1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
// ```text
// Copyright (C) 2024 Jack S. Hale and Garth N. Wells
// This file is part of DOLFINx (https://www.fenicsproject.org)
// SPDX-License-Identifier: LGPL-3.0-or-later
// ```
// # Custom cell kernel assembly
//
// This demo shows various methods to define custom cell kernels in C++
// and have them assembled into DOLFINx linear algebra data structures.
#include <basix/finite-element.h>
#include <basix/mdspan.hpp>
#include <basix/quadrature.h>
#include <cmath>
#include <concepts>
#include <dolfinx.h>
#include <dolfinx/la/MatrixCSR.h>
#include <dolfinx/la/SparsityPattern.h>
#include <functional>
#include <map>
#include <stdint.h>
#include <tuple>
#include <utility>
#include <vector>
using namespace dolfinx;
template <typename T, std::size_t ndim>
using mdspand_t = md::mdspan<T, md::dextents<std::size_t, ndim>>;
template <typename T, std::size_t n0, std::size_t n1>
using mdspan2_t = md::mdspan<T, std::extents<std::size_t, n0, n1>>;
/// @brief Compute the P1 element mass matrix on the reference cell.
/// @tparam T Scalar type.
/// @param phi Basis functions.
/// @param w Integration weights.
/// @return Element reference matrix (row-major storage).
template <typename T>
std::array<T, 9> A_ref(mdspand_t<const T, 4> phi, std::span<const T> w)
{
std::array<T, 9> A_b{};
mdspan2_t<T, 3, 3> A(A_b.data());
for (std::size_t k = 0; k < phi.extent(1); ++k) // quadrature point
for (std::size_t i = 0; i < A.extent(0); ++i) // row i
for (std::size_t j = 0; j < A.extent(1); ++j) // column j
A(i, j) += w[k] * phi(0, k, i, 0) * phi(0, k, j, 0);
return A_b;
}
/// @brief Compute the P1 RHS vector for f=1 on the reference cell.
/// @tparam T Scalar type.
/// @param phi Basis functions.
/// @param w Integration weights.
/// @return RHS reference vector.
template <typename T>
std::array<T, 3> b_ref(mdspand_t<const T, 4> phi, std::span<const T> w)
{
std::array<T, 3> b{};
for (std::size_t k = 0; k < phi.extent(1); ++k) // quadrature point
for (std::size_t i = 0; i < b.size(); ++i) // row i
b[i] += w[k] * phi(0, k, i, 0);
return b;
}
/// @brief Assemble a matrix operator using a `std::function` kernel
/// function.
/// @tparam T Scalar type.
/// @param V Function space.
/// @param kernel Element kernel to execute.
/// @param cells Cells to execute the kernel over.
/// @return Frobenius norm squared of the matrix.
template <std::floating_point T>
double assemble_matrix0(std::shared_ptr<const fem::FunctionSpace<T>> V,
auto kernel, const std::vector<std::int32_t>& cells)
{
// Kernel data (ID, kernel function, cell indices to execute over)
std::map integrals{
std::pair{std::tuple{fem::IntegralType::cell, 0, 0},
fem::integral_data<T>(kernel, cells, std::vector<int>{})}};
fem::Form<T, T> a({V, V}, integrals, V->mesh(), {}, {}, false, {});
auto dofmap = V->dofmap();
auto sp = la::SparsityPattern(
V->mesh()->comm(), {dofmap->index_map, dofmap->index_map},
{dofmap->index_map_bs(), dofmap->index_map_bs()});
fem::sparsitybuild::cells(sp, {cells, cells}, {*dofmap, *dofmap});
sp.finalize();
la::MatrixCSR<T> A(sp);
common::Timer timer("Assembler0 std::function (matrix)");
assemble_matrix(A.mat_add_values(), a, {});
A.scatter_rev();
return A.squared_norm();
}
/// @brief Assemble a RHS vector using a `std::function` kernel
/// function.
/// @tparam T Scalar type.
/// @param V Function space.
