File: main.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (378 lines) | stat: -rw-r--r-- 14,655 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// # Mixed Poisson equation
//
// This demo illustrates how to solve Poisson equation using a mixed
// (two-field) formulation. In particular, it illustrates how to
//
// * Create a mixed finite element problem.
// * Extract subspaces.
// * Apply boundary conditions to different fields in a mixed problem.
// * Create integration domain data to execute finite element kernels.
//   over subsets of the boundary.
// * Use a submesh to represent boundary data
//
// The full implementation is in
// {download}`demo_mixed_poisson/main.cpp`.
//
//
// # Mixed formulation for the Poisson equation
//
// ## Equation and problem definition
//
// A mixed formulation of Poisson equation can be formulated by
// introducing an additional (vector) variable, namely the (negative)
// flux: $\sigma = \nabla u$. The partial differential equations
// then read
//
// $$
// \begin{align}
//   \sigma - \nabla u &= 0 \quad {\rm in} \ \Omega, \\
//   \nabla \cdot \sigma &= - f \quad {\rm in} \ \Omega,
// \end{align}
// $$
// with boundary conditions
//
// $$
//   u = u_0 \quad {\rm on} \ \Gamma_{D},  \\
//   \sigma \cdot n = g \quad {\rm on} \ \Gamma_{N}.
// $$
//
// where $n$ denotes the outward unit normal vector on the boundary. We
// see that the boundary condition for the flux ($\sigma \cdot n = g$)
// is an essential boundary condition (which should be enforced in
// the function space), while the other boundary condition ($u = u_0$)
// is a natural boundary condition (which should be applied to the
// variational form). Inserting the boundary conditions, this
// variational problem can be phrased in the general form: find
// $(\sigma, u) \in \Sigma_g \times V$ such that
//
// $$
//    a((\sigma, u), (\tau, v)) = L((\tau, v))
//    \quad \forall \ (\tau, v) \in \Sigma_0 \times V,
// $$
//
// where the forms $a$ and $L$ are defined as
//
// $$
// \begin{align}
//   a((\sigma, u), (\tau, v)) &:=
//     \int_{\Omega} \sigma \cdot \tau + \nabla \cdot \tau \ u
//   + \nabla \cdot \sigma \ v \ {\rm d} x, \\
//   L((\tau, v)) &:= - \int_{\Omega} f v \ {\rm d} x
//   + \int_{\Gamma_D} u_0 \tau \cdot n  \ {\rm d} s,
// \end{align}
// $$
// and $\Sigma_g := \{ \tau \in H({\rm div})$ such that $\tau \cdot
// n|_{\Gamma_N} = g \}$ and $V := L^2(\Omega)$.
//
// To discretize the above formulation, discrete function spaces
// $\Sigma_h \subset \Sigma$ and $V_h \subset V$ are needed to form a
// mixed function space $\Sigma_h \times V_h$. A stable choice of finite
// element spaces is to let $\Sigma_h$ be a Raviart-Thomas elements of
// polynomial order $k$ and $V_h$ be discontinuous elements of
// polynomial order $k-1$.
//
// We will use the same definitions of functions and boundaries as in the
// demo for {doc}`the Poisson equation <demo_poisson>`. These are:
//
// * $\Omega = [0,1] \times [0,1]$ (a unit square)
// * $\Gamma_{D} = \{(0, y) \cup (1, y) \in \partial \Omega\}$
// * $\Gamma_{N} = \{(x, 0) \cup (x, 1) \in \partial \Omega\}$
// * $u_0 = 20 y + 1$ on $\Gamma_{D}$
// * $g = 10$ (flux) on $\Gamma_{N}$
// * $f = \sin(5x - 0.5) + 1 (source term)

// ## UFL form file
//
// The UFL file is implemented in
// {download}`demo_mixed_poisson/mixed_poisson.py`.
// ````{admonition} UFL form implemented in python
// :class: dropdown
// ![ufl-code]
// ````
//

