1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
// Copyright (C) 2021-2024 Igor Baratta and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "mdspan.hpp"
#include "types.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <concepts>
#include <span>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
extern "C"
{
void ssyevd_(char* jobz, char* uplo, int* n, float* a, int* lda, float* w,
float* work, int* lwork, int* iwork, int* liwork, int* info);
void dsyevd_(char* jobz, char* uplo, int* n, double* a, int* lda, double* w,
double* work, int* lwork, int* iwork, int* liwork, int* info);
void sgesv_(int* N, int* NRHS, float* A, int* LDA, int* IPIV, float* B,
int* LDB, int* INFO);
void dgesv_(int* N, int* NRHS, double* A, int* LDA, int* IPIV, double* B,
int* LDB, int* INFO);
void sgemm_(char* transa, char* transb, int* m, int* n, int* k, float* alpha,
float* a, int* lda, float* b, int* ldb, float* beta, float* c,
int* ldc);
void dgemm_(char* transa, char* transb, int* m, int* n, int* k, double* alpha,
double* a, int* lda, double* b, int* ldb, double* beta, double* c,
int* ldc);
int sgetrf_(const int* m, const int* n, float* a, const int* lda, int* lpiv,
int* info);
int dgetrf_(const int* m, const int* n, double* a, const int* lda, int* lpiv,
int* info);
}
/// @brief Mathematical functions.
///
/// @note Functions in this namespace are designed to be called multiple
/// times at runtime, so their performance is critical.
namespace basix::math
{
namespace impl
{
/// @brief Compute C = alpha A * B + beta C using BLAS (GEMM).
/// @param[in] A Input matrix.
/// @param[in] B Input matrix.
/// @param[in] alpha
/// @param[in] beta
template <std::floating_point T>
void dot_blas(std::span<const T> A, std::array<std::size_t, 2> Ashape,
std::span<const T> B, std::array<std::size_t, 2> Bshape,
std::span<T> C, T alpha = 1, T beta = 0)
{
static_assert(std::is_same_v<T, float> or std::is_same_v<T, double>);
assert(Ashape[1] == Bshape[0]);
assert(C.size() == Ashape[0] * Bshape[1]);
int M = Ashape[0];
int N = Bshape[1];
int K = Ashape[1];
int lda = K;
int ldb = N;
int ldc = N;
char trans = 'N';
if constexpr (std::is_same_v<T, float>)
{
sgemm_(&trans, &trans, &N, &M, &K, &alpha, const_cast<T*>(B.data()), &ldb,
const_cast<T*>(A.data()), &lda, &beta, C.data(), &ldc);
}
else if constexpr (std::is_same_v<T, double>)
{
dgemm_(&trans, &trans, &N, &M, &K, &alpha, const_cast<T*>(B.data()), &ldb,
const_cast<T*>(A.data()), &lda, &beta, C.data(), &ldc);
}
}
} // namespace impl
/// @brief Compute the outer product of vectors u and v.
/// @param u The first vector.
/// @param v The second vector.
/// @return The outer product. The type will be the same as `u`.
template <typename U, typename V>
std::pair<std::vector<typename U::value_type>, std::array<std::size_t, 2>>
outer(const U& u, const V& v)
{
std::vector<typename U::value_type> result(u.size() * v.size());
for (std::size_t i = 0; i < u.size(); ++i)
for (std::size_t j = 0; j < v.size(); ++j)
result[i * v.size() + j] = u[i] * v[j];
return {std::move(result), {u.size(), v.size()}};
}
/// @brief Compute the cross product u x v.
/// @param u The first vector. It must has size 3.
/// @param v The second vector. It must has size 3.
/// @return The cross product `u x v`. The type will be the same as `u`.
template <typename U, typename V>
std::array<typename U::value_type, 3> cross(const U& u, const V& v)
{
assert(u.size() == 3);
assert(v.size() == 3);
return {u[1] * v[2] - u[2] * v[1], u[2] * v[0] - u[0] * v[2],
u[0] * v[1] - u[1] * v[0]};
}
/// @brief Compute the eigenvalues and eigenvectors of a square
/// Hermitian matrix A.
/// @param[in] A Input matrix, row-major storage.
/// @param[in] n Number of rows.
/// @return Eigenvalues (0) and eigenvectors (1). The eigenvector array
/// uses column-major storage, which each column being an eigenvector.
