File: main.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (254 lines) | stat: -rw-r--r-- 7,415 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// ```text
// Copyright (C) 2022 Igor A. Baratta
// This file is part of DOLFINx (https://www.fenicsproject.org)
// SPDX-License-Identifier:    LGPL-3.0-or-later
// ```

// # Matrix-free conjugate gradient (CG) solver
//
// This demo illustrates how to:
// * Solve a linear partial differential equation using a matrix-free CG
//   solver
// * Create and apply Dirichlet boundary conditions
// * Compute errors
//
// \begin{align*}
//    - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\
//      u &= u_D \quad {\rm on} \ \Gamma_{D}
// \end{align*}
//
//  where
// \begin{align*}
//    u_D &= 1 + x^2 + 2y^2, \\
//    f = -6
// \end{align*}
//
// ```{note}
// This demo illustrates the use of a matrix-free Conjugate
// Gradient solver. Many practical problems will also require
// a preconditioner to create an efficient solver.
// ```
//

// ## UFL form file
//
// The UFL file is implemented in
// {download}`demo_poisson_matrix_free/poisson.py`.
// ````{admonition} UFL form implemented in python
// :class: dropdown
// ![ufl-code]
// ````
//
// ## C++ program

#include "poisson.h"
#include <algorithm>
#include <basix/finite-element.h>
#include <cmath>
#include <complex>
#include <concepts>
#include <dolfinx.h>
#include <dolfinx/common/types.h>
#include <dolfinx/fem/Constant.h>
#include <memory>
#include <petscsystypes.h>

using namespace dolfinx;

namespace linalg
{
/// @brief Compute vector r = alpha * x + y.
/// @param[out] r
/// @param[in] alpha
/// @param[in] x
/// @param[in] y
void axpy(auto&& r, auto alpha, auto&& x, auto&& y)
{
  std::ranges::transform(x.array(), y.array(), r.array().begin(),
                         [alpha](auto x, auto y) { return alpha * x + y; });
}

/// @brief Solve problem A.x = b using the conjugate gradient (CG)
/// method.
///
/// @param[in, out] x Solution vector, may be set to an initial guess
/// hence no zeroed.
/// @param[in] b Right-hand side vector.
/// @param[in] action Function that computes the action of the linear
/// operator on a vector.
/// @param[in] kmax Maximum number of iterations
/// @param[in] rtol Relative tolerances for convergence
/// @return Number of CG iterations.
/// @pre The ghost values of `x` and `b` must be updated before this
/// function is called.
int cg(auto& x, auto& b, auto action, int kmax = 50, double rtol = 1e-8)
{
  using T = typename std::decay_t<decltype(x)>::value_type;

  // Create working vectors
  la::Vector r(b), y(b);

  // Compute initial residual r0 = b - Ax0
  action(x, y);
  axpy(r, T(-1), y, b);

  // Create p work vector
  la::Vector p(r);

  // Iterations of CG
  auto rnorm0 = la::squared_norm(r);
  auto rtol2 = rtol * rtol;
  auto rnorm = rnorm0;
  int k = 0;
  while (k < kmax)
  {
    ++k;

    // Compute y = A p
    action(p, y);

    // Compute alpha = r.r/p.y
    T alpha = rnorm / la::inner_product(p, y);

    // Update x (x <- x + alpha*p)
    axpy(x, alpha, p, x);

    // Update r (r <- r - alpha*y)
    axpy(r, -alpha, y, r);

    // Update residual norm
    auto rnorm_new = la::squared_norm(r);
    T beta = rnorm_new / rnorm;
    rnorm = rnorm_new;

    if (rnorm / rnorm0 < rtol2)
      break;

    // Update p (p <- beta * p + r)
    axpy(p, beta, p, r);
  }

  return k;
}
} // namespace linalg

template <typename T, std::floating_point U>
void solver(MPI_Comm comm)
{
  // Create mesh and function space
  auto mesh = std::make_shared<mesh::Mesh<U>>(mesh::create_rectangle<U>(
      comm, {{{0.0, 0.0}, {1.0, 1.0}}}, {10, 10}, mesh::CellType::triangle,
      mesh::create_cell_partitioner(mesh::GhostMode::none)));
  auto element = basix::create_element<U>(
      basix::element::family::P, basix::cell::type::triangle, 2,
      basix::element::lagrange_variant::unset,
      basix::element::dpc_variant::unset, false);
  auto V = std::make_shared<fem::FunctionSpace<U>>(fem::create_functionspace<U>(
      mesh, std::make_shared<fem::FiniteElement<U>>(element)));