/// @param kernel Element kernel to execute.
/// @param cells Cells to execute the kernel over.
/// @return l2 norm squared of the vector.
template <std::floating_point T>
double assemble_vector0(std::shared_ptr<const fem::FunctionSpace<T>> V,
auto kernel, const std::vector<std::int32_t>& cells)
{
auto mesh = V->mesh();
std::map integrals{
std::pair{std::tuple{fem::IntegralType::cell, 0, 0},
fem::integral_data<T>(kernel, cells, std::vector<int>{})}};
fem::Form<T> L({V}, integrals, mesh, {}, {}, false, {});
auto dofmap = V->dofmap();
la::Vector<T> b(dofmap->index_map, 1);
common::Timer timer("Assembler0 std::function (vector)");
fem::assemble_vector(b.array(), L);
b.scatter_rev(std::plus<T>());
return la::squared_norm(b);
}
/// @brief Assemble a matrix operator using a lambda kernel function.
///
/// The lambda function can be inlined in the assembly code, which can
/// be important for performance for lightweight kernels.
///
/// @tparam T Scalar type.
/// @param g mesh geometry.
/// @param dofmap dofmap.
/// @param kernel Element kernel to execute.
/// @param cells Cells to execute the kernel over.
/// @return Frobenius norm squared of the matrix.
template <std::floating_point T>
double assemble_matrix1(const mesh::Geometry<T>& g, const fem::DofMap& dofmap,
auto kernel, std::span<const std::int32_t> cells)
{
auto sp = la::SparsityPattern(dofmap.index_map->comm(),
{dofmap.index_map, dofmap.index_map},
{dofmap.index_map_bs(), dofmap.index_map_bs()});
fem::sparsitybuild::cells(sp, {cells, cells}, {dofmap, dofmap});
sp.finalize();
la::MatrixCSR<T> A(sp);
auto ident = [](auto, auto, auto, auto) {}; // DOF permutation not required
common::Timer timer("Assembler1 lambda (matrix)");
md::mdspan<const T, md::extents<std::size_t, md::dynamic_extent, 3>> x(
g.x().data(), g.x().size() / 3, 3);
fem::impl::assemble_cells_matrix<T>(
A.mat_add_values(), g.dofmap(), x, cells, {dofmap.map(), 1, cells}, ident,
{dofmap.map(), 1, cells}, ident, {}, {}, kernel, {}, {}, {}, {});
A.scatter_rev();
return A.squared_norm();
}
/// @brief Assemble a RHS vector using using a lambda kernel function.
///
/// The lambda function can be inlined in the assembly code, which can
/// be important for performance for lightweight kernels.
///
/// @tparam T Scalar type.
/// @param g mesh geometry.
/// @param dofmap dofmap.
/// @param kernel Element kernel to execute.
/// @param cells Cells to execute the kernel over.
/// @return l2 norm squared of the vector.
template <std::floating_point T>
double assemble_vector1(const mesh::Geometry<T>& g, const fem::DofMap& dofmap,
auto kernel, const std::vector<std::int32_t>& cells)
{
la::Vector<T> b(dofmap.index_map, 1);
md::mdspan<const T, md::extents<std::size_t, md::dynamic_extent, 3>> x(
g.x().data(), g.x().size() / 3, 3);
common::Timer timer("Assembler1 lambda (vector)");
fem::impl::assemble_cells<1>([](auto, auto, auto, auto) {}, b.array(),
g.dofmap(), x, cells, {dofmap.map(), 1, cells},
kernel, {}, {}, {});
b.scatter_rev(std::plus<T>());
return la::squared_norm(b);
}
/// @brief Assemble P1 mass matrix and a RHS vector using element kernel
/// approaches.
///
/// Function demonstrates how hand-coded element kernels can be executed
/// in assembly over cells.
///
/// @tparam T Scalar type.
