File: main.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (296 lines) | stat: -rw-r--r-- 9,894 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// # Hyperelasticity
//
// Solve a compressible neo-Hookean model in 3D.

// ## UFL form file
//
// The UFL file is implemented in
// {download}`demo_hyperelasticity/hyperelasticity.py`.
// ````{admonition} UFL form implemented in python
// :class: dropdown
// ![ufl-code]
// ````
//

// ## C++ program

#include "hyperelasticity.h"
#include <algorithm>
#include <basix/finite-element.h>
#include <climits>
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/common/log.h>
#include <dolfinx/fem/assembler.h>
#include <dolfinx/fem/petsc.h>
#include <dolfinx/io/XDMFFile.h>
#include <dolfinx/la/Vector.h>
#include <dolfinx/la/petsc.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/cell_types.h>
#include <dolfinx/nls/NewtonSolver.h>
#include <numbers>
#include <petscmat.h>
#include <petscsys.h>
#include <petscsystypes.h>
#include <petscvec.h>

using namespace dolfinx;
using T = PetscScalar;
using U = typename dolfinx::scalar_value_t<T>;

/// Hyperelastic problem class
class HyperElasticProblem
{
public:
  /// Constructor
  HyperElasticProblem(fem::Form<T>& L, fem::Form<T>& J,
                      const std::vector<fem::DirichletBC<T>>& bcs)
      : _l(L), _j(J), _bcs(bcs.begin(), bcs.end()),
        _b(L.function_spaces()[0]->dofmap()->index_map,
           L.function_spaces()[0]->dofmap()->index_map_bs()),
        _matA(la::petsc::Matrix(fem::petsc::create_matrix(J, "aij"), false))
  {
    auto map = L.function_spaces()[0]->dofmap()->index_map;
    const int bs = L.function_spaces()[0]->dofmap()->index_map_bs();
    std::int32_t size_local = bs * map->size_local();

    std::vector<PetscInt> ghosts(map->ghosts().begin(), map->ghosts().end());
    std::int64_t size_global = bs * map->size_global();
    VecCreateGhostBlockWithArray(map->comm(), bs, size_local, size_global,
                                 ghosts.size(), ghosts.data(),
                                 _b.array().data(), &_b_petsc);
  }

  /// Destructor
  virtual ~HyperElasticProblem()
  {
    if (_b_petsc)
      VecDestroy(&_b_petsc);
  }

  /// @brief  Form
  /// @return
  auto form()
  {
    return [](Vec x)
    {
      VecGhostUpdateBegin(x, INSERT_VALUES, SCATTER_FORWARD);
      VecGhostUpdateEnd(x, INSERT_VALUES, SCATTER_FORWARD);
    };
  }

  /// Compute F at current point x
  auto F()
  {
    return [&](const Vec x, Vec)
    {
      // Assemble b and update ghosts
      std::span b(_b.array());
      std::ranges::fill(b, 0);
      fem::assemble_vector(b, _l);
      VecGhostUpdateBegin(_b_petsc, ADD_VALUES, SCATTER_REVERSE);
      VecGhostUpdateEnd(_b_petsc, ADD_VALUES, SCATTER_REVERSE);

      // Set bcs
      Vec x_local;
      VecGhostGetLocalForm(x, &x_local);
      PetscInt n = 0;
      VecGetSize(x_local, &n);
      const T* _x = nullptr;
      VecGetArrayRead(x_local, &_x);
      std::ranges::for_each(_bcs, [b, x = std::span(_x, n)](auto& bc)
                            { bc.get().set(b, x, -1); });
      VecRestoreArrayRead(x_local, &_x);
    };
  }

  /// Compute J = F' at current point x
  auto J()
  {
    return [&](const Vec, Mat A)
    {
      MatZeroEntries(A);
      fem::assemble_matrix(la::petsc::Matrix::set_block_fn(A, ADD_VALUES), _j,
                           _bcs);
      MatAssemblyBegin(A, MAT_FLUSH_ASSEMBLY);
      MatAssemblyEnd(A, MAT_FLUSH_ASSEMBLY);
      fem::set_diagonal(la::petsc::Matrix::set_fn(A, INSERT_VALUES),
                        *_j.function_spaces()[0], _bcs);
      MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
      MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
    };
  }

  /// RHS vector
  Vec vector() { return _b_petsc; }

  /// Jacobian matrix
  Mat matrix() { return _matA.mat(); }

private:
  fem::Form<T>& _l;
  fem::Form<T>& _j;
  std::vector<std::reference_wrapper<const fem::DirichletBC<T>>> _bcs;
  la::Vector<T> _b;
  Vec _b_petsc = nullptr;
  la::petsc::Matrix _matA;
};

int main(int argc, char* argv[])
{
  init_logging(argc, argv);
  PetscInitialize(&argc, &argv, nullptr, nullptr);

  // Set the logging thread name to show the process rank
  int mpi_rank = dolfinx::MPI::rank(MPI_COMM_WORLD);
  std::string fmt = "[%Y-%m-%d %H:%M:%S.%e] [RANK " + std::to_string(mpi_rank)
                    + "] [%l] %v";
  spdlog::set_pattern(fmt);
  {
    // Inside the `main` function, we begin by defining a tetrahedral
    // mesh of the domain and the function space on this mesh. Here, we
    // choose to create a unit cube mesh with 25 ( = 24 + 1) vertices in
    // one direction and 17 ( = 16 + 1) vertices in the other two
    // directions. With this mesh, we initialize the (finite element)
    // function space defined by the generated code.

