_tdim == 3 ? 3 * _edofs[2].size() : 0;
std::uint32_t entity_info;
switch (entity_dim)
{
case 0:
return;
case 1:
entity_info = cell_info >> (face_start + entity_index) & 1;
break;
case 2:
entity_info = cell_info >> (3 * entity_index) & 7;
break;
default:
throw std::runtime_error("Unsupported cell dimension");
}
permute_subentity_closure_inv(d, entity_info, entity_type);
}
/// @brief Permute indices associated with degree-of-freedoms on the
/// closure of a sub-entity of the reference element
///
/// This function performs a similar permutation to permute() but
/// additionally permutes the positions of vertices and edges
///
/// @note This function is designed to be called at runtime, so its
/// performance is critical.
///
/// @param[in,out] d Indices associated with each reference element
/// degree-of-freedom (in). Indices associated with each physical
/// element degree-of-freedom (out).
/// @param entity_info Permutation info for the entity
/// @param entity_type The cell type of the sub-entity
void permute_subentity_closure(std::span<std::int32_t> d,
std::uint32_t entity_info,
cell::type entity_type) const
{
if (!_dof_transformations_are_permutations)
{
throw std::runtime_error(
"The DOF transformations for this element are not permutations");
}
const int entity_dim = cell::topological_dimension(entity_type);
if (entity_dim == 0)
return;
auto& perm = _subentity_closure_perm.at(entity_type);
if (entity_dim == 1)
{
if (entity_info & 1)
{
precompute::apply_permutation(perm[0], d);
}
}
else if (entity_dim == 2)
{
// Rotate a face
for (std::uint32_t r = 0; r < (entity_info >> 1 & 3); ++r)
{
precompute::apply_permutation(perm[0], d);
}
// Reflect a face (post rotate)
if (entity_info & 1)
{
precompute::apply_permutation(perm[1], d);
}
}
else
{
throw std::runtime_error(
"Invalid dimension for permute_subentity_closure");
}
}
/// @brief Perform the inverse of the operation applied by
/// permute_subentity_closure().
///
/// @note This function is designed to be called at runtime, so its
/// performance is critical.
///
/// @param[in,out] d Indices associated with each reference element
/// degree-of-freedom (in). Indices associated with each physical
/// element degree-of-freedom (out).
/// @param entity_info Permutation info for the entity
/// @param entity_type The cell type of the sub-entity
void permute_subentity_closure_inv(std::span<std::int32_t> d,
std::uint32_t entity_info,
cell::type entity_type) const
{
if (!_dof_transformations_are_permutations)
{
throw std::runtime_error(
"The DOF transformations for this element are not permutations");
}
const int entity_dim = cell::topological_dimension(entity_type);
if (entity_dim == 0)
return;
auto& perm = _subentity_closure_perm_inv.at(entity_type);
if (entity_dim == 1)
{
if (entity_info & 1)
{
precompute::apply_permutation(perm[0], d);
}
}
else if (entity_dim == 2)
{
// Reflect a face (pre rotate)
if (entity_info & 1)
{
precompute::apply_permutation(perm[1], d);
}
// Rotate a face
for (std::uint32_t r = 0; r < (entity_info >> 1 & 3); ++r)
{
precompute::apply_permutation(perm[0], d);
}
}
else
{
throw std::runtime_error(
"Invalid dimension for permute_subentity_closure");
}
}
/// @brief Transform basis functions from the reference element
/// ordering and orientation to the globally consistent physical
/// element ordering and orientation.
///
/// Consider that the value of a finite element function \f$f_{h}\f$
/// at a point is given by
/// \f[
/// f_{h} = \phi^{T} c,
/// \f]
/// where \f$f_{h}\f$ has shape \f$r \times 1\f$, \f$\phi\f$ has shape
/// \f$d \times r\f$ and holds the finite element basis functions,
/// and \f$c\f$ has shape \f$d \times 1\f$ and holds the
/// degrees-of-freedom. The basis functions and
/// degree-of-freedom are with respect to the physical element
/// orientation. If the degrees-of-freedom on the physical element
/// orientation are given by
/// \f[ \phi = T \tilde{\phi}, \f]
/// where \f$T\f$ is a \f$d \times d\f$ matrix, it follows from
/// \f$f_{h} = \phi^{T} c = \tilde{\phi}^{T} T^{T} c\f$ that
/// \f[ \tilde{c} = T^{T} c. \f]
///
/// This function applies \f$T\f$ to data. The transformation is
/// performed in-place. The operator \f$T\f$ is orthogonal for many
/// elements, but not all.
///
/// @param[in,out] u Data to transform. The shape is `(m, n)`, where
/// `m` is the number of dgerees-of-freedom and the storage is
/// row-major.
