1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
|
// Copyright (C) 2015-2024 Chris Richardson, Garth N. Wells, Igor Baratta,
// Joseph P. Dean and Jørgen S. Dokken
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "IndexMap.h"
#include "sort.h"
#include <algorithm>
#include <cstdint>
#include <functional>
#include <numeric>
#include <ranges>
#include <span>
#include <utility>
#include <vector>
using namespace dolfinx;
using namespace dolfinx::common;
namespace
{
/// @brief Given source ranks (ranks that own indices ghosted by the
/// calling rank), compute ranks that ghost indices owned by the calling
/// rank.
/// @param comm MPI communicator.
/// @param owners List of ranks that own each ghost index.
/// @return (src ranks, destination ranks). Both lists are sorted.
std::array<std::vector<int>, 2>
build_src_dest(MPI_Comm comm, std::span<const int> owners, int tag)
{
if (dolfinx::MPI::size(comm) == 1)
{
assert(owners.empty());
return std::array<std::vector<int>, 2>();
}
std::vector<int> src(owners.begin(), owners.end());
std::ranges::sort(src);
auto [unique_end, range_end] = std::ranges::unique(src);
src.erase(unique_end, range_end);
src.shrink_to_fit();
std::vector<int> dest = dolfinx::MPI::compute_graph_edges_nbx(comm, src, tag);
std::ranges::sort(dest);
return {std::move(src), std::move(dest)};
}
/// @brief Helper function that sends ghost indices on a given process
/// to their owning rank, and receives indices owned by this process
/// that are ghosts on other processes.
///
/// It also returns the data structures used in this common
/// communication pattern.
///
/// @param[in] comm The communicator (global).
/// @param[in] src Source ranks on `comm`.
/// @param[in] dest Destination ranks on `comm`.
/// @param[in] ghosts Ghost indices on calling process.
/// @param[in] owners Owning rank for each entry in `ghosts`.
/// @param[in] include_ghost A list of the same length as `ghosts`,
/// whose ith entry must be non-zero (true) to include `ghost[i]`,
/// otherwise the ghost will be excluded
/// @return 1) The ghost indices packed in a buffer for communication
/// 2) The received indices (in receive buffer layout)
/// 3) A map relating the position of a ghost in the packed
/// data (1) to to its position in `ghosts`.
/// 4) The number of indices to send to each process.
/// 5) The number of indices received by each process.
/// 6) The send displacements.
/// 7) The received displacements.
/// @pre `src` must be sorted and unique
/// @pre `dest` must be sorted and unique
std::tuple<std::vector<std::int64_t>, std::vector<std::int64_t>,
std::vector<std::size_t>, std::vector<std::int32_t>,
std::vector<std::int32_t>, std::vector<int>, std::vector<int>>
communicate_ghosts_to_owners(MPI_Comm comm, std::span<const int> src,
std::span<const int> dest,
std::span<const std::int64_t> ghosts,
std::span<const std::int32_t> owners,
std::span<const std::uint8_t> include_ghost)
{
// Send ghost indices to owning rank
std::vector<std::int64_t> send_indices, recv_indices;
std::vector<std::size_t> ghost_buffer_pos;
std::vector<std::int32_t> send_sizes, recv_sizes;
std::vector<int> send_disp, recv_disp;
{
// Create neighbourhood comm (ghost -> owner)
MPI_Comm comm0;
int ierr = MPI_Dist_graph_create_adjacent(
comm, dest.size(), dest.data(), MPI_UNWEIGHTED, src.size(), src.data(),
MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm0);
dolfinx::MPI::check_error(comm, ierr);
// Pack ghosts indices
std::vector<std::vector<std::int64_t>> send_data(src.size());
std::vector<std::vector<std::size_t>> pos_to_ghost(src.size());
for (std::size_t i = 0; i < ghosts.size(); ++i)
{
auto it = std::ranges::lower_bound(src, owners[i]);
assert(it != src.end() and *it == owners[i]);
if (std::size_t r = std::distance(src.begin(), it); include_ghost[i])
{
