1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
# Copyright (c) 2021 Matthew Scroggs
# FEniCS Project
# SPDX-License-Identifier: MIT
import numpy as np
import pytest
import basix
from .utils import parametrize_over_elements
def run_test(lower_element, higher_element, power, value_size):
l_points = lower_element.points
l_eval = np.concatenate(
[l_points[:, 0] ** power if i == 0 else 0 * l_points[:, 0] for i in range(value_size)]
)
l_coeffs = lower_element.interpolation_matrix @ l_eval
i_m = basix.compute_interpolation_operator(lower_element, higher_element)
h_coeffs = i_m @ l_coeffs
h_points = higher_element.points
h_eval = np.concatenate(
[h_points[:, 0] ** power if i == 0 else 0 * h_points[:, 0] for i in range(value_size)]
)
h_coeffs2 = higher_element.interpolation_matrix @ h_eval
assert np.allclose(h_coeffs, h_coeffs2)
@pytest.mark.parametrize(
"cell_type",
[
basix.CellType.interval,
basix.CellType.triangle,
basix.CellType.tetrahedron,
basix.CellType.quadrilateral,
basix.CellType.hexahedron,
basix.CellType.prism,
],
)
@pytest.mark.parametrize("orders", [(1, 2), (2, 4), (4, 5)])
def test_different_order_interpolation_lagrange(cell_type, orders):
lower_element = basix.create_element(
basix.ElementFamily.P, cell_type, orders[0], basix.LagrangeVariant.gll_warped
)
higher_element = basix.create_element(
basix.ElementFamily.P, cell_type, orders[1], basix.LagrangeVariant.gll_warped
)
run_test(lower_element, higher_element, orders[0], lower_element.value_size)
@pytest.mark.parametrize(
"variant1",
[
basix.LagrangeVariant.equispaced,
basix.LagrangeVariant.gll_warped,
basix.LagrangeVariant.gll_isaac,
],
)
@pytest.mark.parametrize(
"variant2",
[
basix.LagrangeVariant.equispaced,
basix.LagrangeVariant.gll_warped,
basix.LagrangeVariant.gll_isaac,
],
)
@pytest.mark.parametrize(
"cell_type",
[
basix.CellType.interval,
basix.CellType.triangle,
basix.CellType.tetrahedron,
basix.CellType.quadrilateral,
basix.CellType.hexahedron,
basix.CellType.prism,
],
)
@pytest.mark.parametrize("order", [1, 4])
def test_different_variant_interpolation(cell_type, order, variant1, variant2):
lower_element = basix.create_element(basix.ElementFamily.P, cell_type, order, variant1)
higher_element = basix.create_element(basix.ElementFamily.P, cell_type, order, variant2)
run_test(lower_element, higher_element, order, lower_element.value_size)
@pytest.mark.parametrize(
"family, args",
[
[basix.ElementFamily.RT, (basix.LagrangeVariant.legendre,)],
[basix.ElementFamily.N1E, (basix.LagrangeVariant.legendre,)],
[basix.ElementFamily.BDM, (basix.LagrangeVariant.legendre, basix.DPCVariant.legendre)],
[basix.ElementFamily.N2E, (basix.LagrangeVariant.legendre, basix.DPCVariant.legendre)],
],
)
@pytest.mark.parametrize(
"cell_type",
[
basix.CellType.triangle,
basix.CellType.tetrahedron,
basix.CellType.quadrilateral,
basix.CellType.hexahedron,
],
)
@pytest.mark.parametrize("orders", [(1, 2), (2, 4), (4, 5)])
def test_different_order_interpolation_vector(family, args, cell_type, orders):
lower_element = basix.create_element(family, cell_type, orders[0], *args)
higher_element = basix.create_element(family, cell_type, orders[1], *args)
run_test(lower_element, higher_element, orders[0] - 1, lower_element.value_size)
@pytest.mark.parametrize("family, args", [[basix.ElementFamily.Regge, tuple()]])
@pytest.mark.parametrize("cell_type", [basix.CellType.triangle, basix.CellType.tetrahedron])
