1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
// Copyright (c) 2021 Matthew Scroggs
// FEniCS Project
// SPDX-License-Identifier: MIT
#include "interpolation.h"
#include "finite-element.h"
#include <concepts>
#include <exception>
using namespace basix;
template <typename T, std::size_t D>
using mdspan_t = md::mdspan<T, md::dextents<std::size_t, D>>;
//----------------------------------------------------------------------------
template <std::floating_point T>
std::pair<std::vector<T>, std::array<std::size_t, 2>>
basix::compute_interpolation_operator(const FiniteElement<T>& element_from,
const FiniteElement<T>& element_to)
{
if (element_from.cell_type() != element_to.cell_type())
{
throw std::runtime_error(
"Cannot interpolate between elements defined on different cell types.");
}
const auto [points, shape] = element_to.points();
const auto [tab_b, tab_shape]
= element_from.tabulate(0, mdspan_t<const T, 2>(points.data(), shape));
mdspan_t<const T, 4> tab(tab_b.data(), tab_shape);
const auto [imb, imshape] = element_to.interpolation_matrix();
mdspan_t<const T, 2> i_m(imb.data(), imshape);
const std::size_t dim_to = element_to.dim();
const std::size_t dim_from = element_from.dim();
const std::size_t npts = tab.extent(1);
const std::size_t vs_from
= std::accumulate(element_from.value_shape().begin(),
element_from.value_shape().end(), 1, std::multiplies{});
const std::size_t vs_to
= std::reduce(element_to.value_shape().begin(),
element_to.value_shape().end(), 1, std::multiplies{});
if (vs_from != vs_to)
{
if (vs_to == 1)
{
// Map element_from's components into element_to
std::array<std::size_t, 2> shape = {dim_to * vs_from, dim_from};
std::vector<T> outb(shape[0] * shape[1], 0.0);
mdspan_t<T, 2> out(outb.data(), shape);
for (std::size_t i = 0; i < vs_from; ++i)
for (std::size_t j = 0; j < dim_to; ++j)
for (std::size_t k = 0; k < dim_from; ++k)
for (std::size_t l = 0; l < npts; ++l)
out(i + j * vs_from, k) += i_m(j, l) * tab(0, l, k, i);
return {std::move(outb), shape};
}
else if (vs_from == 1)
{
// Map duplicates of element_to to components of element_to
std::array<std::size_t, 2> shape = {dim_to, dim_from * vs_to};
std::vector<T> outb(shape[0] * shape[1], 0.0);
mdspan_t<T, 2> out(outb.data(), shape);
for (std::size_t i = 0; i < vs_to; ++i)
for (std::size_t j = 0; j < dim_from; ++j)
for (std::size_t k = 0; k < dim_to; ++k)
for (std::size_t l = 0; l < npts; ++l)
out(k, i + j * vs_to) += i_m(k, i * npts + l) * tab(0, l, j, 0);
return {std::move(outb), shape};
}
else
{
throw std::runtime_error("Cannot interpolate between elements with this "
"combination of value sizes.");
}
}
else
{
std::array<std::size_t, 2> shape = {dim_to, dim_from};
std::vector<T> outb(shape[0] * shape[1], 0.0);
mdspan_t<T, 2> out(outb.data(), shape);
for (std::size_t i = 0; i < dim_to; ++i)
for (std::size_t j = 0; j < dim_from; ++j)
for (std::size_t k = 0; k < vs_from; ++k)
for (std::size_t l = 0; l < npts; ++l)
out(i, j) += i_m(i, k * npts + l) * tab(0, l, j, k);
return {std::move(outb), shape};
}
}
//----------------------------------------------------------------------------
/// @cond
template std::pair<std::vector<float>, std::array<std::size_t, 2>>
basix::compute_interpolation_operator(const FiniteElement<float>&,
const FiniteElement<float>&);
template std::pair<std::vector<double>, std::array<std::size_t, 2>>
basix::compute_interpolation_operator(const FiniteElement<double>&,
const FiniteElement<double>&);
/// @endcond
//-----------------------------------------------------------------------------
|