File: main.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (271 lines) | stat: -rw-r--r-- 10,107 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// # Biharmonic equation
//
// This demo illustrates how to:
//
// * Solve a linear partial differential equation
// * Use a discontinuous Galerkin method
// * Solve a fourth-order differential equation
//
// ## Equation and problem definition
//
// ### Strong formulation
//
// The biharmonic equation is a fourth-order elliptic equation. On the
// domain $\Omega \subset \mathbb{R}^{d}$, $1 \le d \le 3$, it reads
//
// $$
// \nabla^{4} u = f \quad {\rm in} \ \Omega,
// $$
//
// where $\nabla^{4} \equiv \nabla^{2} \nabla^{2}$ is the biharmonic
// operator and $f$ is a prescribed source term. To formulate a complete
// boundary value problem, the biharmonic equation must be complemented
// by suitable boundary conditions.
//
// ### Weak formulation
//
// Multiplying the biharmonic equation by a test function and integrating
// by parts twice leads to a problem of second-order derivatives, which would
// require $H^{2}$ conforming (roughly $C^{1}$ continuous) basis functions.
// To solve the biharmonic equation using Lagrange finite element basis
// functions, the biharmonic equation can be split into two second-order
// equations (see the Mixed Poisson demo for a mixed method for the Poisson
// equation), or a variational formulation can be constructed that imposes
// weak continuity of normal derivatives between finite element cells.
// This demo uses a discontinuous Galerkin approach to impose continuity
// of the normal derivative weakly.
//
// Consider a triangulation $\mathcal{T}$ of the domain $\Omega$, where
// the set of interior facets is denoted by $\mathcal{E}_h^{\rm int}$.
// Functions evaluated on opposite sides of a facet are indicated by the
// subscripts $+$ and $-$.
// Using the standard continuous Lagrange finite element space
//
// $$
// V = \left\{v \in H^{1}_{0}(\Omega)\,:\, v \in P_{k}(K) \
// \forall \ K \in \mathcal{T} \right\}
// $$
//
// and considering the boundary conditions
//
// \begin{align}
// u &= 0 \quad {\rm on} \ \partial\Omega, \\
// \nabla^{2} u &= 0 \quad {\rm on} \ \partial\Omega,
// \end{align}
//
// a weak formulation of the biharmonic problem reads: find $u \in V$ such that
//
// $$
// a(u,v)=L(v) \quad \forall \ v \in V,
// $$
//
// where the bilinear form is
//
// \begin{align*}
// a(u, v) &=
// \sum_{K \in \mathcal{T}} \int_{K} \nabla^{2} u \nabla^{2} v \, {\rm d}x \\
// &\qquad+\sum_{E \in \mathcal{E}_h^{\rm int}}\left(\int_{E} \frac{\alpha}{h_E}
// [\!\![ \nabla u ]\!\!] [\!\![ \nabla v ]\!\!] \, {\rm d}s
// - \int_{E} \left<\nabla^{2} u \right>[\!\![ \nabla v ]\!\!]  \, {\rm d}s
// - \int_{E} [\!\![ \nabla u ]\!\!] \left<\nabla^{2} v \right> \,
// {\rm d}s\right)
// \end{align*}
//
// and the linear form is
//
// $$
// L(v) = \int_{\Omega} fv \, {\rm d}x.
// $$
//
// Furthermore, $\left< u \right> = \frac{1}{2} (u_{+} + u_{-})$,
// $[\!\![ w ]\!\!]  = w_{+} \cdot n_{+} + w_{-} \cdot n_{-}$,
// $\alpha \ge 0$ is a penalty parameter and
// $h_E$ is a measure of the cell size.
//
// The input parameters for this demo are defined as follows:
//
// - $\Omega = [0,1] \times [0,1]$ (a unit square)
// - $\alpha = 8.0$ (penalty parameter)
// - $f = 4.0 \pi^4\sin(\pi x)\sin(\pi y)$ (source term)
//
//
//
// ## Implementation
//
// The implementation is in two files: a form file containing the
// definition of the variational forms expressed in UFL and a C++ file
// containing the actual solver.
//
// Running this demo requires the files: {download}`demo_biharmonic/main.cpp`,
// {download}`demo_biharmonic/biharmonic.py` and
// {download}`demo_biharmonic/CMakeLists.txt`.
//
// ### UFL form file
//
// The UFL file is implemented in {download}`demo_biharmonic/biharmonic.py`.
// ````{admonition} UFL form implemented in python
// :class: dropdown
// ![ufl-code]
// ````
//
// ````{note}
// TODO: explanation on how to run cmake and/or shell commands for `ffcx`.
// To compile biharmonic.py using FFCx with an option
// for PETSc scalar type `float64` one would execute the command
// ```bash
// ffcx biharmonic.py --scalar_type=float64
// ```
// ````
//
// ### C++ program
//
// The main solver is implemented in the {download}`demo_biharmonic/main.cpp`
// file.
//
// At the top we include the DOLFINx header file and the generated
// header file "biharmonic.h" containing the variational forms for the
// Biharmonic equation, which are defined in the UFL form file. For
// convenience we also include the DOLFINx namespace.

