1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
// Copyright (c) 2020 Chris Richardson & Matthew Scroggs
// FEniCS Project
// SPDX-License-Identifier: MIT
#include "moments.h"
#include "cell.h"
#include "finite-element.h"
#include "math.h"
#include "quadrature.h"
#include "types.h"
using namespace basix;
namespace
{
template <typename T, std::size_t d>
using mdspan_t = md::mdspan<T, md::dextents<std::size_t, d>>;
template <typename T, std::size_t d>
using mdarray_t = mdex::mdarray<T, md::dextents<std::size_t, d>>;
//----------------------------------------------------------------------------
std::vector<int> axis_points(const cell::type celltype)
{
switch (celltype)
{
case cell::type::interval:
return {1};
case cell::type::triangle:
return {1, 2};
case cell::type::quadrilateral:
return {1, 2};
case cell::type::tetrahedron:
return {1, 2, 3};
case cell::type::hexahedron:
return {1, 2, 4};
default:
throw std::runtime_error(
"Integrals of this entity type not yet implemented.");
}
}
//----------------------------------------------------------------------------
/// Map points defined on a cell entity into the full cell space
/// @param[in] celltype0 Parent cell type
/// @param[in] celltype1 Sub-entity of `celltype0` type
/// @param[in] x Coordinates defined on an entity of type `celltype1`
/// @return (0) Coordinates of points in the full space of `celltype1`
/// (the shape is (num_entities, num points per entity, tdim of
/// celltype0) and (1) local axes on each entity (num_entities,
/// entity_dim, tdim).
template <std::floating_point T>
std::pair<std::vector<mdarray_t<T, 2>>, mdarray_t<T, 3>>
map_points(const cell::type celltype0, const cell::type celltype1,
mdspan_t<const T, 2> x)
{
const std::size_t tdim = cell::topological_dimension(celltype0);
std::size_t entity_dim = cell::topological_dimension(celltype1);
std::size_t num_entities = cell::num_sub_entities(celltype0, entity_dim);
std::vector<mdarray_t<T, 2>> p(num_entities,
mdarray_t<T, 2>(x.extent(0), tdim));
mdarray_t<T, 3> axes(num_entities, entity_dim, tdim);
const std::vector<int> axis_pts = axis_points(celltype0);
for (std::size_t e = 0; e < num_entities; ++e)
{
// Get entity geometry
const auto [entity_buffer, eshape]
= cell::sub_entity_geometry<T>(celltype0, entity_dim, e);
mdspan_t<const T, 2> entity_x(entity_buffer.data(), eshape);
// Axes on the cell entity
for (std::size_t i = 0; i < axes.extent(1); ++i)
for (std::size_t j = 0; j < axes.extent(2); ++j)
axes(e, i, j) = entity_x(axis_pts[i], j) - entity_x(0, j);
// Compute x = x0 + \Delta x
std::vector<T> axes_b(axes.extent(1) * axes.extent(2));
mdspan_t<T, 2> axes_e(axes_b.data(), axes.extent(1), axes.extent(2));
for (std::size_t i = 0; i < axes_e.extent(0); ++i)
for (std::size_t j = 0; j < axes_e.extent(1); ++j)
axes_e(i, j) = axes(e, i, j);
std::vector<T> dxbuffer(x.extent(0) * axes_e.extent(1));
mdspan_t<T, 2> dx(dxbuffer.data(), x.extent(0), axes_e.extent(1));
math::dot(x, axes_e, dx);
for (std::size_t i = 0; i < p[e].extent(0); ++i)
for (std::size_t j = 0; j < p[e].extent(1); ++j)
p[e](i, j) = entity_x(0, j) + dx(i, j);
}
return {p, axes};
}
//----------------------------------------------------------------------------
} // namespace
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::tuple<std::vector<std::vector<T>>, std::array<std::size_t, 2>,
std::vector<std::vector<T>>, std::array<std::size_t, 4>>
moments::make_integral_moments(const FiniteElement<T>& V, cell::type celltype,
polyset::type ptype, std::size_t value_size,
int q_deg)
{
