1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
from collections.abc import Sequence
import enum
from typing import Annotated, overload
import numpy
from numpy.typing import NDArray, ArrayLike
def topology(arg: CellType, /) -> list[list[list[int]]]: ...
def geometry(arg: CellType, /) -> NDArray[numpy.float64]: ...
def sub_entity_type(arg0: CellType, arg1: int, arg2: int, /) -> CellType: ...
def sub_entity_connectivity(arg: CellType, /) -> list[list[list[list[int]]]]: ...
def sub_entity_geometry(arg0: CellType, arg1: int, arg2: int, /) -> NDArray[numpy.float64]: ...
def subentity_types(arg: CellType, /) -> list[list[CellType]]: ...
def sobolev_space_intersection(arg0: SobolevSpace, arg1: SobolevSpace, /) -> SobolevSpace: ...
class LatticeType(enum.IntEnum):
"""Lattice type."""
equispaced = 0
gll = 1
chebyshev = 2
gl = 4
class LatticeSimplexMethod(enum.IntEnum):
"""Lattice simplex method."""
none = 0
warp = 1
isaac = 2
centroid = 3
class PolynomialType(enum.IntEnum):
"""Polynomial type."""
legendre = 0
lagrange = 1
bernstein = 2
def tabulate_polynomials(arg0: PolynomialType, arg1: CellType, arg2: int, arg3: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='C', writable=False)], /) -> NDArray[numpy.float64]: ...
def polynomials_dim(arg0: PolynomialType, arg1: CellType, arg2: int, /) -> int: ...
def create_lattice(arg0: CellType, arg1: int, arg2: LatticeType, arg3: bool, arg4: LatticeSimplexMethod, /) -> NDArray[numpy.float64]: ...
class MapType(enum.IntEnum):
"""Element map type."""
identity = 0
L2Piola = 1
covariantPiola = 2
contravariantPiola = 3
doubleCovariantPiola = 4
doubleContravariantPiola = 5
class SobolevSpace(enum.IntEnum):
"""Sobolev space."""
L2 = 0
H1 = 1
H2 = 2
H3 = 3
HInf = 8
HDiv = 10
HCurl = 11
HEin = 12
HDivDiv = 13
class QuadratureType(enum.IntEnum):
"""Quadrature type."""
default = 0
gauss_jacobi = 1
gll = 2
xiao_gimbutas = 3
class CellType(enum.IntEnum):
"""Cell type."""
point = 0
interval = 1
triangle = 2
tetrahedron = 3
quadrilateral = 4
hexahedron = 5
prism = 6
pyramid = 7
def cell_volume(arg: CellType, /) -> float: ...
def cell_facet_normals(arg: CellType, /) -> NDArray[numpy.float64]: ...
def cell_facet_reference_volumes(arg: CellType, /) -> NDArray[numpy.float64]: ...
def cell_facet_outward_normals(arg: CellType, /) -> NDArray[numpy.float64]: ...
def cell_facet_orientations(arg: CellType, /) -> list[int]: ...
def cell_facet_jacobians(arg: CellType, /) -> NDArray[numpy.float64]: ...
def cell_edge_jacobians(arg: CellType, /) -> NDArray[numpy.float64]: ...
class ElementFamily(enum.IntEnum):
"""Finite element family."""
custom = 0
P = 1
BDM = 4
RT = 2
N1E = 3
N2E = 5
Regge = 7
HHJ = 11
bubble = 9
serendipity = 10
DPC = 8
CR = 6
Hermite = 12
iso = 13
class LagrangeVariant(enum.IntEnum):
"""Lagrange element variant."""
unset = 0
equispaced = 1
gll_warped = 2
gll_isaac = 3
gll_centroid = 4
chebyshev_warped = 5
chebyshev_isaac = 6
chebyshev_centroid = 7
gl_warped = 8
gl_isaac = 9
gl_centroid = 10
legendre = 11
bernstein = 12
class DPCVariant(enum.IntEnum):
"""DPC variant."""
unset = 0
simplex_equispaced = 1
simplex_gll = 2
horizontal_equispaced = 3
horizontal_gll = 4
diagonal_equispaced = 5
diagonal_gll = 6
legendre = 7
def create_element(arg0: ElementFamily, arg1: CellType, arg2: int, arg3: LagrangeVariant, arg4: DPCVariant, arg5: bool, arg6: Sequence[int], arg7: str, /) -> FiniteElement_float32 | FiniteElement_float64: ...
