1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
// # Hyperelasticity
//
// Solve a compressible neo-Hookean model in 3D.
// ## UFL form file
//
// The UFL file is implemented in
// {download}`demo_hyperelasticity/hyperelasticity.py`.
// ````{admonition} UFL form implemented in python
// :class: dropdown
// ![ufl-code]
// ````
//
// ## C++ program
#include "hyperelasticity.h"
#include <algorithm>
#include <basix/finite-element.h>
#include <climits>
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/common/log.h>
#include <dolfinx/fem/assembler.h>
#include <dolfinx/fem/petsc.h>
#include <dolfinx/io/XDMFFile.h>
#include <dolfinx/la/Vector.h>
#include <dolfinx/la/petsc.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/cell_types.h>
#include <dolfinx/nls/NewtonSolver.h>
#include <numbers>
#include <petscmat.h>
#include <petscsys.h>
#include <petscsystypes.h>
#include <petscvec.h>
using namespace dolfinx;
using T = PetscScalar;
using U = typename dolfinx::scalar_value_t<T>;
/// Hyperelastic problem class
class HyperElasticProblem
{
public:
/// Constructor
HyperElasticProblem(fem::Form<T>& L, fem::Form<T>& J,
const std::vector<fem::DirichletBC<T>>& bcs)
: _l(L), _j(J), _bcs(bcs.begin(), bcs.end()),
_b(L.function_spaces()[0]->dofmap()->index_map,
L.function_spaces()[0]->dofmap()->index_map_bs()),
_matA(la::petsc::Matrix(fem::petsc::create_matrix(J, "aij"), false))
{
auto map = L.function_spaces()[0]->dofmap()->index_map;
const int bs = L.function_spaces()[0]->dofmap()->index_map_bs();
std::int32_t size_local = bs * map->size_local();
std::vector<PetscInt> ghosts(map->ghosts().begin(), map->ghosts().end());
std::int64_t size_global = bs * map->size_global();
VecCreateGhostBlockWithArray(map->comm(), bs, size_local, size_global,
ghosts.size(), ghosts.data(),
_b.array().data(), &_b_petsc);
}
/// Destructor
virtual ~HyperElasticProblem()
{
if (_b_petsc)
VecDestroy(&_b_petsc);
}
/// @brief Form
/// @return
auto form()
{
return [](Vec x)
{
VecGhostUpdateBegin(x, INSERT_VALUES, SCATTER_FORWARD);
VecGhostUpdateEnd(x, INSERT_VALUES, SCATTER_FORWARD);
};
}
/// Compute F at current point x
auto F()
{
return [&](const Vec x, Vec)
{
// Assemble b and update ghosts
std::span b(_b.array());
std::ranges::fill(b, 0);
fem::assemble_vector(b, _l);
VecGhostUpdateBegin(_b_petsc, ADD_VALUES, SCATTER_REVERSE);
VecGhostUpdateEnd(_b_petsc, ADD_VALUES, SCATTER_REVERSE);
// Set bcs
Vec x_local;
VecGhostGetLocalForm(x, &x_local);
PetscInt n = 0;
VecGetSize(x_local, &n);
const T* _x = nullptr;
VecGetArrayRead(x_local, &_x);
std::ranges::for_each(_bcs, [b, x = std::span(_x, n)](auto& bc)
{ bc.get().set(b, x, -1); });
VecRestoreArrayRead(x_local, &_x);
};
}
/// Compute J = F' at current point x
auto J()
{
return [&](const Vec, Mat A)
{
MatZeroEntries(A);
fem::assemble_matrix(la::petsc::Matrix::set_block_fn(A, ADD_VALUES), _j,
_bcs);
MatAssemblyBegin(A, MAT_FLUSH_ASSEMBLY);
MatAssemblyEnd(A, MAT_FLUSH_ASSEMBLY);
fem::set_diagonal(la::petsc::Matrix::set_fn(A, INSERT_VALUES),
*_j.function_spaces()[0], _bcs);
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
};
}
/// RHS vector
Vec vector() { return _b_petsc; }
/// Jacobian matrix
Mat matrix() { return _matA.mat(); }
private:
fem::Form<T>& _l;
fem::Form<T>& _j;
std::vector<std::reference_wrapper<const fem::DirichletBC<T>>> _bcs;
la::Vector<T> _b;
Vec _b_petsc = nullptr;
la::petsc::Matrix _matA;
};
int main(int argc, char* argv[])
{
init_logging(argc, argv);
PetscInitialize(&argc, &argv, nullptr, nullptr);
// Set the logging thread name to show the process rank
int mpi_rank = dolfinx::MPI::rank(MPI_COMM_WORLD);
std::string fmt = "[%Y-%m-%d %H:%M:%S.%e] [RANK " + std::to_string(mpi_rank)
+ "] [%l] %v";
spdlog::set_pattern(fmt);
{
// Inside the `main` function, we begin by defining a tetrahedral
// mesh of the domain and the function space on this mesh. Here, we
// choose to create a unit cube mesh with 25 ( = 24 + 1) vertices in
// one direction and 17 ( = 16 + 1) vertices in the other two
// directions. With this mesh, we initialize the (finite element)
// function space defined by the generated code.