#include "mixed_poisson.h"
#include <basix/cell.h>
#include <basix/finite-element.h>
#include <basix/mdspan.hpp>
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/petsc.h>
#include <dolfinx/la/petsc.h>
#include <map>
#include <memory>
#include <petscmat.h>
#include <petscsys.h>
#include <petscsystypes.h>
#include <ranges>
#include <span>
#include <utility>
#include <vector>

using namespace dolfinx;
using T = PetscScalar;
using U = typename dolfinx::scalar_value_t<T>;

int main(int argc, char* argv[])
{
  dolfinx::init_logging(argc, argv);
  PetscInitialize(&argc, &argv, nullptr, nullptr);

  {
    mesh::CellType cell_type = mesh::CellType::triangle;

    // Create mesh
    auto mesh = std::make_shared<mesh::Mesh<U>>(mesh::create_rectangle<U>(
        MPI_COMM_WORLD, {{{0, 0}, {1, 1}}}, {32, 32}, cell_type));

    // Create Basix elements
    basix::cell::type basix_cell_type
        = dolfinx::mesh::cell_type_to_basix_type(cell_type);
    auto RT
        = basix::create_element<U>(basix::element::family::RT, basix_cell_type,
                                   1, basix::element::lagrange_variant::unset,
                                   basix::element::dpc_variant::unset, false);
    auto P0
        = basix::create_element<U>(basix::element::family::P, basix_cell_type,
                                   0, basix::element::lagrange_variant::unset,
                                   basix::element::dpc_variant::unset, true);

    // Create DOLFINx mixed element
    auto ME = std::make_shared<fem::FiniteElement<U>>(
        std::vector<fem::BasixElementData<U>>{{RT}, {P0}});

    // Create FunctionSpace
    auto V = std::make_shared<fem::FunctionSpace<U>>(
        fem::create_functionspace<U>(mesh, ME));

    // Get subspaces (views into V)
    auto V0 = std::make_shared<fem::FunctionSpace<U>>(V->sub({0}));
    auto V1 = std::make_shared<fem::FunctionSpace<U>>(V->sub({1}));

    // Collapse spaces
    auto W0 = std::make_shared<fem::FunctionSpace<U>>(V0->collapse().first);
    auto W1 = std::make_shared<fem::FunctionSpace<U>>(V1->collapse().first);

    // Create source function and interpolate $\sin(5x) + 1$
    auto f = std::make_shared<fem::Function<T>>(W1);
    f->interpolate(
        [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
        {
          std::vector<T> f;
          for (std::size_t p = 0; p < x.extent(1); ++p)
          {
            auto x0 = x(0, p);
            f.push_back(std::sin(5 * x0) + 1);
          }
          return {f, {f.size()}};
        });

    // Create boundary condition for $\sigma$ and interpolate such that
    // flux = 10 (for top and bottom boundaries)
    auto g = std::make_shared<fem::Function<T>>(W0);
    g->interpolate(
        [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
        {
          using mspan_t
              = md::mdspan<T, md::extents<std::size_t, 2, md::dynamic_extent>>;

          std::vector<T> fdata(2 * x.extent(1), 0);
          mspan_t f(fdata.data(), 2, x.extent(1));
          for (std::size_t p = 0; p < x.extent(1); ++p)
            f(1, p) = x(1, p) < 0.5 ? -10 : 10;
          return {std::move(fdata), {2, x.extent(1)}};
        });

    // Get list of all boundary facets
    mesh->topology()->create_connectivity(1, 2);
    std::vector bfacets = mesh::exterior_facet_indices(*mesh->topology());

    // Get facets with boundary condition on u
    std::vector<std::int32_t> dfacets = mesh::locate_entities_boundary(
        *mesh, 1,
        [](auto x)
        {
          using U = typename decltype(x)::value_type;
          constexpr U eps = 1e-8;
          std::vector<std::int8_t> marker(x.extent(1), false);
          for (std::size_t p = 0; p < x.extent(1); ++p)
          {
            auto x0 = x(0, p);
            if (std::abs(x0) < eps or std::abs(x0 - 1) < eps)
              marker[p] = true;
          }
          return marker;
        });