/// @pre The matrix `A` must be symmetric.
template <std::floating_point T>
std::pair<std::vector<T>, std::vector<T>> eigh(std::span<const T> A,
std::size_t n)
{
// Copy A
std::vector<T> M(A.begin(), A.end());
// Allocate storage for eigenvalues
std::vector<T> w(n, 0);
int N = n;
char jobz = 'V'; // Compute eigenvalues and eigenvectors
char uplo = 'L'; // Lower
int ldA = n;
int lwork = -1;
int liwork = -1;
int info;
std::vector<T> work(1);
std::vector<int> iwork(1);
// Query optimal workspace size
if constexpr (std::is_same_v<T, float>)
{
ssyevd_(&jobz, &uplo, &N, M.data(), &ldA, w.data(), work.data(), &lwork,
iwork.data(), &liwork, &info);
}
else if constexpr (std::is_same_v<T, double>)
{
dsyevd_(&jobz, &uplo, &N, M.data(), &ldA, w.data(), work.data(), &lwork,
iwork.data(), &liwork, &info);
}
if (info != 0)
throw std::runtime_error("Could not find workspace size for syevd.");
// Solve eigen problem
work.resize(work[0]);
iwork.resize(iwork[0]);
lwork = work.size();
liwork = iwork.size();
if constexpr (std::is_same_v<T, float>)
{
ssyevd_(&jobz, &uplo, &N, M.data(), &ldA, w.data(), work.data(), &lwork,
iwork.data(), &liwork, &info);
}
else if constexpr (std::is_same_v<T, double>)
{
dsyevd_(&jobz, &uplo, &N, M.data(), &ldA, w.data(), work.data(), &lwork,
iwork.data(), &liwork, &info);
}
if (info != 0)
throw std::runtime_error("Eigenvalue computation did not converge.");
return {std::move(w), std::move(M)};
}
/// @brief Solve A X = B.
/// @param[in] A The matrix.
/// @param[in] B Right-hand side matrix/vector.
/// @return A^{-1} B.
template <std::floating_point T>
std::vector<T> solve(md::mdspan<const T, md::dextents<std::size_t, 2>> A,
md::mdspan<const T, md::dextents<std::size_t, 2>> B)
{
// Copy A and B to column-major storage
mdex::mdarray<T, md::dextents<std::size_t, 2>, md::layout_left> _A(
A.extents()),
_B(B.extents());
for (std::size_t i = 0; i < A.extent(0); ++i)
for (std::size_t j = 0; j < A.extent(1); ++j)
_A(i, j) = A(i, j);
for (std::size_t i = 0; i < B.extent(0); ++i)
for (std::size_t j = 0; j < B.extent(1); ++j)
_B(i, j) = B(i, j);
int N = _A.extent(0);
int nrhs = _B.extent(1);
int lda = _A.extent(0);
int ldb = _B.extent(0);
// Pivot indices that define the permutation matrix for the LU solver
std::vector<int> piv(N);
int info;
if constexpr (std::is_same_v<T, float>)
sgesv_(&N, &nrhs, _A.data(), &lda, piv.data(), _B.data(), &ldb, &info);
else if constexpr (std::is_same_v<T, double>)
dgesv_(&N, &nrhs, _A.data(), &lda, piv.data(), _B.data(), &ldb, &info);
if (info != 0)
throw std::runtime_error("Call to dgesv failed: " + std::to_string(info));
// Copy result to row-major storage
std::vector<T> rb(_B.extent(0) * _B.extent(1));
md::mdspan<T, md::dextents<std::size_t, 2>> r(rb.data(), _B.extents());
for (std::size_t i = 0; i < _B.extent(0); ++i)
for (std::size_t j = 0; j < _B.extent(1); ++j)
r(i, j) = _B(i, j);
return rb;
}
/// @brief Check if A is a singular matrix.
/// @param[in] A The matrix.
/// @return A bool indicating if the matrix is singular.
template <std::floating_point T>
bool is_singular(md::mdspan<const T, md::dextents<std::size_t, 2>> A)
{
// Copy to column major matrix
mdex::mdarray<T, md::dextents<std::size_t, 2>, md::layout_left> _A(
A.extents());
for (std::size_t i = 0; i < A.extent(0); ++i)
for (std::size_t j = 0; j < A.extent(1); ++j)
_A(i, j) = A(i, j);
std::vector<T> B(A.extent(1), 1);
int N = _A.extent(0);
int nrhs = 1;
int lda = _A.extent(0);
int ldb = B.size();
// Pivot indices that define the permutation matrix for the LU solver
std::vector<int> piv(N);
int info;
if constexpr (std::is_same_v<T, float>)
sgesv_(&N, &nrhs, _A.data(), &lda, piv.data(), B.data(), &ldb, &info);
else if constexpr (std::is_same_v<T, double>)
dgesv_(&N, &nrhs, _A.data(), &lda, piv.data(), B.data(), &ldb, &info);
if (info < 0)
{
throw std::runtime_error("dgesv failed due to invalid value: "
+ std::to_string(info));
}
else if (info > 0)
return true;
else
return false;
}
/// @brief Compute the LU decomposition of the transpose of a square
/// matrix A.
