File: maps.h

package info (click to toggle)
fenics-basix 0.10.0.post0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,156 kB
  • sloc: cpp: 23,435; python: 10,829; makefile: 43; sh: 26
file content (162 lines) | stat: -rw-r--r-- 4,963 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Copyright (c) 2021-2022 Matthew Scroggs and Garth N. Wells
// FEniCS Project
// SPDX-License-Identifier:    MIT

#pragma once

#include "mdspan.hpp"
#include "types.h"
#include <algorithm>
#include <stdexcept>
#include <type_traits>

/// Information about finite element maps
namespace basix::maps
{

namespace impl
{
/// @private These structs are used to get the float/value type from a
/// template argument, including support for complex types.
template <typename T, typename = void>
struct scalar_value_type
{
  /// @internal
  typedef T value_type;
};
/// @private
template <typename T>
struct scalar_value_type<T, std::void_t<typename T::value_type>>
{
  typedef typename T::value_type value_type;
};
/// @private Convenience typedef
template <typename T>
using scalar_value_type_t = typename scalar_value_type<T>::value_type;
} // namespace impl

/// Map type
enum class type
{
  identity = 0,
  L2Piola = 1,
  covariantPiola = 2,
  contravariantPiola = 3,
  doubleCovariantPiola = 4,
  doubleContravariantPiola = 5,
};

/// @brief L2 Piola map
template <typename O, typename P, typename Q, typename R>
void l2_piola(O&& r, const P& U, const Q& /*J*/, double detJ, const R& /*K*/)
{
  assert(U.extent(0) == r.extent(0));
  assert(U.extent(1) == r.extent(1));
  for (std::size_t i = 0; i < U.extent(0); ++i)
    for (std::size_t j = 0; j < U.extent(1); ++j)
      r(i, j) = U(i, j) / detJ;
}

/// @brief  Covariant Piola map
template <typename O, typename P, typename Q, typename R>
void covariant_piola(O&& r, const P& U, const Q& /*J*/, double /*detJ*/,
                     const R& K)
{
  using T = typename std::decay_t<O>::value_type;
  using Z = typename impl::scalar_value_type_t<T>;
  for (std::size_t p = 0; p < U.extent(0); ++p)
  {
    // r_p = K^T U_p, where p indicates the p-th row
    for (std::size_t i = 0; i < r.extent(1); ++i)
    {
      T acc = 0;
      for (std::size_t k = 0; k < K.extent(0); ++k)
        acc += static_cast<Z>(K(k, i)) * U(p, k);
      r(p, i) = acc;
    }
  }
}

/// @brief Contravariant Piola map
template <typename O, typename P, typename Q, typename R>
void contravariant_piola(O&& r, const P& U, const Q& J, double detJ,
                         const R& /*K*/)
{
  using T = typename std::decay_t<O>::value_type;
  using Z = typename impl::scalar_value_type_t<T>;
  for (std::size_t p = 0; p < U.extent(0); ++p)
  {
    for (std::size_t i = 0; i < r.extent(1); ++i)
    {
      T acc = 0;
      for (std::size_t k = 0; k < J.extent(1); ++k)
        acc += static_cast<Z>(J(i, k)) * U(p, k);
      r(p, i) = acc;
    }
  }

  std::transform(r.data_handle(), r.data_handle() + r.size(), r.data_handle(),
                 [detJ](auto ri) { return ri / static_cast<Z>(detJ); });
}

/// @brief Double covariant Piola map
template <typename O, typename P, typename Q, typename R>
void double_covariant_piola(O&& r, const P& U, const Q& /*J*/, double /*detJ*/,
                            const R& K)
{
  using T = typename std::decay_t<O>::value_type;
  using Z = typename impl::scalar_value_type_t<T>;
  for (std::size_t p = 0; p < U.extent(0); ++p)
  {
    md::mdspan<const T, md::dextents<std::size_t, 2>> _U(
        U.data_handle() + p * U.extent(1), K.extent(0), K.extent(0));
    md::mdspan<T, md::dextents<std::size_t, 2>> _r(
        r.data_handle() + p * r.extent(1), K.extent(1), K.extent(1));
    // _r = K^T _U K
    for (std::size_t i = 0; i < _r.extent(0); ++i)
    {
      for (std::size_t j = 0; j < _r.extent(1); ++j)
      {
        T acc = 0;
        for (std::size_t k = 0; k < K.extent(0); ++k)
          for (std::size_t l = 0; l < _U.extent(1); ++l)
            acc += static_cast<Z>(K(k, i)) * _U(k, l) * static_cast<Z>(K(l, j));
        _r(i, j) = acc;
      }
    }
  }
}

/// @brief Double contravariant Piola map
template <typename O, typename P, typename Q, typename R>
void double_contravariant_piola(O&& r, const P& U, const Q& J, double detJ,
                                const R& /*K*/)
{
  using T = typename std::decay_t<O>::value_type;
  using Z = typename impl::scalar_value_type_t<T>;
  for (std::size_t p = 0; p < U.extent(0); ++p)
  {
    md::mdspan<const T, md::dextents<std::size_t, 2>> _U(
        U.data_handle() + p * U.extent(1), J.extent(1), J.extent(1));
    md::mdspan<T, md::dextents<std::size_t, 2>> _r(
        r.data_handle() + p * r.extent(1), J.extent(0), J.extent(0));

    // _r = J U J^T
    for (std::size_t i = 0; i < _r.extent(0); ++i)
    {
      for (std::size_t j = 0; j < _r.extent(1); ++j)
      {
        T acc = 0;
        for (std::size_t k = 0; k < J.extent(1); ++k)
          for (std::size_t l = 0; l < _U.extent(1); ++l)
            acc += static_cast<Z>(J(i, k)) * _U(k, l) * static_cast<Z>(J(j, l));
        _r(i, j) = acc;
      }
    }
  }

  std::transform(r.data_handle(), r.data_handle() + r.size(), r.data_handle(),
                 [detJ](auto ri) { return ri / static_cast<Z>(detJ * detJ); });
}

} // namespace basix::maps