def create_tp_element(arg0: ElementFamily, arg1: CellType, arg2: int, arg3: LagrangeVariant, arg4: DPCVariant, arg5: bool, arg6: str, /) -> FiniteElement_float32 | FiniteElement_float64: ...
def tp_factors(arg0: ElementFamily, arg1: CellType, arg2: int, arg3: LagrangeVariant, arg4: DPCVariant, arg5: bool, arg6: Sequence[int], arg7: str, /) -> list[list[FiniteElement_float32]] | list[list[FiniteElement_float64]]: ...
def tp_dof_ordering(arg0: ElementFamily, arg1: CellType, arg2: int, arg3: LagrangeVariant, arg4: DPCVariant, arg5: bool, /) -> list[int]: ...
def lex_dof_ordering(arg0: ElementFamily, arg1: CellType, arg2: int, arg3: LagrangeVariant, arg4: DPCVariant, arg5: bool, /) -> list[int]: ...
class PolysetType(enum.IntEnum):
"""Polyset type."""
standard = 0
macroedge = 1
def superset(arg0: CellType, arg1: PolysetType, arg2: PolysetType, /) -> PolysetType: ...
def restriction(arg0: PolysetType, arg1: CellType, arg2: CellType, /) -> PolysetType: ...
def make_quadrature(arg0: QuadratureType, arg1: CellType, arg2: PolysetType, arg3: int, /) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]: ...
def gauss_jacobi_rule(arg0: float, arg1: int, /) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]: ...
@overload
def index(arg: int, /) -> int: ...
@overload
def index(arg0: int, arg1: int, /) -> int: ...
@overload
def index(arg0: int, arg1: int, arg2: int, /) -> int: ...
class FiniteElement_float32:
def tabulate(self, arg0: int, arg1: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='C', writable=False)], /) -> NDArray[numpy.float32]: ...
def __eq__(self, arg: object, /) -> bool: ...
def hash(self) -> int: ...
@overload
def permute_subentity_closure(self, arg0: Annotated[NDArray[numpy.int32], dict(shape=(None,), order='C')], arg1: int, arg2: CellType, /) -> None: ...
@overload
def permute_subentity_closure(self, arg0: Annotated[NDArray[numpy.int32], dict(shape=(None,), order='C')], arg1: int, arg2: CellType, arg3: int, /) -> None: ...
@overload
def permute_subentity_closure_inv(self, arg0: Annotated[NDArray[numpy.int32], dict(shape=(None,), order='C')], arg1: int, arg2: CellType, /) -> None: ...
@overload
def permute_subentity_closure_inv(self, arg0: Annotated[NDArray[numpy.int32], dict(shape=(None,), order='C')], arg1: int, arg2: CellType, arg3: int, /) -> None: ...
def push_forward(self, arg0: Annotated[NDArray[numpy.float32], dict(shape=(None, None, None), order='C', writable=False)], arg1: Annotated[NDArray[numpy.float32], dict(shape=(None, None, None), order='C', writable=False)], arg2: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='C', writable=False)], arg3: Annotated[NDArray[numpy.float32], dict(shape=(None, None, None), order='C', writable=False)], /) -> NDArray[numpy.float32]: ...
def pull_back(self, arg0: Annotated[NDArray[numpy.float32], dict(shape=(None, None, None), order='C', writable=False)], arg1: Annotated[NDArray[numpy.float32], dict(shape=(None, None, None), order='C', writable=False)], arg2: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='C', writable=False)], arg3: Annotated[NDArray[numpy.float32], dict(shape=(None, None, None), order='C', writable=False)], /) -> NDArray[numpy.float32]: ...
def T_apply(self, arg0: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='C')], arg1: int, arg2: int, /) -> None: ...
def Tt_apply_right(self, arg0: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='C')], arg1: int, arg2: int, /) -> None: ...
def Tt_inv_apply(self, arg0: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='C')], arg1: int, arg2: int, /) -> None: ...
def base_transformations(self) -> NDArray[numpy.float32]: ...
def entity_transformations(self) -> dict: ...
def get_tensor_product_representation(self) -> list[list[FiniteElement_float32]]: ...
@property
def degree(self) -> int: ...
@property
def embedded_superdegree(self) -> int: ...
@property
def embedded_subdegree(self) -> int: ...