/// @param[in] n Number of columns in `data`.
/// @param cell_info Permutation info for the cell
template <typename T>
void T_apply(std::span<T> u, int n, std::uint32_t cell_info) const;
/// @brief Apply the transpose of the operator applied by T_apply().
///
/// The transformation \f[ u \leftarrow T^{T} u \f] is performed
/// in-place.
///
/// @param[in,out] u Data to transform. The shape is `(m, n)`, where
/// `m` is the number of dgerees-of-freedom an d the storage is
/// row-major.
/// @param[in] n Number of columns in `data`.
/// @param[in] cell_info Permutation info for the cell,
template <typename T>
void Tt_apply(std::span<T> u, int n, std::uint32_t cell_info) const;
/// @brief Apply the inverse transpose of the operator applied by
/// T_apply().
///
/// The transformation \f[ u \leftarrow T^{-T} u \f] is performed
/// in-place.
///
/// @param[in,out] u Data to transform. The shape is `(m, n)`, where
/// `m` is the number of dgerees-of-freedom and the storage is
/// row-major.
/// @param[in] n Number of columns in `data`.
/// @param[in] cell_info Permutation info for the cell.
template <typename T>
void Tt_inv_apply(std::span<T> u, int n, std::uint32_t cell_info) const;
/// @brief Apply the inverse of the operator applied by T_apply().
///
/// The transformation \f[ u \leftarrow T^{-1} u \f] is performed
/// in-place.
///
/// @param[in,out] u Data to transform. The shape is `(m, n)`, where
/// `m` is the number of dgerees-of-freedom and the storage is
/// row-major.
/// @param[in] n Number of columns in `data`.
/// @param[in] cell_info Permutation info for the cell.
template <typename T>
void Tinv_apply(std::span<T> u, int n, std::uint32_t cell_info) const;
/// @brief Right(post)-apply the transpose of the operator applied by
/// T_apply().
///
/// Computes \f[ u^{T} \leftarrow u^{T} T^{T} \f] in-place.
///
/// @param[in,out] u Data to transform. The shape is `(m, n)`, where
/// `m` is the number of dgerees-of-freedom and the storage is
/// row-major.
/// @param[in] n Number of columns in `data`.
/// @param[in] cell_info Permutation info for the cell.
template <typename T>
void Tt_apply_right(std::span<T> u, int n, std::uint32_t cell_info) const;
/// @brief Right(post)-apply the operator applied by T_apply().
///
/// Computes \f[ u^{T} \leftarrow u^{T} T \f] in-place.
///
/// @param[in,out] u Data to transform. The shape is `(m, n)`, where
/// `m` is the number of dgerees-of-freedom and the storage is
/// row-major.
/// @param[in] n Number of columns in `data`.
/// @param[in] cell_info Permutation info for the cell.
template <typename T>
void T_apply_right(std::span<T> u, int n, std::uint32_t cell_info) const;
/// @brief Right(post)-apply the inverse of the operator applied by
/// T_apply().
///
/// Computes \f[ u^{T} \leftarrow u^{T} T^{-1} \f] in-place.
///
/// @param[in,out] u Data to transform. The shape is `(m, n)`, where
/// `m` is the number of dgerees-of-freedom and the storage is
/// row-major.
/// @param[in] n Number of columns in `data`.
/// @param cell_info Permutation info for the cell.
template <typename T>
void Tinv_apply_right(std::span<T> u, int n, std::uint32_t cell_info) const;
/// @brief Right(post)-apply the transpose inverse of the operator
/// applied by T_apply().
///
/// Computes \f[ u^{T} \leftarrow u^{T} T^{-T} \f] in-place.
///
/// @param[in,out] u Data to transform. The shape is `(m, n)`, where
/// `m` is the number of dgerees-of-freedom and the storage is
/// row-major.
/// @param[in] n Number of columns in `data`.
/// @param cell_info Permutation info for the cell.
template <typename T>
void Tt_inv_apply_right(std::span<T> u, int n, std::uint32_t cell_info) const;
/// @brief Return the interpolation points.
///
/// The interpolation points are the coordinates on the reference
/// element where a function need to be evaluated in order to
/// interpolate it in the finite element space.
/// @return Array of coordinate with shape `(num_points, tdim)`
const std::pair<std::vector<F>, std::array<std::size_t, 2>>& points() const
{
return _points;
}
/// @brief Return a matrix of weights interpolation.
///
/// To interpolate a function in this finite element, the functions
/// should be evaluated at each point given by points(). These
/// function values should then be multiplied by the weight matrix to
/// give the coefficients of the interpolated function.