/// @param comm MPI communicator to assembler over.
template <std::floating_point T>
void assemble(MPI_Comm comm)
{
// Create mesh
auto mesh = std::make_shared<mesh::Mesh<T>>(mesh::create_rectangle<T>(
comm, {{{0, 0}, {1, 1}}}, {516, 116}, mesh::CellType::triangle));
// Create Basix P1 Lagrange element. This will be used to construct
// basis functions inside the custom cell kernel.
constexpr int order = 1;
basix::FiniteElement e = basix::create_element<T>(
basix::element::family::P,
mesh::cell_type_to_basix_type(mesh::CellType::triangle), order,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
// Construct quadrature rule
constexpr int max_degree = 2 * order;
auto quadrature_type = basix::quadrature::get_default_rule(
basix::cell::type::triangle, max_degree);
auto [X_b, weights] = basix::quadrature::make_quadrature<T>(
quadrature_type, basix::cell::type::triangle,
basix::polyset::type::standard, max_degree);
mdspand_t<const T, 2> X(X_b.data(), weights.size(), 2);
// Create a scalar function space
auto V = std::make_shared<fem::FunctionSpace<T>>(fem::create_functionspace<T>(
mesh, std::make_shared<fem::FiniteElement<T>>(e)));
// Build list of cells to assembler over (all cells owned by this
// rank)
std::int32_t size_local
= mesh->topology()->index_map(mesh->topology()->dim())->size_local();
std::vector<std::int32_t> cells(size_local);
std::iota(cells.begin(), cells.end(), 0);
// Tabulate basis functions at quadrature points
auto e_shape = e.tabulate_shape(0, weights.size());
std::size_t length
= std::accumulate(e_shape.begin(), e_shape.end(), 1, std::multiplies<>{});
std::vector<T> phi_b(length);
mdspand_t<T, 4> phi(phi_b.data(), e_shape);
e.tabulate(0, X, phi);
// Utility function to compute det(J) for an affine triangle cell
// (geometry is 3D)
auto detJ = [](mdspan2_t<const T, 3, 3> x)
{
return std::abs((x(0, 0) - x(1, 0)) * (x(2, 1) - x(1, 1))
- (x(0, 1) - x(1, 1)) * (x(2, 0) - x(1, 0)));
};
// Finite element mass matrix kernel function
std::array<T, 9> A_hat_b = A_ref<T>(phi, weights);
auto kernel_a = [A_hat = mdspan2_t<T, 3, 3>(A_hat_b.data()),
detJ](T* A, const T*, const T*, const T* x, const int*,
const uint8_t*, void*)
{
T scale = detJ(mdspan2_t<const T, 3, 3>(x));
mdspan2_t<T, 3, 3> _A(A);
for (std::size_t i = 0; i < A_hat.extent(0); ++i)
for (std::size_t j = 0; j < A_hat.extent(1); ++j)
_A(i, j) = scale * A_hat(i, j);
};
// Finite element RHS (f=1) kernel function
auto kernel_L = [b_hat = b_ref<T>(phi, weights),
detJ](T* b, const T*, const T*, const T* x, const int*,
const uint8_t*, void*)
{
T scale = detJ(mdspan2_t<const T, 3, 3>(x));
for (std::size_t i = 0; i < 3; ++i)
b[i] = scale * b_hat[i];
};
// Assemble matrix and vector using std::function kernel
assemble_matrix0<T>(V, kernel_a, cells);
assemble_vector0<T>(V, kernel_L, cells);
// Assemble matrix and vector using lambda kernel. This version
// supports efficient inlining of the kernel in the assembler. This
// can give a significant performance improvement for lightweight
// kernels.
assemble_matrix1<T>(mesh->geometry(), *V->dofmap(), kernel_a, cells);
assemble_vector1<T>(mesh->geometry(), *V->dofmap(), kernel_L, cells);
list_timings(comm);
}
int main(int argc, char* argv[])
{
MPI_Init(&argc, &argv);
dolfinx::init_logging(argc, argv);
assemble<float>(MPI_COMM_WORLD);
assemble<double>(MPI_COMM_WORLD);
MPI_Finalize();
return 0;
}
|