    // We'd like to represent `u_0` using a function space defined only
    // on the facets in `dfacets`. To do so, we begin by calling
    // `create_submesh` to get a `submesh` of those facets.  It also returns an
    // `EntityMap` object, which relates entities in the submesh to entities in
    // the original mesh. We will need this to assemble our mixed-domain form.
    int tdim = mesh->topology()->dim();
    int fdim = tdim - 1;

    auto submesh_data = [](auto& mesh, int tdim, auto&& dfacets)
    {
      auto [submesh, e_map, v_map, g_map]
          = mesh::create_submesh(mesh, tdim, dfacets);
      return std::pair(std::make_shared<mesh::Mesh<U>>(std::move(submesh)),
                       std::move(e_map));
    };
    auto [submesh, entity_map] = submesh_data(*mesh, fdim, dfacets);

    // Create an element for `u_0`
    basix::cell::type submesh_cell_type
        = dolfinx::mesh::cell_type_to_basix_type(
            submesh->topology()->cell_type());

    auto Qe = std::make_shared<fem::FiniteElement<U>>(
        basix::create_element<U>(basix::element::family::P, submesh_cell_type,
                                 1, basix::element::lagrange_variant::unset,
                                 basix::element::dpc_variant::unset, false));

    // Create a function space for `u_0` on the submesh
    auto Q = std::make_shared<fem::FunctionSpace<U>>(
        fem::create_functionspace<U>(submesh, Qe));

    // Boundary condition value for u and interpolate $20 y + 1$
    auto u0 = std::make_shared<fem::Function<T>>(Q);
    u0->interpolate(
        [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
        {
          std::vector<T> f;
          for (std::size_t p = 0; p < x.extent(1); ++p)
            f.push_back(20 * x(1, p) + 1);
          return {f, {f.size()}};
        });

    // Write u0 to file to visualise
    io::VTKFile u0_file(MPI_COMM_WORLD, "u0.pvd", "w");
    u0_file.write<T>({*u0}, 0);

    // Compute facets with $\sigma$ (flux) boundary condition facets,
    // which is `{all boundary facet} - {u0 boundary facets}`
    std::vector<std::int32_t> nfacets;
    std::ranges::set_difference(bfacets, dfacets, std::back_inserter(nfacets));

    // Get dofs that are constrained by \sigma
    std::array<std::vector<std::int32_t>, 2> ndofs
        = fem::locate_dofs_topological(
            *mesh->topology(), {*V0->dofmap(), *W0->dofmap()}, 1, nfacets);

    // Create boundary condition for $\sigma. $\sigma \cdot n$ will be
    // constrained to to be equal to the normal component of $g$. The
    // boundary conditions are applied to degrees-of-freedom ndofs, and
    // `V0` is the subspace that is constrained.
    fem::DirichletBC<T> bc(g, ndofs, V0);

    // Create integration domain data for `u0` boundary condition
    // (applied on the `ds(1)` in the UFL file). First we get facet data
    // integration data for facets in dfacets.
    std::vector<std::int32_t> domains = fem::compute_integration_domains(
        fem::IntegralType::exterior_facet, *mesh->topology(), dfacets);

    // Create data structure for the `ds(1)` integration domain in form
    // (see the UFL file). It is for en exterior facet integral (the key
    // in the map), and exterior facet domain marked as '1' in the UFL
    // file, and `domains` holds the necessary data to perform
    // integration of selected facets.
    std::map<
        fem::IntegralType,
        std::vector<std::pair<std::int32_t, std::span<const std::int32_t>>>>
        subdomain_data{{fem::IntegralType::exterior_facet, {{1, domains}}}};

    // Since we are doing a `ds(1)` integral on mesh and `u0` is defined
    // on the `submesh`, our form involves more than one mesh. The mesh
    // used to define the measure and passed to `create_form` is called
    // the integration domain mesh (here, `mesh`). To assemble our
    // mixed-domain form, we must provide an `EntityMap` for each
    // additional mesh in the form. In this case, the only other mesh is
    // `submesh`. Hence, we supply the entity map returned from
    // `create_submesh`, which relates entities in `mesh` and `submesh`.