///
/// The shape of the returned matrix will be `(dim, num_points *
/// value_size)`, where `dim` is the number of DOFs in the finite
/// element, `num_points` is the number of points returned by
/// points(), and `value_size` is the value size of the finite
/// element.
///
/// For example, to interpolate into a Lagrange space, the following
/// should be done:
/// \code{.pseudo}
/// i_m = element.interpolation_matrix()
/// pts = element.points()
/// values = vector(pts.shape(0))
/// FOR i, p IN ENUMERATE(pts):
/// values[i] = f.evaluate_at(p)
/// coefficients = i_m * values
/// \endcode
///
/// To interpolate into a Raviart-Thomas space, the following should
/// be done:
/// \code{.pseudo}
/// i_m = element.interpolation_matrix()
/// pts = element.points()
/// vs = prod(element.value_shape())
/// values = VECTOR(pts.shape(0) * vs)
/// FOR i, p IN ENUMERATE(pts):
/// values[i::pts.shape(0)] = f.evaluate_at(p)
/// coefficients = i_m * values
/// \endcode
///
/// To interpolate into a Lagrange space with a block size, the
/// following should be done:
/// \code{.pseudo}
/// i_m = element.interpolation_matrix()
/// pts = element.points()
/// coefficients = VECTOR(element.dim() * block_size)
/// FOR b IN RANGE(block_size):
/// values = vector(pts.shape(0))
/// FOR i, p IN ENUMERATE(pts):
/// values[i] = f.evaluate_at(p)[b]
/// coefficients[::block_size] = i_m * values
/// \endcode
///
/// @return The interpolation matrix. Shape is `(ndofs, number of
/// interpolation points)`.
const std::pair<std::vector<F>, std::array<std::size_t, 2>>&
interpolation_matrix() const
{
return _matM;
}
/// @brief Get the dual matrix.
///
/// This is the matrix @f$BD^{T}@f$, as described in the documentation
/// of the FiniteElement() constructor.
/// @return The dual matrix. Shape is `(ndofs, ndofs)` = `(dim(), dim())`.
const std::pair<std::vector<F>, std::array<std::size_t, 2>>&
dual_matrix() const
{
return _dual_matrix;
}
/// @brief Get the coefficients that define the polynomial set in
/// terms of the orthonormal polynomials.
///
/// The polynomials spanned by each finite element in Basix are
/// represented as a linear combination of the orthonormal polynomials
/// of a given degree on the cell. Each row of this matrix defines a
/// polynomial in the set spanned by the finite element.
///
/// For example, the orthonormal polynomials of degree <= 1 on a
/// triangle are (where a, b, c, d are some constants):
///
/// - (sqrt(2), 0)
/// - (a*x - b, 0)
/// - (c*y - d, 0)
/// - (0, sqrt(2))
/// - (0, a*x - b)
/// - (0, c*y - d)
///
/// For a degree 1 Raviart-Thomas element, the first two rows of
/// wcoeffs would be the following, as (1, 0) and (0, 1) are spanned
/// by the element
///
/// - [1, 0, 0, 0, 0, 0]
/// - [0, 0, 0, 1, 0, 0]
///
/// The third row of wcoeffs in this example would give coefficients
/// that represent (x, y) in terms of the orthonormal polynomials:
///
/// - [-b/(a*sqrt(2)), 1/a, 0, -d/(c*sqrt(2)), 0, 1/c]
///
/// These coefficients are only stored for custom elements. This
/// function will throw an exception if called on a non-custom
/// element.
///
/// @return Coefficient matrix. Shape is `(dim(finite element polyset),
/// dim(Lagrange polynomials))`.
const std::pair<std::vector<F>, std::array<std::size_t, 2>>& wcoeffs() const
{
return _wcoeffs;
}
/// @brief Get the interpolation points for each subentity.
///
/// The indices of this data are `(tdim, entity index, point index,
/// dim)`.
const std::array<
std::vector<std::pair<std::vector<F>, std::array<std::size_t, 2>>>, 4>&
x() const
{
return _x;
}
/// @brief Get the interpolation matrices for each subentity.
///
/// The shape of this data is `(tdim, entity index, dof, value size,
/// point_index, derivative)`.