@pytest.mark.parametrize("orders", [(1, 2), (2, 4), (4, 5)])
def test_different_order_interpolation_matrix(family, args, cell_type, orders):
lower_element = basix.create_element(family, cell_type, orders[0], *args)
higher_element = basix.create_element(family, cell_type, orders[1], *args)
run_test(lower_element, higher_element, orders[0] - 1, lower_element.value_size)
@pytest.mark.parametrize(
"family1, args1",
[
[basix.ElementFamily.RT, (basix.LagrangeVariant.legendre,)],
[basix.ElementFamily.N1E, (basix.LagrangeVariant.legendre,)],
[basix.ElementFamily.BDM, (basix.LagrangeVariant.legendre, basix.DPCVariant.legendre)],
[basix.ElementFamily.N2E, (basix.LagrangeVariant.legendre, basix.DPCVariant.legendre)],
],
)
@pytest.mark.parametrize(
"family2, args2",
[
[basix.ElementFamily.RT, (basix.LagrangeVariant.legendre,)],
[basix.ElementFamily.N1E, (basix.LagrangeVariant.legendre,)],
[basix.ElementFamily.BDM, (basix.LagrangeVariant.legendre, basix.DPCVariant.legendre)],
[basix.ElementFamily.N2E, (basix.LagrangeVariant.legendre, basix.DPCVariant.legendre)],
],
)
@pytest.mark.parametrize(
"cell_type",
[
basix.CellType.triangle,
basix.CellType.tetrahedron,
basix.CellType.quadrilateral,
basix.CellType.hexahedron,
],
)
@pytest.mark.parametrize("order", [1, 4])
def test_different_element_interpolation(family1, args1, family2, args2, cell_type, order):
lower_element = basix.create_element(family1, cell_type, order, *args1)
higher_element = basix.create_element(family2, cell_type, order, *args2)
run_test(lower_element, higher_element, order - 1, lower_element.value_size)
@pytest.mark.parametrize(
"cell_type",
[
basix.CellType.triangle,
basix.CellType.tetrahedron,
basix.CellType.quadrilateral,
basix.CellType.hexahedron,
],
)
@pytest.mark.parametrize("order", [1, 4])
def test_blocked_interpolation(cell_type, order):
"""Test interpolation of Nedelec's components into a Lagrange space."""
nedelec = basix.create_element(
basix.ElementFamily.N2E,
cell_type,
order,
basix.LagrangeVariant.legendre,
basix.DPCVariant.legendre,
)
lagrange = basix.create_element(
basix.ElementFamily.P, cell_type, order, basix.LagrangeVariant.gll_isaac
)
n_points = nedelec.points
if nedelec.value_size == 2:
n_eval = np.concatenate([n_points[:, 0] ** order, n_points[:, 1] ** order])
else:
n_eval = np.concatenate(
[n_points[:, 0] ** order, 0 * n_points[:, 0], n_points[:, 1] ** order]
)
n_coeffs = nedelec.interpolation_matrix @ n_eval
l_points = lagrange.points
if nedelec.value_size == 2:
values = [l_points[:, 0] ** order, l_points[:, 1] ** order]
else:
values = [l_points[:, 0] ** order, 0 * l_points[:, 0], l_points[:, 1] ** order]
l_coeffs = np.empty(lagrange.dim * nedelec.value_size)
for i, v in enumerate(values):
l_coeffs[i :: nedelec.value_size] = v
# Test interpolation from Nedelec to blocked Lagrange
i_m = basix.compute_interpolation_operator(nedelec, lagrange)
assert np.allclose(l_coeffs, i_m @ n_coeffs)
# Test interpolation from blocked Lagrange to Nedelec
i_m = basix.compute_interpolation_operator(lagrange, nedelec)
assert np.allclose(n_coeffs, i_m @ l_coeffs)
@parametrize_over_elements(5)
def test_degree_bounds(cell_type, degree, element_type, element_args):
generator = np.random.default_rng(13)
element = basix.create_element(element_type, cell_type, degree, *element_args)
points = basix.create_lattice(cell_type, 10, basix.LatticeType.equispaced, True)
tab = element.tabulate(0, points)[0]
