File: finite_element.py

package info (click to toggle)
fenics-basix 0.10.0.post0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,156 kB
  • sloc: cpp: 23,435; python: 10,829; makefile: 43; sh: 26
file content (988 lines) | stat: -rw-r--r-- 32,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
# Copyright (C) 2023-2024 Matthew Scroggs
#
# This file is part of Basix (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    MIT
"""Functions for creating finite elements."""

import typing
from warnings import warn

import numpy as np
import numpy.typing as npt

from basix._basixcpp import DPCVariant, ElementFamily, LagrangeVariant
from basix._basixcpp import FiniteElement_float32 as _FiniteElement_float32
from basix._basixcpp import FiniteElement_float64 as _FiniteElement_float64
from basix._basixcpp import (
    create_custom_element_float32 as _create_custom_element_float32,
)
from basix._basixcpp import (
    create_custom_element_float64 as _create_custom_element_float64,
)
from basix._basixcpp import create_element as _create_element
from basix._basixcpp import create_tp_element as _create_tp_element
from basix._basixcpp import tp_dof_ordering as _tp_dof_ordering
from basix._basixcpp import lex_dof_ordering as _lex_dof_ordering
from basix._basixcpp import tp_factors as _tp_factors
from basix.cell import CellType, geometry, topology, facet_outward_normals
from basix import MapType
from basix.polynomials import PolysetType
from basix.sobolev_spaces import SobolevSpace

__all__ = [
    "FiniteElement",
    "create_element",
    "create_custom_element",
    "create_tp_element",
    "lex_dof_ordering",
    "string_to_family",
    "tp_factors",
    "tp_dof_ordering",
]


class FiniteElement:
    """Finite element class."""

    _e: typing.Union[_FiniteElement_float32, _FiniteElement_float64]

    def __init__(self, e: typing.Union[_FiniteElement_float32, _FiniteElement_float64]):
        """Initialise a finite element wrapper.

        Note:
            This initialiser is intended for internal library use.
        """
        self._e = e

    def tabulate(self, n: int, x: npt.NDArray) -> npt.ArrayLike:
        """Compute basis values and derivatives at set of points.

        Note:
            The version of ``FiniteElement::tabulate`` with the basis
            data as an out argument should be preferred for repeated
            call where performance is critical.

        Args:
            n: The order of derivatives, up to and including, to
                compute. Use 0 for the basis functions only.
            x: The points at which to compute the basis functions. The
                shape of x is (number of points, geometric dimension).

        Returns:
            The basis functions (and derivatives). The shape is
            ``(derivative, point, basis fn index, value index)``.

            * The first index is the derivative, with higher derivatives
                are stored in triangular (2D) or tetrahedral (3D)
                ordering, i.e. for the ``(x,y)`` derivatives in 2D:
                ``(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (3,0)...``.
                The function basix::indexing::idx can be used to find
                the appropriate derivative.

            * The second index is the point index

            * The fourth index is the basis function component. Its has size

            * The third index is the basis function index one for scalar
                basis functions.
        """
        return self._e.tabulate(n, x)

    def __eq__(self, other) -> bool:
        """Test element for equality."""
        try:
            return self._e == other._e
        except TypeError:
            return False

    def hash(self) -> int:
        """Hash."""
        return self._e.hash()

    def __hash__(self) -> int:
        """Hash."""
        return self.hash()

    def push_forward(self, U, J, detJ, K) -> npt.ArrayLike:
        """Map function values from the reference to a physical cell.

        This function can perform the mapping for multiple points,
        grouped by points that share a common Jacobian.

        Args:
            U: The function values on the reference cell. The indices are
                ``(Jacobian index, point index, components)``.
            J: The Jacobian of the mapping. The indices are ``(Jacobian
                index, J_i, J_j)``.
            detJ: The determinant of the Jacobian of the mapping. It has
                length ``J.shape(0)``.
            K: The inverse of the Jacobian of the
               mapping. The indices are ``(Jacobian index, K_i, K_j)``.