///
/// These matrices define how to evaluate the DOF functionals
/// associated with each sub-entity of the cell. Given a function f,
/// the functionals associated with the `e`-th entity of dimension `d`
/// can be computed as follows:
///
/// \code{.pseudo}
/// matrix = element.M()[d][e]
/// pts = element.x()[d][e]
/// nderivs = element
/// values = f.eval_derivs(nderivs, pts)
/// result = ZEROS(matrix.shape(0))
/// FOR i IN RANGE(matrix.shape(0)):
/// FOR j IN RANGE(matrix.shape(1)):
/// FOR k IN RANGE(matrix.shape(2)):
/// FOR l IN RANGE(matrix.shape(3)):
/// result[i] += matrix[i, j, k, l] * values[l][k][j]
/// \endcode
///
/// For example, for a degree 1 Raviart-Thomas (RT) element on a triangle, the
/// DOF functionals are integrals over the edges of the dot product of the
/// function with the normal to the edge. In this case, `x()` would contain
/// quadrature points for each edge, and `M()` would be a 1 by 2 by `npoints`
/// by 1 array for each edge. For each point, the `[0, :, point, 0]` slice of
/// this would be the quadrature weight multiplied by the normal. For all
/// entities that are not edges, the entries in `x()` and `M()` for a degree 1
/// RT element would have size 0.
///
/// These matrices are only stored for custom elements. This function will
/// throw an exception if called on a non-custom element
/// @return The interpolation matrices. The indices of this data are `(tdim,
/// entity index, dof, vs, point_index, derivative)`.
const std::array<
std::vector<std::pair<std::vector<F>, std::array<std::size_t, 4>>>, 4>&
M() const
{
return _M;
}
/// @brief Get the matrix of coefficients.
///
/// @return The coefficient matrix. Shape is `(ndofs, ndofs)`.
const std::pair<std::vector<F>, std::array<std::size_t, 2>>&
coefficient_matrix() const
{
return _coeffs;
}
/// @brief Indicates whether or not this element can be represented as a
/// product of elements defined on lower-dimensional reference cells.
///
/// If the product exists, this element's basis functions can be
/// computed as a tensor product of the basis elements of the elements
/// in the product.
///
/// If such a factorisation exists,
/// get_tensor_product_representation() can be used to get these
/// elements.
bool has_tensor_product_factorisation() const
{
return !_tensor_factors.empty();
}
/// @brief Get the tensor product representation of this element.
///
/// @throws std::runtime_error Thrown if no such factorisation exists.
///
/// The tensor product representation will be a vector of vectors of
/// finite elements. Each tuple contains a vector of finite elements,
/// and a vector of integers. The vector of finite elements gives the
/// elements on an interval that appear in the tensor product
/// representation. The vector of integers gives the permutation
/// between the numbering of the tensor product DOFs and the number of
/// the DOFs of this Basix element.
/// @return The tensor product representation
std::vector<std::vector<FiniteElement<F>>>
get_tensor_product_representation() const
{
if (!has_tensor_product_factorisation())
throw std::runtime_error("Element has no tensor product representation.");
return _tensor_factors;
}
/// @brief Indicates whether or not the interpolation matrix for this
/// element is an identity matrix.
/// @return True if the interpolation matrix is the identity and false
/// otherwise.
bool interpolation_is_identity() const { return _interpolation_is_identity; }
/// @brief The number of derivatives needed when interpolating
int interpolation_nderivs() const { return _interpolation_nderivs; }
/// @brief Get dof layout
const std::vector<int>& dof_ordering() const { return _dof_ordering; }
private:
/// Data permutation
/// @param data Data to be permuted
/// @param block_size
/// @param cell_info Cell bitmap selecting required permutations
/// @param eperm Permutation to use
/// @param post Whether reflect is pre- or post- rotation.
template <typename T, bool post>
void permute_data(
std::span<T> data, int block_size, std::uint32_t cell_info,
const std::map<cell::type, std::vector<std::vector<std::size_t>>>& eperm)
const;
using array2_t = std::pair<std::vector<F>, std::array<std::size_t, 2>>;
using array3_t = std::pair<std::vector<F>, std::array<std::size_t, 3>>;
using trans_data_t
= std::vector<std::pair<std::vector<std::size_t>, array2_t>>;
/// Data transformation
/// @param data Data to be transformed (using matrices)
/// @param block_size
/// @param cell_info Cell bitmap selecting required transforms
/// @param etrans Transformation matrices
/// @param post Whether reflect is pre- or post- rotation.