# Test that this element's basis functions are contained in Lagrange
# space with degree element.embedded_superdegree
coeffs = generator.random(element.dim)
values = np.array([tab[:, :, i] @ coeffs for i in range(element.value_size)])
if element.polyset_type == basix.PolysetType.standard:
p_family = basix.ElementFamily.P
elif element.polyset_type == basix.PolysetType.macroedge:
p_family = basix.ElementFamily.iso
if element.embedded_superdegree >= 0:
# The element being tested should be a subset of this Lagrange space
lagrange = basix.create_element(
p_family,
cell_type,
element.embedded_superdegree,
basix.LagrangeVariant.equispaced,
discontinuous=True,
)
lagrange_coeffs = basix.compute_interpolation_operator(element, lagrange) @ coeffs
lagrange_tab = lagrange.tabulate(0, points)[0]
lagrange_values = np.array(
[
lagrange_tab[:, :, 0] @ lagrange_coeffs[i :: element.value_size]
for i in range(element.value_size)
]
)
assert np.allclose(values, lagrange_values)
if element.embedded_superdegree >= 1:
# The element being tested should be NOT a subset of this
# Lagrange space
lagrange = basix.create_element(
p_family,
cell_type,
element.embedded_superdegree - 1,
basix.LagrangeVariant.equispaced,
discontinuous=True,
)
lagrange_coeffs = basix.compute_interpolation_operator(element, lagrange) @ coeffs
lagrange_tab = lagrange.tabulate(0, points)[0]
lagrange_values = np.array(
[
lagrange_tab[:, :, 0] @ lagrange_coeffs[i :: element.value_size]
for i in range(element.value_size)
]
)
assert not np.allclose(values, lagrange_values)
# Test that the basis functions of Lagrange space with degree
# element.embedded_subdegree are contained in this space
if element.embedded_subdegree >= 0:
# This Lagrange space should be a subset to the element being
# tested
lagrange = basix.create_element(
p_family,
cell_type,
element.embedded_subdegree,
basix.LagrangeVariant.equispaced,
discontinuous=True,
)
lagrange_coeffs = generator.random(lagrange.dim * element.value_size)
lagrange_tab = lagrange.tabulate(0, points)[0]
lagrange_values = np.array(
[
lagrange_tab[:, :, 0] @ lagrange_coeffs[i :: element.value_size]
for i in range(element.value_size)
]
)
coeffs = basix.compute_interpolation_operator(lagrange, element) @ lagrange_coeffs
values = np.array([tab[:, :, i] @ coeffs for i in range(element.value_size)])
assert np.allclose(values, lagrange_values)
if element.polyset_type == basix.PolysetType.macroedge:
if cell_type == basix.CellType.triangle and element.embedded_subdegree + 1 > 2:
pytest.xfail("Cannot run test with macro polyset on a triangle with degree > 2")
if cell_type == basix.CellType.tetrahedron and element.embedded_subdegree + 1 > 1:
pytest.xfail("Cannot run test with macro polyset on a tetrahedron with degree > 1")
if element.embedded_subdegree >= -1:
# This Lagrange space should NOT be a subset to the element
# being tested
lagrange = basix.create_element(
p_family,
cell_type,
element.embedded_subdegree + 1,
basix.LagrangeVariant.equispaced,
discontinuous=True,
)
lagrange_coeffs = generator.random(lagrange.dim * element.value_size)
lagrange_tab = lagrange.tabulate(0, points)[0]
lagrange_values = np.array(
[
lagrange_tab[:, :, 0] @ lagrange_coeffs[i :: element.value_size]
for i in range(element.value_size)
]
)
coeffs = basix.compute_interpolation_operator(lagrange, element) @ lagrange_coeffs
values = np.array([tab[:, :, i] @ coeffs for i in range(element.value_size)])
assert not np.allclose(values, lagrange_values)
|