@property
def cell_type(self) -> CellType: ...
@property
def polyset_type(self) -> PolysetType: ...
@property
def dim(self) -> int: ...
@property
def num_entity_dofs(self) -> list[list[int]]: ...
@property
def entity_dofs(self) -> list[list[list[int]]]: ...
@property
def num_entity_closure_dofs(self) -> list[list[int]]: ...
@property
def entity_closure_dofs(self) -> list[list[list[int]]]: ...
@property
def value_size(self) -> int: ...
@property
def value_shape(self) -> list[int]: ...
@property
def discontinuous(self) -> bool: ...
@property
def family(self) -> ElementFamily: ...
@property
def lagrange_variant(self) -> LagrangeVariant: ...
@property
def dpc_variant(self) -> DPCVariant: ...
@property
def dof_transformations_are_permutations(self) -> bool: ...
@property
def dof_transformations_are_identity(self) -> bool: ...
@property
def interpolation_is_identity(self) -> bool: ...
@property
def map_type(self) -> MapType: ...
@property
def sobolev_space(self) -> SobolevSpace: ...
@property
def points(self) -> Annotated[NDArray[numpy.float32], dict(shape=(None, None), writable=False)]: ...
@property
def interpolation_matrix(self) -> Annotated[NDArray[numpy.float32], dict(shape=(None, None), writable=False)]: ...
@property
def dual_matrix(self) -> Annotated[NDArray[numpy.float32], dict(shape=(None, None), writable=False)]: ...
@property
def coefficient_matrix(self) -> Annotated[NDArray[numpy.float32], dict(shape=(None, None), writable=False)]:
"""Coefficient matrix."""
@property
def wcoeffs(self) -> Annotated[NDArray[numpy.float32], dict(shape=(None, None), writable=False)]: ...
@property
def M(self) -> list[list[Annotated[NDArray[numpy.float32], dict(writable=False)]]]: ...
@property
def x(self) -> list[list[Annotated[NDArray[numpy.float32], dict(writable=False)]]]: ...
@property
def has_tensor_product_factorisation(self) -> bool: ...
@property
def interpolation_nderivs(self) -> int: ...
@property
def dof_ordering(self) -> list[int]: ...
@property
def dtype(self) -> str: ...
def create_custom_element_float32(cell_type: CellType, value_shape: Sequence[int], wcoeffs: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='C', writable=False)], x: Sequence[Sequence[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='C', writable=False)]]], M: Sequence[Sequence[Annotated[NDArray[numpy.float32], dict(shape=(None, None, None, None), order='C', writable=False)]]], interpolation_nderivs: int, map_type: MapType, sobolev_space: SobolevSpace, discontinuous: bool, embedded_subdegree: int, embedded_superdegree: int, poly_type: PolysetType) -> FiniteElement_float32: ...
@overload
def compute_interpolation_operator(arg0: FiniteElement_float32, arg1: FiniteElement_float32, /) -> NDArray[numpy.float32]: ...
@overload
def compute_interpolation_operator(arg0: FiniteElement_float64, arg1: FiniteElement_float64, /) -> NDArray[numpy.float64]: ...
def tabulate_polynomial_set(celltype: CellType, polytype: PolysetType, d: int, n: int, x: Annotated[ArrayLike, dict(dtype='float64', writable=False, shape=(None, None), order='C')]) -> Annotated[ArrayLike, dict(dtype='float64', )]: ...
class FiniteElement_float64:
def tabulate(self, arg0: int, arg1: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='C', writable=False)], /) -> NDArray[numpy.float64]: ...
def __eq__(self, arg: object, /) -> bool: ...
def hash(self) -> int: ...
@overload
def permute_subentity_closure(self, arg0: Annotated[NDArray[numpy.int32], dict(shape=(None,), order='C')], arg1: int, arg2: CellType, /) -> None: ...
@overload
def permute_subentity_closure(self, arg0: Annotated[NDArray[numpy.int32], dict(shape=(None,), order='C')], arg1: int, arg2: CellType, arg3: int, /) -> None: ...
@overload
def permute_subentity_closure_inv(self, arg0: Annotated[NDArray[numpy.int32], dict(shape=(None,), order='C')], arg1: int, arg2: CellType, /) -> None: ...