const cell::type sub_celltype = V.cell_type();
const std::size_t entity_dim = cell::topological_dimension(sub_celltype);
if (entity_dim == 0)
throw std::runtime_error("Cannot integrate over a dimension 0 entity.");
const std::size_t num_entities = cell::num_sub_entities(celltype, entity_dim);
// Get the quadrature points and weights
const auto [_pts, wts] = quadrature::make_quadrature<T>(
quadrature::type::Default, sub_celltype,
polyset::superset(sub_celltype, V.polyset_type(),
polyset::restriction(ptype, celltype, sub_celltype)),
q_deg);
mdspan_t<const T, 2> pts(_pts.data(), wts.size(), _pts.size() / wts.size());
// Evaluate moment space at quadrature points
assert(std::accumulate(V.value_shape().begin(), V.value_shape().end(), 1,
std::multiplies{})
== 1);
const auto [phib, phishape] = V.tabulate(0, pts);
mdspan_t<const T, 4> phi(phib.data(), phishape);
// Pad out \phi moment is against a vector-valued function
const std::size_t vdim = value_size == 1 ? 1 : entity_dim;
// Storage for the interpolation matrix
const std::size_t num_dofs = vdim * phi.extent(2);
const std::array<std::size_t, 4> Dshape
= {num_dofs, value_size, pts.extent(0), 1};
const std::size_t size
= std::reduce(Dshape.begin(), Dshape.end(), 1, std::multiplies{});
std::vector<std::vector<T>> Db(num_entities, std::vector<T>(size));
std::vector<mdspan_t<T, 4>> D;
// Map quadrature points onto facet (cell entity e)
const auto [points, axes] = map_points(celltype, sub_celltype, pts);
// -- Compute entity integral moments
// Iterate over cell entities
if (value_size == 1)
{
for (std::size_t e = 0; e < num_entities; ++e)
{
mdspan_t<T, 4>& _D = D.emplace_back(Db[e].data(), Dshape);
for (std::size_t i = 0; i < phi.extent(2); ++i)
for (std::size_t j = 0; j < wts.size(); ++j)
_D(i, 0, j, 0) = phi(0, j, i, 0) * wts[j];
}
}
else
{
for (std::size_t e = 0; e < num_entities; ++e)
{
mdspan_t<T, 4>& _D = D.emplace_back(Db[e].data(), Dshape);
// Loop over each 'dof' on an entity (moment basis function index)
for (std::size_t i = 0; i < phi.extent(2); ++i)
{
// TODO: Pad-out phi and call a updated
// make_dot_integral_moments
// FIXME: This assumed that the moment space has a certain
// mapping type
for (std::size_t d = 0; d < entity_dim; ++d)
{
// TODO: check that dof index is correct
const std::size_t dof = i * entity_dim + d;
for (std::size_t j = 0; j < value_size; ++j)
for (std::size_t k = 0; k < wts.size(); ++k)
_D(dof, j, k, 0) = phi(0, k, i, 0) * wts[k] * axes(e, d, j);
}
}
}
}
const std::array<std::size_t, 2> pshape
= {points.front().extent(0), points.front().extent(1)};
std::vector<std::vector<T>> pb;
for (const mdarray_t<T, 2>& p : points)
pb.emplace_back(p.data(), p.data() + p.size());
return {pb, pshape, Db, Dshape};
}
//----------------------------------------------------------------------------
template <std::floating_point T>
std::tuple<std::vector<std::vector<T>>, std::array<std::size_t, 2>,
std::vector<std::vector<T>>, std::array<std::size_t, 4>>
moments::make_dot_integral_moments(const FiniteElement<T>& V,
cell::type celltype, polyset::type ptype,
std::size_t value_size, int q_deg)
{
const cell::type sub_celltype = V.cell_type();
const std::size_t entity_dim = cell::topological_dimension(sub_celltype);
const std::size_t num_entities = cell::num_sub_entities(celltype, entity_dim);
const auto [_pts, wts] = quadrature::make_quadrature<T>(
quadrature::type::Default, sub_celltype,
polyset::superset(sub_celltype, V.polyset_type(),
polyset::restriction(ptype, celltype, sub_celltype)),
q_deg);