send_data[r].push_back(ghosts[i]);
pos_to_ghost[r].push_back(i);
}
}
// Count number of ghosts per dest
std::ranges::transform(send_data, std::back_inserter(send_sizes),
[](auto& d) { return d.size(); });
// Send how many indices I ghost to each owner, and receive how many
// of my indices other ranks ghost
recv_sizes.resize(dest.size(), 0);
send_sizes.reserve(1);
recv_sizes.reserve(1);
MPI_Request sizes_request;
MPI_Ineighbor_alltoall(send_sizes.data(), 1, MPI_INT32_T, recv_sizes.data(),
1, MPI_INT32_T, comm0, &sizes_request);
// Build send buffer and ghost position to send buffer position
for (auto& d : send_data)
send_indices.insert(send_indices.end(), d.begin(), d.end());
for (auto& p : pos_to_ghost)
ghost_buffer_pos.insert(ghost_buffer_pos.end(), p.begin(), p.end());
// Prepare displacement vectors
send_disp.resize(src.size() + 1, 0);
recv_disp.resize(dest.size() + 1, 0);
std::partial_sum(send_sizes.begin(), send_sizes.end(),
std::next(send_disp.begin()));
MPI_Wait(&sizes_request, MPI_STATUS_IGNORE);
std::partial_sum(recv_sizes.begin(), recv_sizes.end(),
std::next(recv_disp.begin()));
// Send ghost indices to owner, and receive indices
recv_indices.resize(recv_disp.back());
ierr = MPI_Neighbor_alltoallv(send_indices.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T,
recv_indices.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT64_T, comm0);
dolfinx::MPI::check_error(comm, ierr);
ierr = MPI_Comm_free(&comm0);
dolfinx::MPI::check_error(comm, ierr);
}
return {std::move(send_indices), std::move(recv_indices),
std::move(ghost_buffer_pos), std::move(send_sizes),
std::move(recv_sizes), std::move(send_disp),
std::move(recv_disp)};
}
/// Given an index map and a subset of local indices (can be owned or
/// ghost but must be unique and sorted), compute the owned, ghost and
/// ghost owners in the submap.
///
/// @param[in] imap An index map.
/// @param[in] indices List of entity indices (indices local to the
/// process).
/// @param[in] order Control the order in which ghost indices appear in
/// the new map.
/// @param[in] allow_owner_change Allows indices that are not included
/// by their owning process but included on sharing processes to be
/// included in the submap. These indices will be owned by one of the
/// sharing processes in the submap.
/// @pre `indices` must be sorted and unique.
/// @return The (1) owned, (2) ghost and (3) ghost owners in the submap,
/// and (4) submap src ranks and (5) submap destination ranks. All
/// indices are local and with respect to the original index map.
std::tuple<std::vector<std::int32_t>, std::vector<std::int32_t>,
std::vector<int>, std::vector<int>, std::vector<int>>
compute_submap_indices(const IndexMap& imap,
std::span<const std::int32_t> indices,
IndexMapOrder order, bool allow_owner_change)
{
// Create lookup array to determine if an index is in the sub-map
std::vector<std::uint8_t> is_in_submap(imap.size_local() + imap.num_ghosts(),
0);
std::ranges::for_each(indices,
[&is_in_submap](auto i) { is_in_submap[i] = 1; });
// --- Step 1 ---: Send ghost indices in `indices` to their owners and
// receive indices owned by this process that are in `indices` on
// other processes.
const auto [send_indices, recv_indices, ghost_buffer_pos, send_sizes,
recv_sizes, send_disp, recv_disp]
= communicate_ghosts_to_owners(
imap.comm(), imap.src(), imap.dest(), imap.ghosts(), imap.owners(),
std::span(is_in_submap.cbegin() + imap.size_local(),
is_in_submap.cend()));
// --- Step 2 ---: Create a map from the indices in `recv_indices`
// (i.e. indices owned by this process that are in `indices` on other
// processes) to their owner in the submap. This is required since not
// all indices in `recv_indices` will necessarily be in `indices` on
// this process, and thus other processes must own them in the submap.