        Returns:
            The function values on the cell. The indices are ``(Jacobian
            index, point index, components)``.
        """
        return self._e.push_forward(U, J, detJ, K)

    def pull_back(
        self, u: npt.NDArray, J: npt.NDArray, detJ: npt.NDArray, K: npt.NDArray
    ) -> npt.ArrayLike:
        """Map function values from a physical cell to the reference.

        Args:
            u: The function values on the cell.
            J: The Jacobian of the mapping.
            detJ: The determinant of the Jacobian of the mapping.
            K: The inverse of the Jacobian of the mapping.

        Returns:
            The function values on the reference. The indices are
            ``(Jacobian index, point index, components``).
        """
        return self._e.pull_back(u, J, detJ, K)

    def T_apply(self, data, block_size, cell_info) -> None:
        """Apply DOF transformations to some data in-place.

        Note:
            This function is designed to be called at runtime, so its
            performance is critical.

        Args:
            data: The data
            block_size: The number of data points per DOF
            cell_info: The permutation info for the cell

        """
        self._e.T_apply(data, block_size, cell_info)

    def Tt_apply_right(self, data, block_size, cell_info) -> None:
        """Post-apply DOF transformations to some transposed data in-place.

        Note:
            This function is designed to be called at runtime, so its
            performance is critical.

        Args:
            data: The data.
            block_size: The number of data points per DOF.
            cell_info: The permutation info for the cell.
        """
        self._e.Tt_apply_right(data, block_size, cell_info)

    def Tt_inv_apply(self, data, block_size, cell_info) -> None:
        """Pre-apply inverse transpose DOF transformations to some data.

        Note:
            This function is designed to be called at runtime, so its
            performance is critical.

        Args:
            data: The data.
            block_size: The number of data points per DOF.
            cell_info: The permutation info for the cell.
        """
        self._e.Tt_inv_apply(data, block_size, cell_info)

    def base_transformations(self) -> npt.ArrayLike:
        r"""Get the base transformations.

        The base transformations represent the effect of rotating or
        reflecting a subentity of the cell on the numbering and
        orientation of the DOFs. This returns a list of matrices with
        one matrix for each subentity permutation in the following
        order:
        Reversing edge 0, reversing edge 1, ...
        Rotate face 0, reflect face 0, rotate face 1, reflect face 1, ...

        *Example: Order 3 Lagrange on a triangle*

        This space has 10 dofs arranged like:

        .. code-block::

            2
            |\
            6 4
            |  \
            5 9 3
            |    \
            0-7-8-1

        For this element, the base transformations are:
        [Matrix swapping 3 and 4,
        Matrix swapping 5 and 6,
        Matrix swapping 7 and 8]
        The first row shows the effect of reversing the diagonal edge. The
        second row shows the effect of reversing the vertical edge. The third
        row shows the effect of reversing the horizontal edge.

        *Example: Order 1 Raviart-Thomas on a triangle*

        This space has 3 dofs arranged like:

        .. code-block::

              |\
              | \
              |  \
            <-1   0
              |  / \
              | L ^ \
              |   |  \
               ---2---

        These DOFs are integrals of normal components over the edges: DOFs 0 and 2
        are oriented inward, DOF 1 is oriented outwards.
        For this element, the base transformation matrices are:

        .. code-block::

            0: [[-1, 0, 0],
                [ 0, 1, 0],
                [ 0, 0, 1]]
            1: [[1,  0, 0],
                [0, -1, 0],
                [0,  0, 1]]
            2: [[1, 0,  0],
                [0, 1,  0],
                [0, 0, -1]]


        The first matrix reverses DOF 0 (as this is on the first edge). The second
        matrix reverses DOF 1 (as this is on the second edge). The third matrix
        reverses DOF 2 (as this is on the third edge).

        *Example: DOFs on the face of Order 2 Nedelec first kind on a tetrahedron*

        On a face of this tetrahedron, this space has two face tangent DOFs:

        .. code-block::

            |\        |\
            | \       | \
            |  \      | ^\
            |   \     | | \
            | 0->\    | 1  \
            |     \   |     \
             ------    ------

        For these DOFs, the subblocks of the base transformation matrices are:

        .. code-block::

            rotation: [[-1, 1],
                       [ 1, 0]]
            reflection: [[0, 1],
                         [1, 0]]

        Returns:
            The base transformations for this element. The shape is
            ``(ntranformations, ndofs, ndofs)``.
        """
        return self._e.base_transformations()

    def entity_transformations(self) -> dict:
        """Entity dof transformation matrices.