    // Define variational forms and attach he required data
    fem::Form<T> a = fem::create_form<T>(*form_mixed_poisson_a, {V, V}, {}, {},
                                         subdomain_data, {});

    // Since this form involves multiple domains (i.e. both `mesh` and
    // `submesh` for the boundary condition), we must pass the entity
    // maps just created. We must also tell the form which domain to
    // integrate with respect to (in this case `mesh`)
    fem::Form<T> L = fem::create_form<T>(
        *form_mixed_poisson_L, {V}, {{"f", f}, {"u0", u0}}, {}, subdomain_data,
        {entity_map}, V->mesh());

    // Create solution finite element Function
    auto u = std::make_shared<fem::Function<T>>(V);

    // Create matrix and RHS vector data structures
    auto A = la::petsc::Matrix(fem::petsc::create_matrix(a), false);
    la::Vector<T> b(L.function_spaces()[0]->dofmap()->index_map,
                    L.function_spaces()[0]->dofmap()->index_map_bs());

    // Assemble the bilinear form into a matrix. The PETSc matrix is
    // 'flushed' so we can set values in it in the subsequent step.
    MatZeroEntries(A.mat());
    fem::assemble_matrix(la::petsc::Matrix::set_fn(A.mat(), ADD_VALUES), a,
                         {bc});
    MatAssemblyBegin(A.mat(), MAT_FLUSH_ASSEMBLY);
    MatAssemblyEnd(A.mat(), MAT_FLUSH_ASSEMBLY);

    // Set '1' on diagonal for Dirichlet dofs
    fem::set_diagonal<T>(la::petsc::Matrix::set_fn(A.mat(), INSERT_VALUES), *V,
                         {bc});
    MatAssemblyBegin(A.mat(), MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(A.mat(), MAT_FINAL_ASSEMBLY);

    // Assemble the linear form `L` into RHS vector
    std::ranges::fill(b.array(), 0);
    fem::assemble_vector(b.array(), L);

    // Modify unconstrained dofs on RHS to account for Dirichlet BC dofs
    // (constrained dofs), and perform parallel update on the vector.
    fem::apply_lifting(b.array(), {a}, {{bc}}, {}, T(1));
    b.scatter_rev(std::plus<T>());

    // Set value for constrained dofs
    bc.set(b.array(), std::nullopt);

    // Create PETSc linear solver
    la::petsc::KrylovSolver lu(MPI_COMM_WORLD);
    la::petsc::options::set("ksp_type", "preonly");
    la::petsc::options::set("pc_type", "lu");
    if (sizeof(PetscInt) == 4)
      la::petsc::options::set("pc_factor_mat_solver_type", "mumps");
    else
      la::petsc::options::set("pc_factor_mat_solver_type", "superlu_dist");
    lu.set_from_options();

    // Solve linear system Ax = b
    lu.set_operator(A.mat());
    la::petsc::Vector _u(la::petsc::create_vector_wrap(*u->x()), false);
    la::petsc::Vector _b(la::petsc::create_vector_wrap(b), false);
    lu.solve(_u.vec(), _b.vec());

    // Update ghost values before output
    u->x()->scatter_fwd();

    // Save solution in VTK format
    auto u_soln = std::make_shared<fem::Function<T>>(u->sub(1).collapse());
    io::VTKFile file(MPI_COMM_WORLD, "u.pvd", "w");
    file.write<T>({*u_soln}, 0);

#ifdef HAS_ADIOS2
    // Save solution in VTX format
    io::VTXWriter<U> vtx_u(MPI_COMM_WORLD, "u.bp", {u_soln}, "bp4");
    vtx_u.write(0);
    // Save interpolated boundary condition
    io::VTXWriter<U> vtx_u0(MPI_COMM_WORLD, "u0.bp", {u0}, "bp4");
    vtx_u0.write(0);
#endif
  }

  PetscFinalize();

  return 0;
}