// If ownership of received index doesn't change, then this process
// has the receiving rank as a destination.
std::vector<int> recv_owners(send_disp.back());
std::vector<int> submap_dest;
submap_dest.reserve(1);
const int rank = dolfinx::MPI::rank(imap.comm());
{
// Flag to track if the owner of any indices have changed in the
// submap
bool owners_changed = false;
// Create a map from (global) indices in `recv_indices` to a list of
// processes that can own them in the submap.
std::vector<std::pair<std::int64_t, int>> global_idx_to_possible_owner;
const std::array local_range = imap.local_range();
// Loop through the received indices
std::span<const int> dest = imap.dest();
for (std::size_t i = 0; i < recv_disp.size() - 1; ++i)
{
for (int j = recv_disp[i]; j < recv_disp[i + 1]; ++j)
{
// Compute the local index
std::int64_t idx = recv_indices[j];
assert(idx >= 0);
std::int32_t idx_local = idx - local_range[0];
assert(idx_local >= 0);
assert(idx_local < local_range[1]);
// Check if index is included in the submap on this process. If
// so, this process remains its owner in the submap. Otherwise,
// add the process that sent it to the list of possible owners.
if (is_in_submap[idx_local])
{
global_idx_to_possible_owner.push_back({idx, rank});
submap_dest.push_back(dest[i]);
}
else
{
owners_changed = true;
global_idx_to_possible_owner.push_back({idx, dest[i]});
}
}
if (owners_changed and !allow_owner_change)
throw std::runtime_error("Index owner change detected!");
}
std::ranges::sort(global_idx_to_possible_owner);
// Choose the submap owner for each index in `recv_indices` and pack
// destination ranks for each process that has received new indices.
// During ownership determination, we know what other processes
// requires this index, and add them to the destination set.
std::vector<int> send_owners;
send_owners.reserve(1);
std::vector<int> new_owner_dest_ranks;
new_owner_dest_ranks.reserve(1);
std::vector<int> new_owner_dest_ranks_offsets(recv_sizes.size() + 1, 0);
std::vector<std::int32_t> new_owner_dest_ranks_sizes(recv_sizes.size());
new_owner_dest_ranks_sizes.reserve(1);
for (std::size_t i = 0; i < recv_sizes.size(); ++i)
{
for (int j = recv_disp[i]; j < recv_disp[i + 1]; ++j)
{
std::int64_t idx = recv_indices[j];
// NOTE: Could choose new owner in a way that is is better for
// load balancing, though the impact is probably only very small
auto it = std::ranges::lower_bound(global_idx_to_possible_owner, idx,
std::ranges::less(),
[](auto e) { return e.first; });
assert(it != global_idx_to_possible_owner.end() and it->first == idx);
send_owners.push_back(it->second);
// If rank that sent this ghost is the submap owner, send all
// other ranks
if (it->second == dest[i])
{
// Find upper limit of recv index and pack all ranks from
// ownership determination (except new owner) as dest ranks
auto it_upper = std::ranges::upper_bound(
it, global_idx_to_possible_owner.end(), idx, std::ranges::less(),
[](auto e) { return e.first; });
std::transform(std::next(it), it_upper,
std::back_inserter(new_owner_dest_ranks),
[](auto e) { return e.second; });
}
}
// Remove duplicate new dest ranks from recv process. The new
// owning process can have taken ownership of multiple indices
// from the same rank.