        Returns:
            The base transformations for this element. The shape is
            ``(ntranformations, ndofs, ndofs)``.
        """
        return self._e.entity_transformations()

    def get_tensor_product_representation(self) -> list[list["FiniteElement"]]:
        """Get the tensor product representation of this element.

        Raises an exception if no such factorisation exists.

        The tensor product representation will be a vector of tuples.
        Each tuple contains a vector of finite elements, and a vector of
        integers. The vector of finite elements gives the elements on an
        interval that appear in the tensor product representation. The
        vector of integers gives the permutation between the numbering
        of the tensor product DOFs and the number of the DOFs of this
        Basix element.

        Returns:
            The tensor product representation
        """
        factors = self._e.get_tensor_product_representation()
        return [[FiniteElement(e) for e in elements] for elements in factors]

    def permute_subentity_closure(
        self,
        indices: npt.NDArray,
        cell_or_entity_info: int,
        entity_type: CellType,
        entity_index: typing.Optional[int] = None,
    ) -> npt.NDArray:
        """Permute DOF indices on the closure of a sub-entity.

        Args:
            indices: The indices to permute
            cell_or_entity_info: Bit packed entity info (if entity_index is None) or
                cell info (if entity_index is not None)
            entity_type: The cell type of the entity
            entity_index: The index of the entity
        """
        if entity_index is None:
            return np.array(
                self._e.permute_subentity_closure(indices, cell_or_entity_info, entity_type)
            )
        else:
            return np.array(
                self._e.permute_subentity_closure(
                    indices, cell_or_entity_info, entity_type, entity_index
                )
            )

    def permute_subentity_closure_inv(
        self,
        indices: npt.NDArray,
        cell_or_entity_info: int,
        entity_type: CellType,
        entity_index: typing.Optional[int] = None,
    ) -> npt.NDArray:
        """Apply inverse permutation to DOF indices on the closure of a sub-entity.

        Args:
            indices: The indices to permute
            cell_or_entity_info: Bit packed entity info (if entity_index is None) or
                cell info (if entity_index is not None)
            entity_type: The cell type of the entity
            entity_index: The index of the entity
        """
        if entity_index is None:
            return np.array(
                self._e.permute_subentity_closure_inv(indices, cell_or_entity_info, entity_type)
            )
        else:
            return np.array(
                self._e.permute_subentity_closure_inv(
                    indices, cell_or_entity_info, entity_type, entity_index
                )
            )

    @property
    def degree(self) -> int:
        """Element polynomial degree."""
        return self._e.degree

    @property
    def embedded_superdegree(self) -> int:
        """Embedded polynomial degree.

        Lowest degree ``n`` such that the highest degree polynomial in
        this element is contained in a Lagrange (or vector Lagrange)
        element of degree ``n``.
        """
        return self._e.embedded_superdegree

    @property
    def embedded_subdegree(self) -> int:
        """Embedded polynomial sub-degree.

        Highest degree ``n`` such that a Lagrange (or vector Lagrange)
        element of degree ``n`` is a subspace of this element.
        """
        return self._e.embedded_subdegree

    @property
    def cell_type(self) -> CellType:
        """Element cell type."""
        return self._e.cell_type

    @property
    def polyset_type(self) -> PolysetType:
        """Element polyset type."""
        return getattr(PolysetType, self._e.polyset_type.name)

    @property
    def dim(self) -> int:
        """Dimension of the finite element space.

        This is the number of degrees-of-freedom for the element.
        """
        return self._e.dim

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        """Number of entity dofs.

        Warning:
            This property may be removed.
        """
        return self._e.num_entity_dofs

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        """Dofs on each topological entity.

        Data is order ``(vertices, edges, faces, cell)``. For example,
        Lagrange degree 2 on a triangle has vertices: ``[[0], [1],
        [2]]``, edges: ``[[3], [4], [5]]``, cell: ``[[]]``.
        """
        return self._e.entity_dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        """Number of entity closure dofs.

