1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
// # Biharmonic equation
//
// This demo illustrates how to:
//
// * Solve a linear partial differential equation
// * Use a discontinuous Galerkin method
// * Solve a fourth-order differential equation
//
// ## Equation and problem definition
//
// ### Strong formulation
//
// The biharmonic equation is a fourth-order elliptic equation. On the
// domain $\Omega \subset \mathbb{R}^{d}$, $1 \le d \le 3$, it reads
//
// $$
// \nabla^{4} u = f \quad {\rm in} \ \Omega,
// $$
//
// where $\nabla^{4} \equiv \nabla^{2} \nabla^{2}$ is the biharmonic
// operator and $f$ is a prescribed source term. To formulate a complete
// boundary value problem, the biharmonic equation must be complemented
// by suitable boundary conditions.
//
// ### Weak formulation
//
// Multiplying the biharmonic equation by a test function and integrating
// by parts twice leads to a problem of second-order derivatives, which would
// require $H^{2}$ conforming (roughly $C^{1}$ continuous) basis functions.
// To solve the biharmonic equation using Lagrange finite element basis
// functions, the biharmonic equation can be split into two second-order
// equations (see the Mixed Poisson demo for a mixed method for the Poisson
// equation), or a variational formulation can be constructed that imposes
// weak continuity of normal derivatives between finite element cells.
// This demo uses a discontinuous Galerkin approach to impose continuity
// of the normal derivative weakly.
//
// Consider a triangulation $\mathcal{T}$ of the domain $\Omega$, where
// the set of interior facets is denoted by $\mathcal{E}_h^{\rm int}$.
// Functions evaluated on opposite sides of a facet are indicated by the
// subscripts $+$ and $-$.
// Using the standard continuous Lagrange finite element space
//
// $$
// V = \left\{v \in H^{1}_{0}(\Omega)\,:\, v \in P_{k}(K) \
// \forall \ K \in \mathcal{T} \right\}
// $$
//
// and considering the boundary conditions
//
// \begin{align}
// u &= 0 \quad {\rm on} \ \partial\Omega, \\
// \nabla^{2} u &= 0 \quad {\rm on} \ \partial\Omega,
// \end{align}
//
// a weak formulation of the biharmonic problem reads: find $u \in V$ such that
//
// $$
// a(u,v)=L(v) \quad \forall \ v \in V,
// $$
//
// where the bilinear form is
//
// \begin{align*}
// a(u, v) &=
// \sum_{K \in \mathcal{T}} \int_{K} \nabla^{2} u \nabla^{2} v \, {\rm d}x \\
// &\qquad+\sum_{E \in \mathcal{E}_h^{\rm int}}\left(\int_{E} \frac{\alpha}{h_E}
// [\!\![ \nabla u ]\!\!] [\!\![ \nabla v ]\!\!] \, {\rm d}s
// - \int_{E} \left<\nabla^{2} u \right>[\!\![ \nabla v ]\!\!] \, {\rm d}s
// - \int_{E} [\!\![ \nabla u ]\!\!] \left<\nabla^{2} v \right> \,
// {\rm d}s\right)
// \end{align*}
//
// and the linear form is
//
// $$
// L(v) = \int_{\Omega} fv \, {\rm d}x.
// $$
//
// Furthermore, $\left< u \right> = \frac{1}{2} (u_{+} + u_{-})$,
// $[\!\![ w ]\!\!] = w_{+} \cdot n_{+} + w_{-} \cdot n_{-}$,
// $\alpha \ge 0$ is a penalty parameter and
// $h_E$ is a measure of the cell size.
//
// The input parameters for this demo are defined as follows:
//
// - $\Omega = [0,1] \times [0,1]$ (a unit square)
// - $\alpha = 8.0$ (penalty parameter)
// - $f = 4.0 \pi^4\sin(\pi x)\sin(\pi y)$ (source term)
//
//
//
// ## Implementation
//
// The implementation is in two files: a form file containing the
// definition of the variational forms expressed in UFL and a C++ file
// containing the actual solver.
//
// Running this demo requires the files: {download}`demo_biharmonic/main.cpp`,
// {download}`demo_biharmonic/biharmonic.py` and
// {download}`demo_biharmonic/CMakeLists.txt`.
//
// ### UFL form file
//
// The UFL file is implemented in {download}`demo_biharmonic/biharmonic.py`.
// ````{admonition} UFL form implemented in python
// :class: dropdown
// ![ufl-code]
// ````
//
// ````{note}
// TODO: explanation on how to run cmake and/or shell commands for `ffcx`.
// To compile biharmonic.py using FFCx with an option
// for PETSc scalar type `float64` one would execute the command
// ```bash
// ffcx biharmonic.py --scalar_type=float64
// ```
// ````
//
// ### C++ program
//
// The main solver is implemented in the {download}`demo_biharmonic/main.cpp`
// file.
//
// At the top we include the DOLFINx header file and the generated
// header file "biharmonic.h" containing the variational forms for the
// Biharmonic equation, which are defined in the UFL form file. For
// convenience we also include the DOLFINx namespace.
