File: polynomials.py

package info (click to toggle)
fenics-basix 0.10.0.post0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,156 kB
  • sloc: cpp: 23,435; python: 10,829; makefile: 43; sh: 26
file content (213 lines) | stat: -rw-r--r-- 6,304 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright (C) 2023-2024 Matthew Scroggs and Garth N. Wells
#
# This file is part of Basix (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    MIT
"""Functions for working with polynomials."""

import numpy as np
import numpy.typing as npt

from basix._basixcpp import PolynomialType, PolysetType
from basix._basixcpp import polynomials_dim as _pd
from basix._basixcpp import restriction as _restriction
from basix._basixcpp import superset as _superset
from basix._basixcpp import tabulate_polynomial_set as _tps
from basix._basixcpp import tabulate_polynomials as _tabulate_polynomials
from basix.cell import CellType
from basix.utils import index

__all__ = ["reshape_coefficients", "dim", "tabulate_polynomial_set"]


def reshape_coefficients(
    poly_type: PolynomialType,
    cell_type: CellType,
    coefficients: npt.NDArray[np.float64],
    value_size: int,
    input_degree: int,
    output_degree: int,
) -> npt.NDArray[np.float64]:
    """Reshape the coefficients.

    Args:
        poly_type: The polynomial type.
        cell_type: The cell type
        coefficients: The coefficients
        value_size: The value size of the polynomials associated with
            the coefficients.
        input_degree: The maximum degree of polynomials associated with
            the input coefficients.
        output_degree: The maximum degree of polynomials associated with
            the output coefficients.

    Returns:
        Coefficients representing the same coefficients as the input in
        the set of polynomials of the output degree.

    """
    if poly_type != PolynomialType.legendre:
        raise NotImplementedError()
    if output_degree < input_degree:
        raise ValueError("Output degree must be greater than or equal to input degree")

    if output_degree == input_degree:
        return coefficients

    pdim = dim(poly_type, cell_type, output_degree)
    out = np.zeros((coefficients.shape[0], pdim * value_size))

    indices: list[tuple[int, ...]] = []

    if cell_type == CellType.interval:
        indices = [(i,) for i in range(input_degree + 1)]

        def idx(d, i):
            return index(i[0])

    elif cell_type == CellType.triangle:
        indices = [(i, j) for i in range(input_degree + 1) for j in range(input_degree + 1 - i)]

        def idx(d, i):
            return index(i[1], i[0])

    elif cell_type == CellType.tetrahedron:
        indices = [
            (i, j, k)
            for i in range(input_degree + 1)
            for j in range(input_degree + 1 - i)
            for k in range(input_degree + 1 - i - j)
        ]

        def idx(d, i):
            return index(i[2], i[1], i[0])

    elif cell_type == CellType.quadrilateral:
        indices = [(i, j) for i in range(input_degree + 1) for j in range(input_degree + 1)]

        def idx(d, i):
            return (d + 1) * i[0] + i[1]

    elif cell_type == CellType.hexahedron:
        indices = [
            (i, j, k)
            for i in range(input_degree + 1)
            for j in range(input_degree + 1)
            for k in range(input_degree + 1)
        ]

        def idx(d, i):
            return (d + 1) ** 2 * i[0] + (d + 1) * i[1] + i[2]

    elif cell_type == CellType.pyramid:
        indices = [
            (i, j, k)
            for k in range(input_degree + 1)
            for i in range(input_degree + 1 - k)
            for j in range(input_degree + 1 - k)
        ]

        def idx(d, i):
            rv = d - i[2] + 1
            r0 = i[2] * (d + 1) * (d - i[2] + 2) + (2 * i[2] - 1) * (i[2] - 1) * i[2] // 6
            return r0 + i[0] * rv + i[1]

    elif cell_type == CellType.prism:
        indices = [
            (i, j, k)
            for i in range(input_degree + 1)
            for j in range(input_degree + 1 - i)
            for k in range(input_degree + 1)
        ]

        def idx(d, i):
            return (d + 1) * index(i[1], i[0]) + i[2]

    else:
        raise ValueError("Unsupported cell type")

    pdim_in = dim(poly_type, cell_type, input_degree)
    for v in range(value_size):
        for i in indices:
            out[:, v * pdim + idx(output_degree, i)] = coefficients[
                :, v * pdim_in + idx(input_degree, i)
            ]

    return out


def dim(ptype: PolynomialType, celltype: CellType, degree: int) -> int:
    """Dimension of a polynomial space.

    Args:
        ptype: The polynomial type
        celltype: The cell type
        degree: The polynomial degree

    Returns:
        The dimension of the polynomial space
    """
    return _pd(ptype, celltype, degree)


def tabulate_polynomials(
    ptype: PolynomialType, celltype: CellType, degree: int, pts: npt.NDArray
) -> npt.ArrayLike:
    """Tabulate a set of polynomials on a reference cell.

    Args:
        ptype: The polynomial type
        celltype: The cell type
        degree: The polynomial degree
        pts: The points

    Returns:
        Tabulated polynomials
    """
    return _tabulate_polynomials(ptype, celltype, degree, pts)


def restriction(ptype: PolysetType, cell: CellType, restriction_cell: CellType) -> PolysetType:
    """Get the polyset type that represents the restrictions of a type on a subentity.

    Args:
        ptype: The polynomial type
        cell: The cell type
        restriction_cell: The cell type if the subentity

    Returns:
        The restricted polyset type
    """
    return _restriction(ptype, cell, restriction_cell)


def superset(cell: CellType, type1: PolysetType, type2: PolysetType) -> PolysetType:
    """Get the polyset type that is a superset of two types on the given cell.

    Args:
        cell: The cell type
        type1: The first polyset type
        type2: The second polyset type

    Returns:
        The superset type
    """
    return _superset(cell, type1, type2)


def tabulate_polynomial_set(
    celltype: CellType, ptype: PolysetType, degree: int, nderiv: int, pts: npt.NDArray
) -> npt.ArrayLike:
    """Tabulate a polynomial set.

    Args:
        celltype: The cell type
        ptype: The polyset type
        degree: The polynomial degree
        nderiv: The number of derivatives
        pts: The points to tabulat at

    Returns:
        Tabulated polynomial set
    """
    return _tps(celltype, ptype, degree, nderiv, pts)