        Warning:
            This property may be removed.
        """
        return self._e.num_entity_closure_dofs

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        """Get the dofs on the closure of each topological entity.

        Data is in the order ``(vertices, edges, faces, cell)``. For
        example, Lagrange degree 2 on a triangle has vertices: ``[[0],
        [1], [2]]``, edges: ``[[1, 2, 3], [0, 2, 4], [0, 1, 5]]``, cell:
        ``[[0, 1, 2, 3, 4, 5]]``.
        """
        return self._e.entity_closure_dofs

    @property
    def value_size(self) -> int:
        """Value size."""
        return self._e.value_size

    @property
    def value_shape(self) -> list[int]:
        """Element value tensor shape.

        E.g., returning ``(,)`` for scalars, ``(3,)`` for vectors in 3D,
        ``(2, 2)`` for a rank-2 tensor in 2D.
        """
        return self._e.value_shape

    @property
    def discontinuous(self) -> bool:
        """True is element is the discontinuous variant."""
        return self._e.discontinuous

    @property
    def family(self) -> ElementFamily:
        """Finite element family."""
        return self._e.family

    @property
    def lagrange_variant(self) -> LagrangeVariant:
        """Lagrange variant of the element."""
        return self._e.lagrange_variant

    @property
    def dpc_variant(self) -> DPCVariant:
        """DPC variant of the element."""
        return self._e.dpc_variant

    @property
    def dof_transformations_are_permutations(self) -> bool:
        """True if the dof transformations are all permutations."""
        return self._e.dof_transformations_are_permutations

    @property
    def dof_transformations_are_identity(self) -> bool:
        """True if DOF transformations are all the identity."""
        return self._e.dof_transformations_are_identity

    @property
    def interpolation_is_identity(self) -> bool:
        """True if interpolation matrix for this element is the identity."""
        return self._e.interpolation_is_identity

    @property
    def map_type(self) -> MapType:
        """Map type for this element."""
        return self._e.map_type

    @property
    def sobolev_space(self) -> SobolevSpace:
        """Underlying Sobolev space for this element."""
        return self._e.sobolev_space

    @property
    def points(self) -> npt.ArrayLike:
        """Interpolation points.

        Coordinates on the reference element where a function need to be
        evaluated in order to interpolate it in the finite element
        space. Shape is ``(num_points, tdim)``.
        """
        return self._e.points

    @property
    def interpolation_matrix(self) -> npt.ArrayLike:
        """Interpolation points.

        Coordinates on the reference element where a function need to be
        evaluated in order to interpolate it in the finite element
        space.
        """
        return self._e.interpolation_matrix

    @property
    def dual_matrix(self) -> npt.ArrayLike:
        """Matrix $BD^{T}$.

        See C++ documentation.
        """
        return self._e.dual_matrix

    @property
    def coefficient_matrix(self) -> npt.ArrayLike:
        """Matrix of coefficients."""
        return self._e.coefficient_matrix

    @property
    def wcoeffs(self) -> npt.ArrayLike:
        """Coefficients that define the polynomial set in terms of the orthonormal polynomials.

        See C++ documentation for details.
        """
        return self._e.wcoeffs

    @property
    def M(self) -> list[list[npt.NDArray]]:
        """Interpolation matrices for each sub-entity.

        See C++ documentation for details.
        """
        return self._e.M

    @property
    def x(self) -> list[list[npt.NDArray]]:
        """Interpolation points for each sub-entity.

        The indices of this data are ``(tdim, entity index, point index,
        dim)``.
        """
        return self._e.x

    @property
    def has_tensor_product_factorisation(self) -> bool:
        """True if element has tensor-product structure."""
        return self._e.has_tensor_product_factorisation

    @property
    def interpolation_nderivs(self) -> int:
        """Number of derivatives needed when interpolating."""
        return self._e.interpolation_nderivs

    @property
    def dof_ordering(self) -> list[int]:
        """DOF layout."""
        return self._e.dof_ordering

    @property
    def dtype(self) -> npt.DTypeLike:
        """Element float type."""
        return np.dtype(self._e.dtype)


def create_element(
    family: ElementFamily,
    celltype: CellType,
    degree: int,
    lagrange_variant: LagrangeVariant = LagrangeVariant.unset,
    dpc_variant: DPCVariant = DPCVariant.unset,
    discontinuous: bool = False,
    dof_ordering: typing.Optional[list[int]] = None,
    dtype: npt.DTypeLike = np.float64,
) -> FiniteElement:
    """Create a finite element.

