1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
// # Mixed assembly with a function mesh on a subset of cells
//
// This demo illustrates how to:
//
// * Create a submesh of co-dimension 0
// * Assemble a mixed formulation with function spaces defined on the sub mesh
// and parent mesh
#include "mixed_codim0.h"
#include <basix/finite-element.h>
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/petsc.h>
#include <dolfinx/la/MatrixCSR.h>
#include <dolfinx/la/SparsityPattern.h>
#include <dolfinx/mesh/EntityMap.h>
#include <map>
#include <memory>
#include <ranges>
#include <utility>
#include <vector>
using namespace dolfinx;
using T = PetscScalar;
using U = typename dolfinx::scalar_value_t<T>;
int main(int argc, char* argv[])
{
dolfinx::init_logging(argc, argv);
PetscInitialize(&argc, &argv, nullptr, nullptr);
{
// Create mesh and function space
auto mesh = std::make_shared<mesh::Mesh<U>>(mesh::create_rectangle<U>(
MPI_COMM_WORLD, {{{0.0, 0.0}, {2.0, 1.0}}}, {1, 4},
mesh::CellType::quadrilateral,
mesh::create_cell_partitioner(mesh::GhostMode::shared_facet)));
basix::FiniteElement element = basix::create_element<U>(
basix::element::family::P, basix::cell::type::quadrilateral, 1,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
auto V
= std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
mesh, std::make_shared<fem::FiniteElement<U>>(element)));
// Next we find all cells of the mesh with y<0.5
const int tdim = mesh->topology()->dim();
std::vector<std::int32_t> marked_cells = mesh::locate_entities(
*mesh, tdim,
[](auto x)
{
using U = typename decltype(x)::value_type;
constexpr U eps = 1.0e-8;
std::vector<std::int8_t> marker(x.extent(1), false);
for (std::size_t p = 0; p < x.extent(1); ++p)
{
if (std::abs(x(1, p)) <= 0.5 + eps)
marker[p] = true;
}
return marker;
});
// We create a MeshTags object where we mark these cells with 2, and
// any other cell with 1
auto cell_map = mesh->topology()->index_map(tdim);
assert(cell_map);
std::size_t num_cells_local
= mesh->topology()->index_map(tdim)->size_local()
+ mesh->topology()->index_map(tdim)->num_ghosts();
std::vector<std::int32_t> cells(num_cells_local);
std::iota(cells.begin(), cells.end(), 0);
std::vector<std::int32_t> values(cells.size(), 1);
std::ranges::for_each(marked_cells, [&values](auto c) { values[c] = 2; });
mesh::MeshTags<std::int32_t> cell_marker(mesh->topology(), tdim, cells,
values);
// We create a submesh consisting of only cells with a given tag by
// calling `create_submesh`. This function also returns an
// `EntityMap` object, which relates entities in the submesh to
// entities in the original mesh. We will need this to assemble our
// mixed-domain form.
auto submesh_data = [](auto& mesh, int tdim, auto&& subcells)
{
auto [submesh, emap, v_map, g_map]
= mesh::create_submesh(mesh, tdim, subcells);
return std::pair(std::make_shared<mesh::Mesh<U>>(std::move(submesh)),
std::move(emap));
};
auto [submesh, entity_map] = submesh_data(*mesh, tdim, cell_marker.find(2));
// We create the function space used for the trial space
auto W
= std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
submesh, std::make_shared<fem::FiniteElement<U>>(element)));
// Next we compute the integration entities on the integration
// domain `mesh`
std::vector<std::int32_t> integration_entities
= fem::compute_integration_domains(
fem::IntegralType::cell, *mesh->topology(), cell_marker.find(2));
std::map<
fem::IntegralType,
std::vector<std::pair<std::int32_t, std::span<const std::int32_t>>>>
subdomain_data
= {{fem::IntegralType::cell, {{3, integration_entities}}}};
// A mixed-domain form involves functions defined over multiple
// meshes. The mesh passed to `create_form` is called the
// *integration domain mesh*. To assemble a mixed-domain form, we
// must supply an `EntityMap` for each additional mesh involved in
// the form, relating entities in that mesh to the integration
// domain mesh. In our case, `mesh` is the integration domain mesh,
// and the only other mesh in our form is `submesh`. Hence, we must
// provide the entity map object returned when we called
// `create_submesh`, which relates entities in `submesh` to entities
// in `mesh`.
//
// We can now create the bilinear form
fem::Form<T> a_mixed
= fem::create_form<T>(*form_mixed_codim0_a_mixed, {V, W}, {}, {},
subdomain_data, {entity_map}, V->mesh());
la::SparsityPattern sp_mixed = fem::create_sparsity_pattern(a_mixed);
sp_mixed.finalize();
la::MatrixCSR<PetscScalar> A_mixed(sp_mixed);
fem::assemble_matrix(A_mixed.mat_add_values(), a_mixed, {});
A_mixed.scatter_rev();
fem::Form<T> a
= fem::create_form<T>(*form_mixed_codim0_a, {W, W}, {}, {}, {}, {});
la::SparsityPattern sp = fem::create_sparsity_pattern(a);
sp.finalize();
la::MatrixCSR<PetscScalar> A(sp);
fem::assemble_matrix(A.mat_add_values(), a, {});
A.scatter_rev();
std::vector<T> A_mixed_flattened = A_mixed.to_dense();
std::stringstream cc;
cc.precision(3);
cc << "A_mixed:" << std::endl;
std::size_t num_owned_rows = V->dofmap()->index_map->size_local();
std::size_t num_sub_cols = W->dofmap()->index_map->size_local()
+ W->dofmap()->index_map->num_ghosts();
for (std::size_t i = 0; i < num_owned_rows; ++i)
{
for (std::size_t j = 0; j < num_sub_cols; ++j)
cc << A_mixed_flattened[i * num_sub_cols + j] << " ";
cc << std::endl;
}
std::size_t num_owned_sub_rows = W->dofmap()->index_map->size_local();
std::vector<T> A_flattened = A.to_dense();
cc << "A" << std::endl;
for (std::size_t i = 0; i < num_owned_sub_rows; ++i)
{
for (std::size_t j = 0; j < num_sub_cols; ++j)
cc << A_flattened[i * num_sub_cols + j] << " ";
cc << std::endl;
}
std::cout << cc.str() << std::endl;
}
PetscFinalize();
return 0;
}
|