template <typename T, bool post, typename OP>
void
transform_data(std::span<T> data, int block_size, std::uint32_t cell_info,
const std::map<cell::type, trans_data_t>& etrans, OP op) const;
// Cell type
cell::type _cell_type;
// Polyset type
polyset::type _poly_type;
// Topological dimension of the cell
std::size_t _cell_tdim;
// Topological dimension of the cell
std::vector<std::vector<cell::type>> _cell_subentity_types;
// Finite element family
element::family _family;
// Lagrange variant
element::lagrange_variant _lagrange_variant;
// DPC variant
element::dpc_variant _dpc_variant;
// Degree that was input when creating the element
int _degree;
// Degree
int _interpolation_nderivs;
// Highest degree polynomial in element's polyset
int _embedded_superdegree;
// Highest degree space that is a subspace of element's polyset
int _embedded_subdegree;
// Value shape
std::vector<std::size_t> _value_shape;
/// The mapping used to map this element from the reference to a cell
maps::type _map_type;
/// The Sobolev space this element is contained in
sobolev::space _sobolev_space;
// Shape function coefficient of expansion sets on cell. If shape
// function is given by @f$\psi_i = \sum_{k} \phi_{k}
// \alpha^{i}_{k}@f$, then _coeffs(i, j) = @f$\alpha^i_k@f$. ie
// _coeffs.row(i) are the expansion coefficients for shape function i
// (@f$\psi_{i}@f$).
std::pair<std::vector<F>, std::array<std::size_t, 2>> _coeffs;
// Dofs associated with each cell (sub-)entity
std::vector<std::vector<std::vector<int>>> _edofs;
// Dofs associated with the closdure of each cell (sub-)entity
std::vector<std::vector<std::vector<int>>> _e_closure_dofs;
// Entity transformations
std::map<cell::type, array3_t> _entity_transformations;
// Set of points used for point evaluation
// Experimental - currently used for an implementation of
// "tabulate_dof_coordinates" Most useful for Lagrange. This may change or go
// away. For non-Lagrange elements, these points will be used in combination
// with _interpolation_matrix to perform interpolation
std::pair<std::vector<F>, std::array<std::size_t, 2>> _points;
// Interpolation points on the cell. The shape is (entity_dim, num
// entities of given dimension, num_points, tdim)
std::array<std::vector<std::pair<std::vector<F>, std::array<std::size_t, 2>>>,
4>
_x;
/// The interpolation weights and points
std::pair<std::vector<F>, std::array<std::size_t, 2>> _matM;
// Indicates whether or not the DOF transformations are all
// permutations
bool _dof_transformations_are_permutations;
// Indicates whether or not the DOF transformations are all identity
bool _dof_transformations_are_identity;
// The entity permutations (factorised). This will only be set if
// _dof_transformations_are_permutations is True and
// _dof_transformations_are_identity is False
std::map<cell::type, std::vector<std::vector<std::size_t>>> _eperm;
// The reverse entity permutations (factorised). This will only be set
// if _dof_transformations_are_permutations is True and
// _dof_transformations_are_identity is False
std::map<cell::type, std::vector<std::vector<std::size_t>>> _eperm_inv;
// The entity transformations in precomputed form
std::map<cell::type, trans_data_t> _etrans;
// The transposed entity transformations in precomputed form
std::map<cell::type, trans_data_t> _etransT;
// The inverse entity transformations in precomputed form
std::map<cell::type, trans_data_t> _etrans_inv;
// The inverse transpose entity transformations in precomputed form
std::map<cell::type, trans_data_t> _etrans_invT;
// The subentity closure permutations (factorised). This will only be set if
// _dof_transformations_are_permutations is True
std::map<cell::type, std::vector<std::vector<std::size_t>>>
_subentity_closure_perm;
// The inverse subentity closure permutations (factorised). This will only be
// set if _dof_transformations_are_permutations is True
std::map<cell::type, std::vector<std::vector<std::size_t>>>
_subentity_closure_perm_inv;
// Indicates whether or not this is the discontinuous version of the
// element
bool _discontinuous;
// The dual matrix
std::pair<std::vector<F>, std::array<std::size_t, 2>> _dual_matrix;
// Dof reordering for different element dof layout compatibility.
// The reference basix layout is ordered by entity, i.e. dofs on
// vertices, followed by edges, faces, then internal dofs.
// _dof_ordering stores the map to the new order required, e.g.
// for a P2 triangle, _dof_ordering=[0 3 5 1 2 4] will place
// dofs 0, 3, 5 on the vertices and 1, 2, 4, on the edges.
std::vector<int> _dof_ordering;
// Tensor product representation
// Entries of tuple are (list of elements on an interval, permutation
// of DOF numbers)
// @todo: For vector-valued elements, a tensor product type and a
// scaling factor may additionally be needed.
std::vector<std::vector<FiniteElement>> _tensor_factors;
// Is the interpolation matrix an identity?