mdspan_t<const T, 2> pts(_pts.data(), wts.size(), _pts.size() / wts.size());
// If this is always true, value_size input can be removed
assert(std::size_t(cell::topological_dimension(celltype)) == value_size);
// Evaluate moment space at quadrature points
const auto [phib, phishape] = V.tabulate(0, pts);
mdspan_t<const T, 4> phi(phib.data(), phishape);
assert(phi.extent(3) == entity_dim);
// Note:
// Number of quadrature points per entity: phi.extent(0)
// Dimension of the moment space on each entity: phi.extent(1)
// Value size of the moment function: phi.extent(2)
// Map quadrature points onto facet (cell entity e)
const auto [points, axes] = map_points(celltype, sub_celltype, pts);
// Shape (num dofs, value size, num points)
const std::array<std::size_t, 4> Dshape
= {phi.extent(2), value_size, pts.extent(0), 1};
const std::size_t size
= std::reduce(Dshape.begin(), Dshape.end(), 1, std::multiplies{});
std::vector<std::vector<T>> Db(num_entities, std::vector<T>(size));
std::vector<mdspan_t<T, 4>> D;
// Compute entity integral moments
// Iterate over cell entities
for (std::size_t e = 0; e < num_entities; ++e)
{
mdspan_t<T, 4>& _D = D.emplace_back(Db[e].data(), Dshape);
// Loop over each 'dof' on an entity (moment basis function index)
for (std::size_t dof = 0; dof < phi.extent(2); ++dof)
{
// Loop over value size of function to which moment function is
// applied
for (std::size_t j = 0; j < value_size; ++j)
{
// Loop over value topological dimension of cell entity (which
// is equal to phi.extent(3))
for (std::size_t d = 0; d < phi.extent(3); ++d)
{
// Add quadrature point on cell entity contributions
for (std::size_t k = 0; k < wts.size(); ++k)
_D(dof, j, k, 0) += wts[k] * phi(0, k, dof, d) * axes(e, d, j);
}
}
}
}
const std::array<std::size_t, 2> pshape
= {points.front().extent(0), points.front().extent(1)};
std::vector<std::vector<T>> pb;
for (const mdarray_t<T, 2>& p : points)
pb.emplace_back(p.data(), p.data() + p.size());
return {pb, pshape, Db, Dshape};
}
//----------------------------------------------------------------------------
template <std::floating_point T>
std::tuple<std::vector<std::vector<T>>, std::array<std::size_t, 2>,
std::vector<std::vector<T>>, std::array<std::size_t, 4>>
moments::make_tangent_integral_moments(const FiniteElement<T>& V,
cell::type celltype, polyset::type ptype,
std::size_t value_size, int q_deg)
{
const cell::type sub_celltype = V.cell_type();
const std::size_t entity_dim = cell::topological_dimension(sub_celltype);
const std::size_t num_entities = cell::num_sub_entities(celltype, entity_dim);
const std::size_t tdim = cell::topological_dimension(celltype);
// If this is always true, value_size input can be removed
assert(tdim == value_size);
if (entity_dim != 1)
throw std::runtime_error("Tangent is only well-defined on an edge.");
const auto [_pts, wts] = quadrature::make_quadrature<T>(
quadrature::type::Default, cell::type::interval,
polyset::superset(sub_celltype, V.polyset_type(),
polyset::restriction(ptype, celltype, sub_celltype)),
q_deg);
mdspan_t<const T, 2> pts(_pts.data(), wts.size(), _pts.size() / wts.size());
// Evaluate moment space at quadrature points
assert(std::accumulate(V.value_shape().begin(), V.value_shape().end(), 1,
std::multiplies{})
== 1);
const auto [phib, phishape] = V.tabulate(0, pts);
mdspan_t<const T, 4> phi(phib.data(), phishape);
const std::array<std::size_t, 2> pshape = {pts.extent(0), tdim};
std::vector<std::vector<T>> pb;
const std::array<std::size_t, 4> Dshape
= {phi.extent(2), value_size, phi.extent(1), 1};
const std::size_t size