    Args:
        family: Finite element family.
        celltype: Reference cell type that the element is defined on.
        degree: Polynomial degree of the element.
        lagrange_variant: Lagrange variant type.
        dpc_variant: DPC variant type.
        discontinuous: If `True` element is discontinuous. The
            discontinuous element will have the same DOFs as a
            continuous element, but the DOFs will all be associated with
            the interior of the cell.
        dof_ordering: Ordering of dofs for ``ElementDofLayout``.
        dtype: Element scalar type.

    Returns:
        A finite element.
    """
    e = _create_element(
        family,
        celltype,
        degree,
        lagrange_variant,
        dpc_variant,
        discontinuous,
        dof_ordering if dof_ordering is not None else [],
        np.dtype(dtype).char,
    )

    return FiniteElement(e)


def create_custom_element(
    cell_type: CellType,
    value_shape: tuple[int, ...],
    wcoeffs: npt.NDArray[np.floating],
    x: list[list[npt.NDArray[np.floating]]],
    M: list[list[npt.NDArray[np.floating]]],
    interpolation_nderivs: int,
    map_type: MapType,
    sobolev_space: SobolevSpace,
    discontinuous: bool,
    embedded_subdegree: int,
    embedded_superdegree: int,
    poly_type: PolysetType,
    dtype: npt.DTypeLike = np.float64,
) -> FiniteElement:
    """Create a custom finite element.

    Args:
        cell_type: Element cell type.
        value_shape: Value shape of the element.
        wcoeffs: Matrices for the k-th value index containing the
            expansion coefficients defining a polynomial basis spanning
            the polynomial space for this element. Shape is
            ``(dim(finite element polyset), dim(Legendre
            polynomials))``.
        x: Interpolation points. Indices are ``(tdim, entity index,
            point index, dim)``.
        M: Interpolation matrices. Indices are ``(tdim, entity
            index, dof, vs, point_index, derivative)``.
        interpolation_nderivs: Number of derivatives that need to be
            used during interpolation.
        map_type: Type of map to be used to map values from the
            reference to a physical cell.
        sobolev_space: Underlying Sobolev space for the element.
        discontinuous: If ``True`` create the discontinuous version of
            the element.
        embedded_subdegree: Highest degree n such that a Lagrange
            (or vector Lagrange) element of degree n is a subspace of
            this element.
        embedded_superdegree: Degree of a polynomial in this
            element's polyset.
        poly_type: Type of polyset to use for this element.
        dtype: Element scalar type.

    Returns:
        A custom finite element.
    """
    if len(x) != len(M):
        raise ValueError("x and M must have the same length")
    # Allow (eg) only three lists to be included when creating a 2D cell
    while len(x) < 4:
        x.append([])
        M.append([])

    if wcoeffs.dtype != dtype:
        wcoeffs = np.dtype(dtype).type(wcoeffs)  # type: ignore
        x = [[np.dtype(dtype).type(j) for j in i] for i in x]  # type: ignore
        M = [[np.dtype(dtype).type(j) for j in i] for i in M]  # type: ignore

    # Check shape of x
    tdim = len(topology(cell_type)) - 1
    for i in x:
        for j in i:
            if j.shape[1] != tdim:
                raise RuntimeError("x has a point with the wrong tdim")
            if len(j.shape) != 2:
                raise ValueError("x has the wrong dimension")

    # Warn if points are not inside the cell
    geo = geometry(cell_type)
    top = topology(cell_type)
    for points_i in x:
        for points_j in points_i:
            for p in points_j:
                for facet, facet_normal in zip(top[tdim - 1], facet_outward_normals(cell_type)):
                    if np.dot(p - geo[facet[0]], facet_normal) > 0.001:
                        warn(f"Point {p} is not in cell", UserWarning)

    if np.issubdtype(dtype, np.float32):
        _create_custom_element = _create_custom_element_float32  # type: ignore
    elif np.issubdtype(dtype, np.float64):
        _create_custom_element = _create_custom_element_float64  # type: ignore
    else:
        raise NotImplementedError(f"Type {dtype} not supported.")