#include "biharmonic.h"
#include <basix/finite-element.h>
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/common/types.h>
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/petsc.h>
#include <memory>
#include <numbers>
#include <utility>
#include <vector>

using namespace dolfinx;
using T = PetscScalar;
using U = typename dolfinx::scalar_value_t<T>;

// Inside the `main` function, we begin by defining a mesh of the
// domain. As the unit square is a very standard domain, we can use a
// built-in mesh provided by the {cpp:class}`UnitSquareMesh` factory. In
// order to create a mesh consisting of 32 x 32 squares with each square
// divided into two triangles, and the finite element space (specified
// in the form file) defined relative to this mesh, we do as follows

int main(int argc, char* argv[])
{
  dolfinx::init_logging(argc, argv);
  PetscInitialize(&argc, &argv, nullptr, nullptr);
  {
    //  Create mesh
    auto part = mesh::create_cell_partitioner(mesh::GhostMode::shared_facet);
    auto mesh = std::make_shared<mesh::Mesh<U>>(
        mesh::create_rectangle<U>(MPI_COMM_WORLD, {{{0.0, 0.0}, {1.0, 1.0}}},
                                  {32, 32}, mesh::CellType::triangle, part));

    //    A function space object, which is defined in the generated code,
    //    is created:

    auto element = basix::create_element<U>(
        basix::element::family::P, basix::cell::type::triangle, 2,
        basix::element::lagrange_variant::unset,
        basix::element::dpc_variant::unset, false);

    //  Create function space
    auto V
        = std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
            mesh, std::make_shared<fem::FiniteElement<U>>(element)));

    // The source function $f$ and the penalty term $\alpha$ are
    // declared:
    auto f = std::make_shared<fem::Function<T>>(V);
    f->interpolate(
        [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
        {
          std::vector<T> f;
          for (std::size_t p = 0; p < x.extent(1); ++p)
          {
            auto pi = std::numbers::pi;
            f.push_back(4.0 * std::pow(pi, 4) * std::sin(pi * x(0, p))
                        * std::sin(pi * x(1, p)));
          }
          return {f, {f.size()}};
        });
    auto alpha = std::make_shared<fem::Constant<T>>(8.0);

    //  Define variational forms
    fem::Form<T> a = fem::create_form<T>(*form_biharmonic_a, {V, V}, {},
                                         {{"alpha", alpha}}, {}, {});
    fem::Form<T> L
        = fem::create_form<T>(*form_biharmonic_L, {V}, {{"f", f}}, {}, {}, {});

    //  Now, the Dirichlet boundary condition ($u = 0$) can be
    //  created using the class {cpp:class}`DirichletBC`. A
    //  {cpp:class}`DirichletBC` takes two arguments: the value of the
    //  boundary condition, and the part of the boundary on which the
    //  condition applies. In our example, the value of the boundary
    //  condition (0) can represented using a {cpp:class}`Function`,
    //  and the Dirichlet boundary is defined by the indices of degrees
    //  of freedom to which the boundary condition applies. The
    //  definition of the Dirichlet boundary condition then looks as
    //  follows:

    //  Define boundary condition
    auto facets = mesh::exterior_facet_indices(*mesh->topology());
    const auto bdofs = fem::locate_dofs_topological(
        *V->mesh()->topology_mutable(), *V->dofmap(), 1, facets);
    fem::DirichletBC<T> bc(0, bdofs, V);

    //  Now, we have specified the variational forms and can consider
    //  the solution of the variational problem. First, we need to
    //  define a {cpp:class}`Function` `u` to store the solution. (Upon
    //  initialization, it is simply set to the zero function.) Next, we
    //  can call the `solve` function with the arguments `a == L`, `u`
    //  and `bc` as follows:

    //  Compute solution
    fem::Function<T> u(V);
    auto A = la::petsc::Matrix(fem::petsc::create_matrix(a), false);
    la::Vector<T> b(L.function_spaces()[0]->dofmap()->index_map,
                    L.function_spaces()[0]->dofmap()->index_map_bs());

    MatZeroEntries(A.mat());
    fem::assemble_matrix(la::petsc::Matrix::set_block_fn(A.mat(), ADD_VALUES),
                         a, {bc});
    MatAssemblyBegin(A.mat(), MAT_FLUSH_ASSEMBLY);
    MatAssemblyEnd(A.mat(), MAT_FLUSH_ASSEMBLY);
    fem::set_diagonal<T>(la::petsc::Matrix::set_fn(A.mat(), INSERT_VALUES), *V,
                         {bc});
    MatAssemblyBegin(A.mat(), MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(A.mat(), MAT_FINAL_ASSEMBLY);

    std::ranges::fill(b.array(), 0);
    fem::assemble_vector(b.array(), L);
    fem::apply_lifting(b.array(), {a}, {{bc}}, {}, T(1));
    b.scatter_rev(std::plus<T>());
    bc.set(b.array(), std::nullopt);

    la::petsc::KrylovSolver lu(MPI_COMM_WORLD);
    la::petsc::options::set("ksp_type", "preonly");
    la::petsc::options::set("pc_type", "lu");
    lu.set_from_options();

    lu.set_operator(A.mat());
    la::petsc::Vector _u(la::petsc::create_vector_wrap(*u.x()), false);
    la::petsc::Vector _b(la::petsc::create_vector_wrap(b), false);
    lu.solve(_u.vec(), _b.vec());

    //  Update ghost values before output
    u.x()->scatter_fwd();

    // The function `u` will be modified during the call to solve. A
    // {cpp:class}`Function` can be saved to a file. Here, we output the
    // solution to a `VTK` file (specified using the suffix `.pvd`) for
    // visualisation in an external program such as Paraview.

    //  Save solution in VTK format
    io::VTKFile file(MPI_COMM_WORLD, "u.pvd", "w");
    file.write<T>({u}, 0);
  }

  PetscFinalize();
  return 0;
}