= std::reduce(Dshape.begin(), Dshape.end(), 1, std::multiplies{});
std::vector<std::vector<T>> Db(num_entities, std::vector<T>(size));
std::vector<mdspan_t<T, 4>> D;
// Iterate over cell entities
for (std::size_t e = 0; e < num_entities; ++e)
{
const auto [ebuffer, eshape] = cell::sub_entity_geometry<T>(celltype, 1, e);
mdspan_t<const T, 2> edge_x(ebuffer.data(), eshape);
std::vector<T> tangent(edge_x.extent(1));
for (std::size_t i = 0; i < edge_x.extent(1); ++i)
tangent[i] = edge_x(1, i) - edge_x(0, i);
// No need to normalise the tangent, as the size of this is equal to
// the integral Jacobian
// Map quadrature points onto triangle edge
auto& _pb = pb.emplace_back(pshape[0] * pshape[1]);
mdspan_t<T, 2> _p(_pb.data(), pshape);
for (std::size_t i = 0; i < pts.extent(0); ++i)
for (std::size_t j = 0; j < _p.extent(1); ++j)
_p(i, j) = edge_x(0, j) + pts(i, 0) * tangent[j];
// Compute edge tangent integral moments
mdspan_t<T, 4>& _D = D.emplace_back(Db[e].data(), Dshape);
for (std::size_t i = 0; i < phi.extent(2); ++i)
{
for (std::size_t j = 0; j < value_size; ++j)
for (std::size_t k = 0; k < wts.size(); ++k)
_D(i, j, k, 0) = phi(0, k, i, 0) * wts[k] * tangent[j];
}
}
return {pb, pshape, Db, Dshape};
}
//----------------------------------------------------------------------------
template <std::floating_point T>
std::tuple<std::vector<std::vector<T>>, std::array<std::size_t, 2>,
std::vector<std::vector<T>>, std::array<std::size_t, 4>>
moments::make_normal_integral_moments(const FiniteElement<T>& V,
cell::type celltype, polyset::type ptype,
std::size_t value_size, int q_deg)
{
const std::size_t tdim = cell::topological_dimension(celltype);
assert(tdim == value_size);
const cell::type sub_celltype = V.cell_type();
const std::size_t entity_dim = cell::topological_dimension(sub_celltype);
const std::size_t num_entities = cell::num_sub_entities(celltype, entity_dim);
if (static_cast<int>(entity_dim) != static_cast<int>(tdim) - 1)
throw std::runtime_error("Normal is only well-defined on a facet.");
// Compute quadrature points for evaluating integral
const auto [_pts, wts] = quadrature::make_quadrature<T>(
quadrature::type::Default, sub_celltype,
polyset::superset(sub_celltype, V.polyset_type(),
polyset::restriction(ptype, celltype, sub_celltype)),
q_deg);
mdspan_t<const T, 2> pts(_pts.data(), wts.size(), _pts.size() / wts.size());
// Evaluate moment space at quadrature points
assert(std::accumulate(V.value_shape().begin(), V.value_shape().end(), 1,
std::multiplies{})
== 1);
const auto [phib, phishape] = V.tabulate(0, pts);
mdspan_t<const T, 4> phi(phib.data(), phishape);
// Storage for coordinates of evaluations points in the reference cell
const std::array<std::size_t, 2> pshape = {pts.extent(0), tdim};
std::vector<std::vector<T>> pb;
// Storage for interpolation matrix
const std::array<std::size_t, 4> Dshape
= {phi.extent(2), value_size, phi.extent(1), 1};
const std::size_t size
= std::reduce(Dshape.begin(), Dshape.end(), 1, std::multiplies{});
std::vector<std::vector<T>> Db(num_entities, std::vector<T>(size));
std::vector<mdspan_t<T, 4>> D;
// Evaluate moment space at quadrature points
// Iterate over cell entities
std::array<T, 3> normal;
for (std::size_t e = 0; e < num_entities; ++e)
{
// Map quadrature points onto facet (cell entity e)
const auto [ebuffer, eshape]
= cell::sub_entity_geometry<T>(celltype, tdim - 1, e);
mdspan_t<const T, 2> facet_x(ebuffer.data(), eshape);
auto& _pb = pb.emplace_back(pshape[0] * pshape[1]);
mdspan_t<T, 2> _p(_pb.data(), pshape);
if (tdim == 2)
{