#include "biharmonic.h"
#include <basix/finite-element.h>
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/common/types.h>
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/petsc.h>
#include <memory>
#include <numbers>
#include <utility>
#include <vector>
using namespace dolfinx;
using T = PetscScalar;
using U = typename dolfinx::scalar_value_t<T>;
// Inside the `main` function, we begin by defining a mesh of the
// domain. As the unit square is a very standard domain, we can use a
// built-in mesh provided by the {cpp:class}`UnitSquareMesh` factory. In
// order to create a mesh consisting of 32 x 32 squares with each square
// divided into two triangles, and the finite element space (specified
// in the form file) defined relative to this mesh, we do as follows
int main(int argc, char* argv[])
{
dolfinx::init_logging(argc, argv);
PetscInitialize(&argc, &argv, nullptr, nullptr);
{
// Create mesh
auto part = mesh::create_cell_partitioner(mesh::GhostMode::shared_facet);
auto mesh = std::make_shared<mesh::Mesh<U>>(
mesh::create_rectangle<U>(MPI_COMM_WORLD, {{{0.0, 0.0}, {1.0, 1.0}}},
{32, 32}, mesh::CellType::triangle, part));
// A function space object, which is defined in the generated code,
// is created:
auto element = basix::create_element<U>(
basix::element::family::P, basix::cell::type::triangle, 2,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
// Create function space
auto V
= std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
mesh, std::make_shared<fem::FiniteElement<U>>(element)));
// The source function $f$ and the penalty term $\alpha$ are
// declared:
auto f = std::make_shared<fem::Function<T>>(V);
f->interpolate(
[](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
{
std::vector<T> f;
for (std::size_t p = 0; p < x.extent(1); ++p)
{
auto pi = std::numbers::pi;
f.push_back(4.0 * std::pow(pi, 4) * std::sin(pi * x(0, p))
* std::sin(pi * x(1, p)));
}
return {f, {f.size()}};
});
auto alpha = std::make_shared<fem::Constant<T>>(8.0);
// Define variational forms
fem::Form<T> a = fem::create_form<T>(*form_biharmonic_a, {V, V}, {},
{{"alpha", alpha}}, {}, {});
fem::Form<T> L
= fem::create_form<T>(*form_biharmonic_L, {V}, {{"f", f}}, {}, {}, {});
// Now, the Dirichlet boundary condition ($u = 0$) can be
// created using the class {cpp:class}`DirichletBC`. A
// {cpp:class}`DirichletBC` takes two arguments: the value of the
// boundary condition, and the part of the boundary on which the
// condition applies. In our example, the value of the boundary
// condition (0) can represented using a {cpp:class}`Function`,
// and the Dirichlet boundary is defined by the indices of degrees
// of freedom to which the boundary condition applies. The
// definition of the Dirichlet boundary condition then looks as
// follows:
// Define boundary condition
auto facets = mesh::exterior_facet_indices(*mesh->topology());
const auto bdofs = fem::locate_dofs_topological(
*V->mesh()->topology_mutable(), *V->dofmap(), 1, facets);
fem::DirichletBC<T> bc(0, bdofs, V);
// Now, we have specified the variational forms and can consider
// the solution of the variational problem. First, we need to
// define a {cpp:class}`Function` `u` to store the solution. (Upon
// initialization, it is simply set to the zero function.) Next, we
// can call the `solve` function with the arguments `a == L`, `u`
// and `bc` as follows:
// Compute solution
fem::Function<T> u(V);
auto A = la::petsc::Matrix(fem::petsc::create_matrix(a), false);
la::Vector<T> b(L.function_spaces()[0]->dofmap()->index_map,
L.function_spaces()[0]->dofmap()->index_map_bs());
MatZeroEntries(A.mat());
fem::assemble_matrix(la::petsc::Matrix::set_block_fn(A.mat(), ADD_VALUES),
a, {bc});
MatAssemblyBegin(A.mat(), MAT_FLUSH_ASSEMBLY);
MatAssemblyEnd(A.mat(), MAT_FLUSH_ASSEMBLY);
fem::set_diagonal<T>(la::petsc::Matrix::set_fn(A.mat(), INSERT_VALUES), *V,
{bc});
MatAssemblyBegin(A.mat(), MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A.mat(), MAT_FINAL_ASSEMBLY);
std::ranges::fill(b.array(), 0);
fem::assemble_vector(b.array(), L);
fem::apply_lifting(b.array(), {a}, {{bc}}, {}, T(1));
b.scatter_rev(std::plus<T>());
bc.set(b.array(), std::nullopt);
la::petsc::KrylovSolver lu(MPI_COMM_WORLD);
la::petsc::options::set("ksp_type", "preonly");
la::petsc::options::set("pc_type", "lu");
lu.set_from_options();
lu.set_operator(A.mat());
la::petsc::Vector _u(la::petsc::create_vector_wrap(*u.x()), false);
la::petsc::Vector _b(la::petsc::create_vector_wrap(b), false);
lu.solve(_u.vec(), _b.vec());
// Update ghost values before output
u.x()->scatter_fwd();
// The function `u` will be modified during the call to solve. A
// {cpp:class}`Function` can be saved to a file. Here, we output the
// solution to a `VTK` file (specified using the suffix `.pvd`) for
// visualisation in an external program such as Paraview.
// Save solution in VTK format
io::VTKFile file(MPI_COMM_WORLD, "u.pvd", "w");
file.write<T>({u}, 0);
}
PetscFinalize();
return 0;
}
|