if (auto dest_begin = std::next(new_owner_dest_ranks.begin(),
new_owner_dest_ranks_offsets[i]);
dest_begin != new_owner_dest_ranks.end())
{
std::ranges::sort(dest_begin, new_owner_dest_ranks.end());
auto [unique_end, range_end]
= std::ranges::unique(dest_begin, new_owner_dest_ranks.end());
new_owner_dest_ranks.erase(unique_end, range_end);
std::size_t num_unique_dest_ranks
= std::distance(dest_begin, unique_end);
new_owner_dest_ranks_sizes[i] = num_unique_dest_ranks;
new_owner_dest_ranks_offsets[i + 1]
= new_owner_dest_ranks_offsets[i] + num_unique_dest_ranks;
}
else
{
new_owner_dest_ranks_sizes[i] = 0;
new_owner_dest_ranks_offsets[i + 1] = new_owner_dest_ranks_offsets[i];
}
}
// Create neighbourhood comm (owner -> ghost)
MPI_Comm comm1;
int ierr = MPI_Dist_graph_create_adjacent(
imap.comm(), imap.src().size(), imap.src().data(), MPI_UNWEIGHTED,
dest.size(), dest.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm1);
dolfinx::MPI::check_error(imap.comm(), ierr);
// Send the data
ierr = MPI_Neighbor_alltoallv(send_owners.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT, recv_owners.data(),
send_sizes.data(), send_disp.data(), MPI_INT,
comm1);
dolfinx::MPI::check_error(imap.comm(), ierr);
// Communicate number of received dest_ranks from each process
std::vector<int> recv_dest_ranks_sizes(imap.src().size());
recv_dest_ranks_sizes.reserve(1);
ierr = MPI_Neighbor_alltoall(new_owner_dest_ranks_sizes.data(), 1, MPI_INT,
recv_dest_ranks_sizes.data(), 1, MPI_INT,
comm1);
dolfinx::MPI::check_error(imap.comm(), ierr);
// Communicate new dest ranks
std::vector<int> recv_dest_rank_disp(imap.src().size() + 1, 0);
std::partial_sum(recv_dest_ranks_sizes.begin(), recv_dest_ranks_sizes.end(),
std::next(recv_dest_rank_disp.begin()));
std::vector<int> recv_dest_ranks(recv_dest_rank_disp.back());
recv_dest_ranks.reserve(1);
ierr = MPI_Neighbor_alltoallv(
new_owner_dest_ranks.data(), new_owner_dest_ranks_sizes.data(),
new_owner_dest_ranks_offsets.data(), MPI_INT, recv_dest_ranks.data(),
recv_dest_ranks_sizes.data(), recv_dest_rank_disp.data(), MPI_INT,
comm1);
dolfinx::MPI::check_error(imap.comm(), ierr);
// Append new submap dest ranks and remove duplicates
std::ranges::copy(recv_dest_ranks, std::back_inserter(submap_dest));
std::ranges::sort(submap_dest);
{
auto [unique_end, range_end] = std::ranges::unique(submap_dest);
submap_dest.erase(unique_end, range_end);
submap_dest.shrink_to_fit();
}
// Free the communicator
ierr = MPI_Comm_free(&comm1);
dolfinx::MPI::check_error(imap.comm(), ierr);
}
// --- Step 3 --- : Determine the owned indices, ghost indices, and
// ghost owners in the submap
// Local indices (w.r.t. original map) owned by this process in the
// submap
std::vector<std::int32_t> submap_owned;
submap_owned.reserve(indices.size());
// Local indices (w.r.t. original map) ghosted by this process in the
// submap
std::vector<std::int32_t> submap_ghost;
// The owners of the submap ghost indices (process
// submap_ghost_owners[i] owns index submap_ghost[i])
std::vector<int> submap_ghost_owners;
{
// Add owned indices to submap_owned
std::copy_if(
indices.begin(), indices.end(), std::back_inserter(submap_owned),
[local_size = imap.size_local()](auto i) { return i < local_size; });
// FIXME: Could just create when making send_indices
std::vector<std::int32_t> send_indices_local(send_indices.size());
imap.global_to_local(send_indices, send_indices_local);
// Loop over ghost indices (in the original map) and add to
// submap_owned if the owning process has decided this process to be
// the submap owner. Else, add the index and its (possibly new)
// owner to submap_ghost and submap_ghost_owners respectively.