  // Prepare and set Constants for the bilinear form
  auto f = std::make_shared<fem::Constant<T>>(-6.0);

  // Define variational forms
  fem::Form<T, U> L
      = fem::create_form<T>(*form_poisson_L, {V}, {}, {{"f", f}}, {}, {});

  // Action of the bilinear form "a" on a function ui
  auto ui = std::make_shared<fem::Function<T, U>>(V);
  fem::Form<T, U> M
      = fem::create_form<T>(*form_poisson_M, {V}, {{"ui", ui}}, {{}}, {}, {});

  // Define boundary condition
  auto u_D = std::make_shared<fem::Function<T, U>>(V);
  u_D->interpolate(
      [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
      {
        std::vector<T> f;
        for (std::size_t p = 0; p < x.extent(1); ++p)
          f.push_back(1 + x(0, p) * x(0, p) + 2 * x(1, p) * x(1, p));
        return {f, {f.size()}};
      });

  mesh->topology_mutable()->create_connectivity(1, 2);
  const std::vector<std::int32_t> facets
      = mesh::exterior_facet_indices(*mesh->topology());
  std::vector<std::int32_t> bdofs = fem::locate_dofs_topological(
      *V->mesh()->topology_mutable(), *V->dofmap(), 1, facets);
  auto bc = std::make_shared<const fem::DirichletBC<T>>(u_D, bdofs);

  // Assemble RHS vector
  la::Vector<T> b(V->dofmap()->index_map, V->dofmap()->index_map_bs());
  fem::assemble_vector(b.array(), L);

  // Apply lifting to account for Dirichlet boundary condition
  // b <- b - A * x_bc
  bc->set(ui->x()->array(), std::nullopt, T(-1));
  fem::assemble_vector(b.array(), M);

  // Communicate ghost values
  b.scatter_rev(std::plus<T>());

  // Set BC dofs to zero (effectively zeroes columns of A)
  bc->set(b.array(), std::nullopt, T(0));

  b.scatter_fwd();

  // Pack coefficients and constants
  auto coeff = fem::allocate_coefficient_storage(M);
  std::vector<T> constants = fem::pack_constants(M);

  // Create function for computing the action of A on x (y = Ax)
  auto action = [&M, &ui, &bc, &coeff, &constants](auto& x, auto& y)
  {
    // Zero y
    std::ranges::fill(y.array(), 0);

    // Update coefficient ui (just copy data from x to ui)
    std::ranges::copy(x.array(), ui->x()->array().begin());

    // Compute action of A on x
    fem::pack_coefficients(M, coeff);
    fem::assemble_vector(y.array(), M, std::span<const T>(constants),
                         fem::make_coefficients_span(coeff));

    // Set BC dofs to zero (effectively zeroes rows of A)
    bc->set(y.array(), std::nullopt, T(0));

    // Accumulate ghost values
    y.scatter_rev(std::plus<T>());

    // Update ghost values
    y.scatter_fwd();
  };

  // Compute solution using the CG method
  auto u = std::make_shared<fem::Function<T>>(V);
  int num_it = linalg::cg(*u->x(), b, action, 200, 1e-6);

  // Set BC values in the solution vectors
  bc->set(u->x()->array(), std::nullopt, T(1));

  // Compute L2 error (squared) of the solution vector e = (u - u_d, u
  // - u_d)*dx
  fem::Form<T> E = fem::create_form<T, U>(
      *form_poisson_E, {}, {{"uexact", u_D}, {"usol", u}}, {}, {}, {}, mesh);
  T error = fem::assemble_scalar(E);
  if (dolfinx::MPI::rank(comm) == 0)
  {
    std::cout << "Number of CG iterations " << num_it << std::endl;
    std::cout << "Finite element error (L2 norm (squared)) " << std::abs(error)
              << std::endl;
  }
}

/// Main program
int main(int argc, char* argv[])
{
  using T = PetscScalar;
  using U = typename dolfinx::scalar_value_t<T>;
  init_logging(argc, argv);
  MPI_Init(&argc, &argv);
  solver<T, U>(MPI_COMM_WORLD);
  MPI_Finalize();
  return 0;
}