    return FiniteElement(
        _create_custom_element(
            cell_type,
            value_shape,
            wcoeffs,
            x,
            M,
            interpolation_nderivs,
            map_type,
            sobolev_space,
            discontinuous,
            embedded_subdegree,
            embedded_superdegree,
            poly_type,
        )
    )


def create_tp_element(
    family: ElementFamily,
    celltype: CellType,
    degree: int,
    lagrange_variant: LagrangeVariant = LagrangeVariant.unset,
    dpc_variant: DPCVariant = DPCVariant.unset,
    discontinuous: bool = False,
    dtype: npt.DTypeLike = np.float64,
) -> FiniteElement:
    """Create a finite element with tensor product ordering.

    Args:
        family: Finite element family.
        celltype: Reference cell type that the element is defined on
        degree: Polynomial degree of the element.
        lagrange_variant: Lagrange variant type.
        dpc_variant: DPC variant type.
        discontinuous: If `True` element is discontinuous. The
            discontinuous element will have the same DOFs as a
            continuous element, but the DOFs will all be associated with
            the interior of the cell.
        dtype: Element scalar type.

    Returns:
        A finite element.
    """
    return FiniteElement(
        _create_tp_element(
            family,
            celltype,
            degree,
            lagrange_variant,
            dpc_variant,
            discontinuous,
            np.dtype(dtype).char,
        )
    )


def tp_factors(
    family: ElementFamily,
    celltype: CellType,
    degree: int,
    lagrange_variant: LagrangeVariant = LagrangeVariant.unset,
    dpc_variant: DPCVariant = DPCVariant.unset,
    discontinuous: bool = False,
    dof_ordering: typing.Optional[list[int]] = None,
    dtype: npt.DTypeLike = np.float64,
) -> list[list[FiniteElement]]:
    """Elements in the tensor product factorisation of an element.

    If the element has no factorisation, raises a RuntimeError.

    Args:
        family: Finite element family.
        celltype: Reference cell type that the element is defined on
        degree: Polynomial degree of the element.
        lagrange_variant: Lagrange variant type.
        dpc_variant: DPC variant type.
        discontinuous: If `True` element is discontinuous. The
            discontinuous element will have the same DOFs as a
            continuous element, but the DOFs will all be associated with
            the interior of the cell.
        dof_ordering: Ordering of dofs for ElementDofLayout
        dtype: Element scalar type.

    Returns:
        A list of finite elements.
    """
    return [
        [FiniteElement(e) for e in elements]
        for elements in _tp_factors(
            family,
            celltype,
            degree,
            lagrange_variant,
            dpc_variant,
            discontinuous,
            dof_ordering if dof_ordering is not None else [],
            np.dtype(dtype).char,
        )
    ]


def tp_dof_ordering(
    family: ElementFamily,
    celltype: CellType,
    degree: int,
    lagrange_variant: LagrangeVariant = LagrangeVariant.unset,
    dpc_variant: DPCVariant = DPCVariant.unset,
    discontinuous: bool = False,
) -> list[int]:
    """Tensor product DOF ordering for an element.

    This DOF ordering can be passed into create_element to create the
    element with DOFs ordered in a tensor product order.

    If the element has no factorisation, raises a RuntimeError.

    Args:
        family: Finite element family.
        celltype: Reference cell type that the element is defined on
        degree: Polynomial degree of the element.
        lagrange_variant: Lagrange variant type.
        dpc_variant: DPC variant type.
        discontinuous: If `True` element is discontinuous. The
            discontinuous element will have the same DOFs as a
            continuous element, but the DOFs will all be associated with
            the interior of the cell.