bool _interpolation_is_identity;
// The coefficients that define the polynomial set in terms of the
// orthonormal polynomials
std::pair<std::vector<F>, std::array<std::size_t, 2>> _wcoeffs;
// Interpolation matrices for each entity
using array4_t
= std::vector<std::pair<std::vector<F>, std::array<std::size_t, 4>>>;
std::array<array4_t, 4> _M;
};
/// Create a custom finite element
/// @param[in] cell_type The cell type
/// @param[in] value_shape The value shape of the element
/// @param[in] wcoeffs Matrices for the kth value index containing the
/// expansion coefficients defining a polynomial basis spanning the
/// polynomial space for this element. Shape is (dim(finite element polyset),
/// dim(Legendre polynomials))
/// @param[in] x Interpolation points. Indices are (tdim, entity index,
/// point index, dim)
/// @param[in] M The interpolation matrices. Indices are (tdim, entity
/// index, dof, vs, point_index, derivative)
/// @param[in] interpolation_nderivs The number of derivatives that need to be
/// used during interpolation
/// @param[in] map_type The type of map to be used to map values from
/// the reference to a cell
/// @param[in] sobolev_space The underlying Sobolev space for the element
/// @param[in] discontinuous Indicates whether or not this is the
/// discontinuous version of the element
/// @param[in] embedded_subdegree The highest degree n such that a
/// Lagrange (or vector Lagrange) element of degree n is a subspace of this
/// element
/// @param[in] embedded_superdegree The degree of a polynomial in this element's
/// polyset
/// @param[in] poly_type The type of polyset to use for this element
/// @return A custom finite element
template <std::floating_point T>
FiniteElement<T> create_custom_element(
cell::type cell_type, const std::vector<std::size_t>& value_shape,
impl::mdspan_t<const T, 2> wcoeffs,
const std::array<std::vector<impl::mdspan_t<const T, 2>>, 4>& x,
const std::array<std::vector<impl::mdspan_t<const T, 4>>, 4>& M,
int interpolation_nderivs, maps::type map_type,
sobolev::space sobolev_space, bool discontinuous, int embedded_subdegree,
int embedded_superdegree, polyset::type poly_type);
/// Create an element using a given Lagrange variant and a given DPC variant
/// @param[in] family The element family
/// @param[in] cell The reference cell type that the element is defined on
/// @param[in] degree The degree of the element
/// @param[in] lvariant The variant of Lagrange to use
/// @param[in] dvariant The variant of DPC to use
/// @param[in] discontinuous Indicates whether the element is discontinuous
/// between cells points of the element. The discontinuous element will have the
/// same DOFs, but they will all be associated with the interior of the cell.
/// @param[in] dof_ordering Ordering of dofs for ElementDofLayout
/// @return A finite element
template <std::floating_point T>
FiniteElement<T> create_element(element::family family, cell::type cell,
int degree, element::lagrange_variant lvariant,
element::dpc_variant dvariant,
bool discontinuous,
std::vector<int> dof_ordering = {});
/// Get the tensor product DOF ordering for an element
/// @param[in] family The element family
/// @param[in] cell The reference cell type that the element is defined on.
/// Currently limited to quadrilateral or hexahedron.
/// @param[in] degree The degree of the element
/// @param[in] lvariant The variant of Lagrange to use
/// @param[in] dvariant The variant of DPC to use
/// @param[in] discontinuous Indicates whether the element is discontinuous
/// between cells points of the element. The discontinuous element will have the
/// same DOFs, but they will all be associated with the interior of the cell.
/// @return A vector containing the dof ordering
std::vector<int> tp_dof_ordering(element::family family, cell::type cell,
int degree, element::lagrange_variant lvariant,
element::dpc_variant dvariant,
bool discontinuous);
/// Get the lexicographic DOF ordering for an element
/// @param[in] family The element family
/// @param[in] cell The reference cell type that the element is defined on.
/// @param[in] degree The degree of the element
/// @param[in] lvariant The variant of Lagrange to use
/// @param[in] dvariant The variant of DPC to use
/// @param[in] discontinuous Indicates whether the element is discontinuous
/// between cells points of the element. The discontinuous element will have the
/// same DOFs, but they will all be associated with the interior of the cell.
/// @return A vector containing the dof ordering
std::vector<int> lex_dof_ordering(element::family family, cell::type cell,
int degree, element::lagrange_variant lvariant,
element::dpc_variant dvariant,
bool discontinuous);
/// Get the tensor factors of an element
/// @param[in] family The element family
/// @param[in] cell The reference cell type that the element is defined on.
/// Currently limited to quadrilateral or hexahedron.
/// @param[in] degree The degree of the element
/// @param[in] lvariant The variant of Lagrange to use
/// @param[in] dvariant The variant of DPC to use
/// @param[in] discontinuous Indicates whether the element is discontinuous
/// between cells points of the element. The discontinuous element will have the
/// same DOFs, but they will all be associated with the interior of the cell.