    // Create mesh and define function space
    auto mesh = std::make_shared<mesh::Mesh<U>>(mesh::create_box<U>(
        MPI_COMM_WORLD, {{{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}}}, {10, 10, 10},
        mesh::CellType::tetrahedron,
        mesh::create_cell_partitioner(mesh::GhostMode::none)));

    auto element = basix::create_element<U>(
        basix::element::family::P, basix::cell::type::tetrahedron, 1,
        basix::element::lagrange_variant::unset,
        basix::element::dpc_variant::unset, false);

    auto V
        = std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
            mesh, std::make_shared<fem::FiniteElement<U>>(
                      element, std::vector<std::size_t>{3})));

    auto B = std::make_shared<fem::Constant<T>>(std::vector<T>{0, 0, 0});
    auto traction = std::make_shared<fem::Constant<T>>(std::vector<T>{0, 0, 0});

    // Define solution function
    auto u = std::make_shared<fem::Function<T>>(V);
    fem::Form<T> a
        = fem::create_form<T>(*form_hyperelasticity_J_form, {V, V}, {{"u", u}},
                              {{"B", B}, {"T", traction}}, {}, {});
    fem::Form<T> L
        = fem::create_form<T>(*form_hyperelasticity_F_form, {V}, {{"u", u}},
                              {{"B", B}, {"T", traction}}, {}, {});

    auto u_rotation = std::make_shared<fem::Function<T>>(V);
    u_rotation->interpolate(
        [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
        {
          constexpr U scale = 0.005;

          // Center of rotation
          constexpr U x1_c = 0.5;
          constexpr U x2_c = 0.5;

          // Large angle of rotation (60 degrees)
          constexpr U theta = std::numbers::pi / 3;

          // New coordinates
          std::vector<U> fdata(3 * x.extent(1), 0);
          md::mdspan<U, md::extents<std::size_t, 3, md::dynamic_extent>> f(
              fdata.data(), 3, x.extent(1));
          for (std::size_t p = 0; p < x.extent(1); ++p)
          {
            U x1 = x(1, p);
            U x2 = x(2, p);
            f(1, p) = scale
                      * (x1_c + (x1 - x1_c) * std::cos(theta)
                         - (x2 - x2_c) * std::sin(theta) - x1);
            f(2, p) = scale
                      * (x2_c + (x1 - x1_c) * std::sin(theta)
                         - (x2 - x2_c) * std::cos(theta) - x2);
          }

          return {std::move(fdata), {3, x.extent(1)}};
        });

    // Create Dirichlet boundary conditions
    auto bdofs_left = fem::locate_dofs_geometrical(
        *V,
        [](auto x)
        {
          constexpr U eps = 1.0e-6;
          std::vector<std::int8_t> marker(x.extent(1), false);
          for (std::size_t p = 0; p < x.extent(1); ++p)
          {
            if (std::abs(x(0, p)) < eps)
              marker[p] = true;
          }
          return marker;
        });
    auto bdofs_right = fem::locate_dofs_geometrical(
        *V,
        [](auto x)
        {
          constexpr U eps = 1.0e-6;
          std::vector<std::int8_t> marker(x.extent(1), false);
          for (std::size_t p = 0; p < x.extent(1); ++p)
          {
            if (std::abs(x(0, p) - 1) < eps)
              marker[p] = true;
          }
          return marker;
        });
    std::vector bcs
        = {fem::DirichletBC<T>(std::vector<T>{0, 0, 0}, bdofs_left, V),
           fem::DirichletBC<T>(u_rotation, bdofs_right)};

    HyperElasticProblem problem(L, a, bcs);
    nls::petsc::NewtonSolver newton_solver(mesh->comm());
    newton_solver.setF(problem.F(), problem.vector());
    newton_solver.setJ(problem.J(), problem.matrix());
    newton_solver.set_form(problem.form());
    newton_solver.rtol = 10 * std::numeric_limits<T>::epsilon();
    newton_solver.atol = 10 * std::numeric_limits<T>::epsilon();

    la::petsc::Vector _u(la::petsc::create_vector_wrap(*u->x()), false);
    auto [niter, success] = newton_solver.solve(_u.vec());
    std::cout << "Number of Newton iterations: " << niter << std::endl;

    // Compute Cauchy stress. Construct appropriate Basix element for
    // stress.
    fem::Expression sigma_expression = fem::create_expression<T, U>(
        *expression_hyperelasticity_sigma, {{"u", u}}, {});

    constexpr auto family = basix::element::family::P;
    auto cell_type
        = mesh::cell_type_to_basix_type(mesh->topology()->cell_type());
    constexpr int k = 0;
    constexpr bool discontinuous = true;
    basix::FiniteElement S_element = basix::create_element<U>(
        family, cell_type, k, basix::element::lagrange_variant::unset,
        basix::element::dpc_variant::unset, discontinuous);
    auto S
        = std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
            mesh, std::make_shared<fem::FiniteElement<U>>(
                      S_element, std::vector<std::size_t>{3, 3})));

    fem::Function<T> sigma(S);
    sigma.name = "cauchy_stress";
    sigma.interpolate(sigma_expression);

    // Save solution in VTK format
    io::VTKFile file_u(mesh->comm(), "u.pvd", "w");
    file_u.write<T>({*u}, 0);

    // Save Cauchy stress in XDMF format
    io::XDMFFile file_sigma(mesh->comm(), "sigma.xdmf", "w");
    file_sigma.write_mesh(*mesh);
    file_sigma.write_function(sigma, 0);
  }

  PetscFinalize();

  return 0;
}