    Returns:
        The DOF ordering.
    """
    return _tp_dof_ordering(
        family,
        celltype,
        degree,
        lagrange_variant,
        dpc_variant,
        discontinuous,
    )


def lex_dof_ordering(
    family: ElementFamily,
    celltype: CellType,
    degree: int,
    lagrange_variant: LagrangeVariant = LagrangeVariant.unset,
    dpc_variant: DPCVariant = DPCVariant.unset,
    discontinuous: bool = False,
) -> list[int]:
    """Lexicographic DOF ordering for an element.

    This DOF ordering can be passed into create_element to create the
    element with DOFs ordered in a lexicographic order.

    If the element contains DOFs that are not point evaluations, raises a
    RuntimeError.

    Args:
        family: Finite element family.
        celltype: Reference cell type that the element is defined on
        degree: Polynomial degree of the element.
        lagrange_variant: Lagrange variant type.
        dpc_variant: DPC variant type.
        discontinuous: If `True` element is discontinuous. The
            discontinuous element will have the same DOFs as a
            continuous element, but the DOFs will all be associated with
            the interior of the cell.

    Returns:
        The DOF ordering.
    """
    return _lex_dof_ordering(
        family,
        celltype,
        degree,
        lagrange_variant,
        dpc_variant,
        discontinuous,
    )


def string_to_family(family: str, cell: str) -> ElementFamily:
    """Basix ElementFamily enum representing the family type on the given cell.

    Args:
        family: Element family as a string.
        cell: Cell type as a string.

    Returns:
        Element family.
    """
    # Family names that are valid for all cells
    families = {
        "Lagrange": ElementFamily.P,
        "P": ElementFamily.P,
        "Bubble": ElementFamily.bubble,
        "bubble": ElementFamily.bubble,
        "iso": ElementFamily.iso,
    }

    # Family names that are valid on non-interval cells
    if cell != "interval":
        families.update(
            {
                "RT": ElementFamily.RT,
                "Raviart-Thomas": ElementFamily.RT,
                "N1F": ElementFamily.RT,
                "N1div": ElementFamily.RT,
                "Nedelec 1st kind H(div)": ElementFamily.RT,
                "N1E": ElementFamily.N1E,
                "N1curl": ElementFamily.N1E,
                "Nedelec 1st kind H(curl)": ElementFamily.N1E,
                "BDM": ElementFamily.BDM,
                "Brezzi-Douglas-Marini": ElementFamily.BDM,
                "N2F": ElementFamily.BDM,
                "N2div": ElementFamily.BDM,
                "Nedelec 2nd kind H(div)": ElementFamily.BDM,
                "N2E": ElementFamily.N2E,
                "N2curl": ElementFamily.N2E,
                "Nedelec 2nd kind H(curl)": ElementFamily.N2E,
            }
        )

    # Family names that are valid for intervals
    if cell == "interval":
        families.update(
            {
                "DPC": ElementFamily.P,
            }
        )

    # Family names that are valid for tensor product cells
    if cell in ["interval", "quadrilateral", "hexahedron"]:
        families.update(
            {
                "Q": ElementFamily.P,
                "Serendipity": ElementFamily.serendipity,
                "serendipity": ElementFamily.serendipity,
                "S": ElementFamily.serendipity,
            }
        )

    # Family names that are valid for quads and hexes
    if cell in ["quadrilateral", "hexahedron"]:
        families.update(
            {
                "RTCF": ElementFamily.RT,
                "DPC": ElementFamily.DPC,
                "NCF": ElementFamily.RT,
                "RTCE": ElementFamily.N1E,
                "NCE": ElementFamily.N1E,
                "BDMCF": ElementFamily.BDM,
                "BDMCE": ElementFamily.N2E,
                "AAF": ElementFamily.BDM,
                "AAE": ElementFamily.N2E,
            }
        )

    # Family names that are valid for triangles and tetrahedra
    if cell in ["triangle", "tetrahedron"]:
        families.update(
            {
                "Regge": ElementFamily.Regge,
                "CR": ElementFamily.CR,
                "Crouzeix-Raviart": ElementFamily.CR,
                "HHJ": ElementFamily.HHJ,
                "Hellan-Herrmann-Johnson": ElementFamily.HHJ,
            }
        )

    try:
        return families[family]
    except KeyError:
        raise ValueError(f"Unknown element family: {family} with cell type {cell}")