/// @param[in] dof_ordering The ordering of the DOFs
/// @return A list of lists of finite element factors
template <std::floating_point T>
std::vector<std::vector<FiniteElement<T>>>
tp_factors(element::family family, cell::type cell, int degree,
element::lagrange_variant lvariant, element::dpc_variant dvariant,
bool discontinuous, const std::vector<int>& dof_ordering);
/// Create an element with Tensor Product dof ordering
/// @param[in] family The element family
/// @param[in] cell The reference cell type that the element is defined on.
/// Currently limited to quadrilateral or hexahedron.
/// @param[in] degree The degree of the element
/// @param[in] lvariant The variant of Lagrange to use
/// @param[in] dvariant The variant of DPC to use
/// @param[in] discontinuous Indicates whether the element is discontinuous
/// between cells points of the element. The discontinuous element will have the
/// same DOFs, but they will all be associated with the interior of the cell.
/// @return A finite element
template <std::floating_point T>
FiniteElement<T>
create_tp_element(element::family family, cell::type cell, int degree,
element::lagrange_variant lvariant,
element::dpc_variant dvariant, bool discontinuous);
/// Return the Basix version number
/// @return version string
std::string version();
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T, bool post>
void FiniteElement<F>::permute_data(
std::span<T> data, int block_size, std::uint32_t cell_info,
const std::map<cell::type, std::vector<std::vector<std::size_t>>>& eperm)
const
{
if (_cell_tdim >= 2)
{
// This assumes 3 bits are used per face. This will need updating if 3D
// cells with faces with more than 4 sides are implemented
int face_start = _cell_tdim == 3 ? 3 * _edofs[2].size() : 0;
// Permute DOFs on edges
{
auto& trans = eperm.at(cell::type::interval)[0];
for (std::size_t e = 0; e < _edofs[1].size(); ++e)
{
// Reverse an edge
if (cell_info >> (face_start + e) & 1)
{
precompute::apply_permutation_mapped(trans, data, _edofs[1][e],
block_size);
}
}
}
if (_cell_tdim == 3)
{
// Permute DOFs on faces
for (std::size_t f = 0; f < _edofs[2].size(); ++f)
{
auto& trans = eperm.at(_cell_subentity_types[2][f]);
// Reflect a face (pre rotate)
if (!post and cell_info >> (3 * f) & 1)
{
precompute::apply_permutation_mapped(trans[1], data, _edofs[2][f],
block_size);
}
// Rotate a face
for (std::uint32_t r = 0; r < (cell_info >> (3 * f + 1) & 3); ++r)
{
precompute::apply_permutation_mapped(trans[0], data, _edofs[2][f],
block_size);
}
// Reflect a face (post rotate)
if (post and cell_info >> (3 * f) & 1)
{
precompute::apply_permutation_mapped(trans[1], data, _edofs[2][f],
block_size);
}
}
}
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T, bool post, typename OP>
void FiniteElement<F>::transform_data(
std::span<T> data, int block_size, std::uint32_t cell_info,
const std::map<cell::type, trans_data_t>& etrans, OP op) const
{
if (_cell_tdim >= 2)
{
// This assumes 3 bits are used per face. This will need updating if
// 3D cells with faces with more than 4 sides are implemented
int face_start = _cell_tdim == 3 ? 3 * _edofs[2].size() : 0;
int dofstart = 0;
for (auto& edofs0 : _edofs[0])
dofstart += edofs0.size();
// Transform DOFs on edges
{
auto& [v_size_t, matrix] = etrans.at(cell::type::interval)[0];
for (std::size_t e = 0; e < _edofs[1].size(); ++e)
{
// Reverse an edge
if (cell_info >> (face_start + e) & 1)
{
op(std::span(v_size_t),
mdspan_t<const F, 2>(matrix.first.data(), matrix.second), data,
dofstart, block_size);
}
dofstart += _edofs[1][e].size();
}
}
if (_cell_tdim == 3)
{
// Permute DOFs on faces
for (std::size_t f = 0; f < _edofs[2].size(); ++f)
{
auto& trans = etrans.at(_cell_subentity_types[2][f]);
// Reflect a face (pre rotation)
if (!post and cell_info >> (3 * f) & 1)
{
const auto& m = trans[1];
const auto& v_size_t = std::get<0>(m);
const auto& matrix = std::get<1>(m);
op(std::span(v_size_t),
mdspan_t<const F, 2>(matrix.first.data(), matrix.second), data,
dofstart, block_size);
}
// Rotate a face
for (std::uint32_t r = 0; r < (cell_info >> (3 * f + 1) & 3); ++r)
{
const auto& m = trans[0];
const auto& v_size_t = std::get<0>(m);
const auto& matrix = std::get<1>(m);
op(std::span(v_size_t),
mdspan_t<const F, 2>(matrix.first.data(), matrix.second), data,