@overload
def permute_subentity_closure_inv(self, arg0: Annotated[NDArray[numpy.int32], dict(shape=(None,), order='C')], arg1: int, arg2: CellType, arg3: int, /) -> None: ...
def push_forward(self, arg0: Annotated[NDArray[numpy.float64], dict(shape=(None, None, None), order='C', writable=False)], arg1: Annotated[NDArray[numpy.float64], dict(shape=(None, None, None), order='C', writable=False)], arg2: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C', writable=False)], arg3: Annotated[NDArray[numpy.float64], dict(shape=(None, None, None), order='C', writable=False)], /) -> NDArray[numpy.float64]: ...
def pull_back(self, arg0: Annotated[NDArray[numpy.float64], dict(shape=(None, None, None), order='C', writable=False)], arg1: Annotated[NDArray[numpy.float64], dict(shape=(None, None, None), order='C', writable=False)], arg2: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C', writable=False)], arg3: Annotated[NDArray[numpy.float64], dict(shape=(None, None, None), order='C', writable=False)], /) -> NDArray[numpy.float64]: ...
def T_apply(self, arg0: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C')], arg1: int, arg2: int, /) -> None: ...
def Tt_apply_right(self, arg0: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C')], arg1: int, arg2: int, /) -> None: ...
def Tt_inv_apply(self, arg0: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C')], arg1: int, arg2: int, /) -> None: ...
def base_transformations(self) -> NDArray[numpy.float64]: ...
def entity_transformations(self) -> dict: ...
def get_tensor_product_representation(self) -> list[list[FiniteElement_float64]]: ...
@property
def degree(self) -> int: ...
@property
def embedded_superdegree(self) -> int: ...
@property
def embedded_subdegree(self) -> int: ...
@property
def cell_type(self) -> CellType: ...
@property
def polyset_type(self) -> PolysetType: ...
@property
def dim(self) -> int: ...
@property
def num_entity_dofs(self) -> list[list[int]]: ...
@property
def entity_dofs(self) -> list[list[list[int]]]: ...
@property
def num_entity_closure_dofs(self) -> list[list[int]]: ...
@property
def entity_closure_dofs(self) -> list[list[list[int]]]: ...
@property
def value_size(self) -> int: ...
@property
def value_shape(self) -> list[int]: ...
@property
def discontinuous(self) -> bool: ...
@property
def family(self) -> ElementFamily: ...
@property
def lagrange_variant(self) -> LagrangeVariant: ...
@property
def dpc_variant(self) -> DPCVariant: ...
@property
def dof_transformations_are_permutations(self) -> bool: ...
@property
def dof_transformations_are_identity(self) -> bool: ...
@property
def interpolation_is_identity(self) -> bool: ...
@property
def map_type(self) -> MapType: ...
@property
def sobolev_space(self) -> SobolevSpace: ...
@property
def points(self) -> Annotated[NDArray[numpy.float64], dict(shape=(None, None), writable=False)]: ...
@property
def interpolation_matrix(self) -> Annotated[NDArray[numpy.float64], dict(shape=(None, None), writable=False)]: ...
@property
def dual_matrix(self) -> Annotated[NDArray[numpy.float64], dict(shape=(None, None), writable=False)]: ...
@property
def coefficient_matrix(self) -> Annotated[NDArray[numpy.float64], dict(shape=(None, None), writable=False)]:
"""Coefficient matrix."""
@property
def wcoeffs(self) -> Annotated[NDArray[numpy.float64], dict(shape=(None, None), writable=False)]: ...
@property
def M(self) -> list[list[Annotated[NDArray[numpy.float64], dict(writable=False)]]]: ...
@property
def x(self) -> list[list[Annotated[NDArray[numpy.float64], dict(writable=False)]]]: ...
@property
def has_tensor_product_factorisation(self) -> bool: ...
@property
def interpolation_nderivs(self) -> int: ...
@property
def dof_ordering(self) -> list[int]: ...
@property
def dtype(self) -> str: ...
def create_custom_element_float64(cell_type: CellType, value_shape: Sequence[int], wcoeffs: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='C', writable=False)], x: Sequence[Sequence[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='C', writable=False)]]], M: Sequence[Sequence[Annotated[NDArray[numpy.float64], dict(shape=(None, None, None, None), order='C', writable=False)]]], interpolation_nderivs: int, map_type: MapType, sobolev_space: SobolevSpace, discontinuous: bool, embedded_subdegree: int, embedded_superdegree: int, poly_type: PolysetType) -> FiniteElement_float64: ...
|