/// @param[in,out] A The matrix.
/// @return The LU permutation, in prepared format (see
/// precompute::prepare_permutation).
template <std::floating_point T>
std::vector<std::size_t>
transpose_lu(std::pair<std::vector<T>, std::array<std::size_t, 2>>& A)
{
std::size_t dim = A.second[0];
assert(dim == A.second[1]);
int N = dim;
int info;
std::vector<int> lu_perm(dim);
// Comput LU decomposition of M
if constexpr (std::is_same_v<T, float>)
sgetrf_(&N, &N, A.first.data(), &N, lu_perm.data(), &info);
else if constexpr (std::is_same_v<T, double>)
dgetrf_(&N, &N, A.first.data(), &N, lu_perm.data(), &info);
if (info != 0)
{
throw std::runtime_error("LU decomposition failed: "
+ std::to_string(info));
}
std::vector<std::size_t> perm(dim);
for (std::size_t i = 0; i < dim; ++i)
perm[i] = static_cast<std::size_t>(lu_perm[i] - 1);
return perm;
}
/// @brief Compute C = alpha A * B + beta C
/// @param[in] A Input matrix
/// @param[in] B Input matrix
/// @param[out] C Output matrix. Must be sized correctly before calling
/// this function.
/// @param[in] alpha
/// @param[in] beta
template <typename U, typename V, typename W>
void dot(const U& A, const V& B, W&& C,
typename std::decay_t<U>::value_type alpha = 1,
typename std::decay_t<U>::value_type beta = 0)
{
using T = typename std::decay_t<U>::value_type;
assert(A.extent(1) == B.extent(0));
assert(C.extent(0) == A.extent(0));
assert(C.extent(1) == B.extent(1));
if (A.extent(0) * B.extent(1) * A.extent(1) < 256)
{
for (std::size_t i = 0; i < A.extent(0); ++i)
{
for (std::size_t j = 0; j < B.extent(1); ++j)
{
T C0 = C(i, j);
C(i, j) = 0;
T& _C = C(i, j);
for (std::size_t k = 0; k < A.extent(1); ++k)
_C += A(i, k) * B(k, j);
_C = alpha * _C + beta * C0;
}
}
}
else
{
static_assert(std::is_same_v<typename std::decay_t<U>::layout_type,
md::layout_right>);
static_assert(std::is_same_v<typename std::decay_t<V>::layout_type,
md::layout_right>);
static_assert(std::is_same_v<typename std::decay_t<W>::layout_type,
md::layout_right>);
static_assert(std::is_same_v<typename std::decay_t<V>::value_type, T>);
static_assert(std::is_same_v<typename std::decay_t<W>::value_type, T>);
impl::dot_blas<T>(
std::span(A.data_handle(), A.size()), {A.extent(0), A.extent(1)},
std::span(B.data_handle(), B.size()), {B.extent(0), B.extent(1)},
std::span(C.data_handle(), C.size()), alpha, beta);
}
}
/// @brief Build an identity matrix.
/// @param[in] n The number of rows/columns.
/// @return Identity matrix using row-major storage.
template <std::floating_point T>
std::vector<T> eye(std::size_t n)
{
std::vector<T> I(n * n, 0);
md::mdspan<T, md::dextents<std::size_t, 2>> Iview(I.data(), n, n);
for (std::size_t i = 0; i < n; ++i)
Iview(i, i) = 1;
return I;
}
/// @brief Orthogonalise the rows of a matrix (in place).
/// @param[in] wcoeffs The matrix.
/// @param[in] start The row to start from. The rows before this should
/// already be orthogonal.
template <std::floating_point T>
void orthogonalise(md::mdspan<T, md::dextents<std::size_t, 2>> wcoeffs,
std::size_t start = 0)
{
for (std::size_t i = start; i < wcoeffs.extent(0); ++i)
{
T norm = 0;
for (std::size_t k = 0; k < wcoeffs.extent(1); ++k)
norm += wcoeffs(i, k) * wcoeffs(i, k);
norm = std::sqrt(norm);
if (norm < 2 * std::numeric_limits<T>::epsilon())
{
throw std::runtime_error("Cannot orthogonalise the rows of a matrix "
"with incomplete row rank");
}
for (std::size_t k = 0; k < wcoeffs.extent(1); ++k)
wcoeffs(i, k) /= norm;
for (std::size_t j = i + 1; j < wcoeffs.extent(0); ++j)
{
T a = 0;
for (std::size_t k = 0; k < wcoeffs.extent(1); ++k)
a += wcoeffs(i, k) * wcoeffs(j, k);
for (std::size_t k = 0; k < wcoeffs.extent(1); ++k)
wcoeffs(j, k) -= a * wcoeffs(i, k);
}
}
}
} // namespace basix::math
|