dofstart, block_size);
}
// Reflect a face (post rotation)
if (post and cell_info >> (3 * f) & 1)
{
const auto& m = trans[1];
const auto& v_size_t = std::get<0>(m);
const auto& matrix = std::get<1>(m);
op(std::span(v_size_t),
mdspan_t<const F, 2>(matrix.first.data(), matrix.second), data,
dofstart, block_size);
}
dofstart += _edofs[2][f].size();
}
}
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T>
void FiniteElement<F>::T_apply(std::span<T> u, int n,
std::uint32_t cell_info) const
{
if (_dof_transformations_are_identity)
return;
if (_dof_transformations_are_permutations)
permute_data<T, false>(u, n, cell_info, _eperm);
else
{
transform_data<T, false>(u, n, cell_info, _etrans,
precompute::apply_matrix<F, T>);
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T>
void FiniteElement<F>::Tt_apply(std::span<T> u, int n,
std::uint32_t cell_info) const
{
if (_dof_transformations_are_identity)
return;
else if (_dof_transformations_are_permutations)
permute_data<T, true>(u, n, cell_info, _eperm_inv);
else
{
transform_data<T, true>(u, n, cell_info, _etransT,
precompute::apply_matrix<F, T>);
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T>
void FiniteElement<F>::Tt_inv_apply(std::span<T> u, int n,
std::uint32_t cell_info) const
{
if (_dof_transformations_are_identity)
return;
else if (_dof_transformations_are_permutations)
permute_data<T, false>(u, n, cell_info, _eperm);
else
{
transform_data<T, false>(u, n, cell_info, _etrans_invT,
precompute::apply_matrix<F, T>);
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T>
void FiniteElement<F>::Tinv_apply(std::span<T> u, int n,
std::uint32_t cell_info) const
{
if (_dof_transformations_are_identity)
return;
else if (_dof_transformations_are_permutations)
permute_data<T, true>(u, n, cell_info, _eperm_inv);
else
{
transform_data<T, true>(u, n, cell_info, _etrans_inv,
precompute::apply_matrix<F, T>);
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T>
void FiniteElement<F>::Tt_apply_right(std::span<T> u, int n,
std::uint32_t cell_info) const
{
if (_dof_transformations_are_identity)
return;
else if (_dof_transformations_are_permutations)
{
assert(u.size() % n == 0);
const int step = u.size() / n;
for (int i = 0; i < n; ++i)
{
std::span<T> dblock(u.data() + i * step, step);
permute_data<T, false>(dblock, 1, cell_info, _eperm);
}
}
else
{
transform_data<T, false>(u, n, cell_info, _etrans,
precompute::apply_tranpose_matrix_right<F, T>);
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T>
void FiniteElement<F>::Tinv_apply_right(std::span<T> u, int n,
std::uint32_t cell_info) const
{
if (_dof_transformations_are_identity)
return;
else if (_dof_transformations_are_permutations)
{
assert(u.size() % n == 0);
const int step = u.size() / n;
for (int i = 0; i < n; ++i)
{
std::span<T> dblock(u.data() + i * step, step);
permute_data<T, false>(dblock, 1, cell_info, _eperm);
}
}
else
{
transform_data<T, false>(u, n, cell_info, _etrans_invT,
precompute::apply_tranpose_matrix_right<F, T>);
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T>
void FiniteElement<F>::T_apply_right(std::span<T> u, int n,
std::uint32_t cell_info) const
{
if (_dof_transformations_are_identity)
return;
else if (_dof_transformations_are_permutations)
{
assert(u.size() % n == 0);
const int step = u.size() / n;
for (int i = 0; i < n; ++i)
{
std::span<T> dblock(u.data() + i * step, step);
permute_data<T, true>(dblock, 1, cell_info, _eperm_inv);
}
}
else
{
transform_data<T, true>(u, n, cell_info, _etransT,
precompute::apply_tranpose_matrix_right<F, T>);
}
}
//-----------------------------------------------------------------------------
template <std::floating_point F>
template <typename T>
void FiniteElement<F>::Tt_inv_apply_right(std::span<T> u, int n,
std::uint32_t cell_info) const
{
if (_dof_transformations_are_identity)
return;
else if (_dof_transformations_are_permutations)
{
assert(u.size() % n == 0);
const int step = u.size() / n;
for (int i = 0; i < n; ++i)
{
std::span<T> dblock(u.data() + i * step, step);
permute_data<T, true>(dblock, 1, cell_info, _eperm_inv);
}
}
else
{
transform_data<T, true>(u, n, cell_info, _etrans_inv,
precompute::apply_tranpose_matrix_right<F, T>);
}
}
//-----------------------------------------------------------------------------
} // namespace basix
|