// No need to normalise the normal, as the size of this is equal
// to the integral jacobian
std::array<T, 2> tangent
= {facet_x(1, 0) - facet_x(0, 0), facet_x(1, 1) - facet_x(0, 1)};
for (std::size_t p = 0; p < _p.extent(0); ++p)
for (std::size_t i = 0; i < _p.extent(1); ++i)
_p(p, i) = facet_x(0, i) + pts(p, 0) * tangent[i];
normal = {-tangent[1], tangent[0], 0.0};
}
else if (tdim == 3)
{
// No need to normalise the normal, as the size of this is equal
// to the integral Jacobian
std::array<T, 3> t0
= {facet_x(1, 0) - facet_x(0, 0), facet_x(1, 1) - facet_x(0, 1),
facet_x(1, 2) - facet_x(0, 2)};
std::array<T, 3> t1
= {facet_x(2, 0) - facet_x(0, 0), facet_x(2, 1) - facet_x(0, 1),
facet_x(2, 2) - facet_x(0, 2)};
for (std::size_t p = 0; p < _p.extent(0); ++p)
for (std::size_t i = 0; i < _p.extent(1); ++i)
_p(p, i) = facet_x(0, i) + pts(p, 0) * t0[i] + pts(p, 1) * t1[i];
normal = math::cross(t0, t1);
}
else
throw std::runtime_error("Normal on this cell cannot be computed.");
// Compute facet normal integral moments
mdspan_t<T, 4>& _D = D.emplace_back(Db[e].data(), Dshape);
for (std::size_t i = 0; i < phi.extent(2); ++i)
for (std::size_t j = 0; j < value_size; ++j)
for (std::size_t k = 0; k < _D.extent(2); ++k)
_D(i, j, k, 0) = phi(0, k, i, 0) * wts[k] * normal[j];
}
return {pb, pshape, Db, Dshape};
}
//----------------------------------------------------------------------------
/// @cond
template std::tuple<std::vector<std::vector<float>>, std::array<std::size_t, 2>,
std::vector<std::vector<float>>, std::array<std::size_t, 4>>
moments::make_integral_moments(const FiniteElement<float>&, cell::type,
polyset::type, std::size_t, int);
template std::tuple<
std::vector<std::vector<double>>, std::array<std::size_t, 2>,
std::vector<std::vector<double>>, std::array<std::size_t, 4>>
moments::make_integral_moments(const FiniteElement<double>&, cell::type,
polyset::type, std::size_t, int);
template std::tuple<std::vector<std::vector<float>>, std::array<std::size_t, 2>,
std::vector<std::vector<float>>, std::array<std::size_t, 4>>
moments::make_dot_integral_moments(const FiniteElement<float>&, cell::type,
polyset::type, std::size_t, int);
template std::tuple<
std::vector<std::vector<double>>, std::array<std::size_t, 2>,
std::vector<std::vector<double>>, std::array<std::size_t, 4>>
moments::make_dot_integral_moments(const FiniteElement<double>&, cell::type,
polyset::type, std::size_t, int);
template std::tuple<std::vector<std::vector<float>>, std::array<std::size_t, 2>,
std::vector<std::vector<float>>, std::array<std::size_t, 4>>
moments::make_tangent_integral_moments(const FiniteElement<float>&, cell::type,
polyset::type, std::size_t, int);
template std::tuple<
std::vector<std::vector<double>>, std::array<std::size_t, 2>,
std::vector<std::vector<double>>, std::array<std::size_t, 4>>
moments::make_tangent_integral_moments(const FiniteElement<double>&, cell::type,
polyset::type, std::size_t, int);
template std::tuple<std::vector<std::vector<float>>, std::array<std::size_t, 2>,
std::vector<std::vector<float>>, std::array<std::size_t, 4>>
moments::make_normal_integral_moments(const FiniteElement<float>&, cell::type,
polyset::type, std::size_t, int);
template std::tuple<
std::vector<std::vector<double>>, std::array<std::size_t, 2>,
std::vector<std::vector<double>>, std::array<std::size_t, 4>>
moments::make_normal_integral_moments(const FiniteElement<double>&, cell::type,
polyset::type, std::size_t, int);
/// @endcond
//----------------------------------------------------------------------------
|