// Create mesh and define function space
auto mesh = std::make_shared<mesh::Mesh<U>>(mesh::create_box<U>(
MPI_COMM_WORLD, {{{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}}}, {10, 10, 10},
mesh::CellType::tetrahedron,
mesh::create_cell_partitioner(mesh::GhostMode::none)));
auto element = basix::create_element<U>(
basix::element::family::P, basix::cell::type::tetrahedron, 1,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
auto V
= std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
mesh, std::make_shared<fem::FiniteElement<U>>(
element, std::vector<std::size_t>{3})));
auto B = std::make_shared<fem::Constant<T>>(std::vector<T>{0, 0, 0});
auto traction = std::make_shared<fem::Constant<T>>(std::vector<T>{0, 0, 0});
// Define solution function
auto u = std::make_shared<fem::Function<T>>(V);
fem::Form<T> a
= fem::create_form<T>(*form_hyperelasticity_J_form, {V, V}, {{"u", u}},
{{"B", B}, {"T", traction}}, {}, {});
fem::Form<T> L
= fem::create_form<T>(*form_hyperelasticity_F_form, {V}, {{"u", u}},
{{"B", B}, {"T", traction}}, {}, {});
auto u_rotation = std::make_shared<fem::Function<T>>(V);
u_rotation->interpolate(
[](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
{
constexpr U scale = 0.005;
// Center of rotation
constexpr U x1_c = 0.5;
constexpr U x2_c = 0.5;
// Large angle of rotation (60 degrees)
constexpr U theta = std::numbers::pi / 3;
// New coordinates
std::vector<U> fdata(3 * x.extent(1), 0);
md::mdspan<U, md::extents<std::size_t, 3, md::dynamic_extent>> f(
fdata.data(), 3, x.extent(1));
for (std::size_t p = 0; p < x.extent(1); ++p)
{
U x1 = x(1, p);
U x2 = x(2, p);
f(1, p) = scale
* (x1_c + (x1 - x1_c) * std::cos(theta)
- (x2 - x2_c) * std::sin(theta) - x1);
f(2, p) = scale
* (x2_c + (x1 - x1_c) * std::sin(theta)
- (x2 - x2_c) * std::cos(theta) - x2);
}
return {std::move(fdata), {3, x.extent(1)}};
});
// Create Dirichlet boundary conditions
auto bdofs_left = fem::locate_dofs_geometrical(
*V,
[](auto x)
{
constexpr U eps = 1.0e-6;
std::vector<std::int8_t> marker(x.extent(1), false);
for (std::size_t p = 0; p < x.extent(1); ++p)
{
if (std::abs(x(0, p)) < eps)
marker[p] = true;
}
return marker;
});
auto bdofs_right = fem::locate_dofs_geometrical(
*V,
[](auto x)
{
constexpr U eps = 1.0e-6;
std::vector<std::int8_t> marker(x.extent(1), false);
for (std::size_t p = 0; p < x.extent(1); ++p)
{
if (std::abs(x(0, p) - 1) < eps)
marker[p] = true;
}
return marker;
});
std::vector bcs
= {fem::DirichletBC<T>(std::vector<T>{0, 0, 0}, bdofs_left, V),
fem::DirichletBC<T>(u_rotation, bdofs_right)};
HyperElasticProblem problem(L, a, bcs);
nls::petsc::NewtonSolver newton_solver(mesh->comm());
newton_solver.setF(problem.F(), problem.vector());
newton_solver.setJ(problem.J(), problem.matrix());
newton_solver.set_form(problem.form());
newton_solver.rtol = 10 * std::numeric_limits<T>::epsilon();
newton_solver.atol = 10 * std::numeric_limits<T>::epsilon();
la::petsc::Vector _u(la::petsc::create_vector_wrap(*u->x()), false);
auto [niter, success] = newton_solver.solve(_u.vec());
std::cout << "Number of Newton iterations: " << niter << std::endl;
// Compute Cauchy stress. Construct appropriate Basix element for
// stress.
fem::Expression sigma_expression = fem::create_expression<T, U>(
*expression_hyperelasticity_sigma, {{"u", u}}, {});
constexpr auto family = basix::element::family::P;
auto cell_type
= mesh::cell_type_to_basix_type(mesh->topology()->cell_type());
constexpr int k = 0;
constexpr bool discontinuous = true;
basix::FiniteElement S_element = basix::create_element<U>(
family, cell_type, k, basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, discontinuous);
auto S
= std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
mesh, std::make_shared<fem::FiniteElement<U>>(
S_element, std::vector<std::size_t>{3, 3})));
fem::Function<T> sigma(S);
sigma.name = "cauchy_stress";
sigma.interpolate(sigma_expression);
// Save solution in VTK format
io::VTKFile file_u(mesh->comm(), "u.pvd", "w");
file_u.write<T>({*u}, 0);
// Save Cauchy stress in XDMF format
io::XDMFFile file_sigma(mesh->comm(), "sigma.xdmf", "w");
file_sigma.write_mesh(*mesh);
file_sigma.write_function(sigma, 0);
}
PetscFinalize();
return 0;
}
|