for (std::size_t i = 0; i < send_indices_local.size(); ++i)
{
std::int32_t local_idx = send_indices_local[i];
if (int owner = recv_owners[i]; owner == rank)
submap_owned.push_back(local_idx);
else
{
submap_ghost.push_back(local_idx);
submap_ghost_owners.push_back(owner);
}
}
std::ranges::sort(submap_owned);
}
// Get submap source ranks
std::vector<int> submap_src(submap_ghost_owners.begin(),
submap_ghost_owners.end());
std::ranges::sort(submap_src);
auto [unique_end, range_end] = std::ranges::unique(submap_src);
submap_src.erase(unique_end, range_end);
submap_src.shrink_to_fit();
// If required, preserve the order of the ghost indices
if (order == IndexMapOrder::preserve)
{
// Build (old position, new position) list for ghosts and sort
std::vector<std::pair<std::int32_t, std::int32_t>> pos;
pos.reserve(submap_ghost.size());
for (std::int32_t idx : submap_ghost)
pos.emplace_back(idx, pos.size());
std::ranges::sort(pos);
// Order ghosts in the sub-map by their position in the parent map
std::vector<int> submap_ghost_owners1;
submap_ghost_owners1.reserve(submap_ghost_owners.size());
std::vector<std::int32_t> submap_ghost1;
submap_ghost1.reserve(submap_ghost.size());
for (auto [_, idx] : pos)
{
submap_ghost_owners1.push_back(submap_ghost_owners[idx]);
submap_ghost1.push_back(submap_ghost[idx]);
}
submap_ghost_owners = std::move(submap_ghost_owners1);
submap_ghost = std::move(submap_ghost1);
}
return {std::move(submap_owned), std::move(submap_ghost),
std::move(submap_ghost_owners), std::move(submap_src),
std::move(submap_dest)};
}
/// Compute the global indices of ghosts in a submap.
/// @param[in] submap_src The submap source ranks
/// @param[in] submap_dest The submap destination ranks
/// @param[in] submap_owned Owned submap indices (local w.r.t. original
/// index map)
/// @param[in] submap_ghosts_global Ghost submap indices (global w.r.t.
/// original index map)
/// @param[in] submap_ghost_owners The ranks that own the ghosts in the
/// submap
/// @param[in] submap_offset The global offset for this rank in the
/// submap
/// @param[in] imap The original index map
/// @pre submap_owned must be sorted and contain no repeated indices
std::vector<std::int64_t>
compute_submap_ghost_indices(std::span<const int> submap_src,
std::span<const int> submap_dest,
std::span<const std::int32_t> submap_owned,
std::span<const std::int64_t> submap_ghosts_global,
std::span<const std::int32_t> submap_ghost_owners,
std::int64_t submap_offset, const IndexMap& imap)
{
// --- Step 1 ---: Send global ghost indices (w.r.t. original imap) to
// owning rank
auto [send_indices, recv_indices, ghost_perm, send_sizes, recv_sizes,
send_disp, recv_disp]
= communicate_ghosts_to_owners(
imap.comm(), submap_src, submap_dest, submap_ghosts_global,
submap_ghost_owners,
std::vector<std::uint8_t>(submap_ghosts_global.size(), 1));
// --- Step 2 ---: For each received index, compute the submap global
// index
std::vector<std::int64_t> send_gidx;
{
send_gidx.reserve(recv_indices.size());
// NOTE: Received indices are owned by this process in the submap,
// but not necessarily in the original imap, so we must use
// global_to_local to convert rather than subtracting local_range[0]
// TODO: Convert recv_indices or submap_owned?
std::vector<std::int32_t> recv_indices_local(recv_indices.size());
imap.global_to_local(recv_indices, recv_indices_local);
// Compute submap global index
for (std::int32_t idx : recv_indices_local)
{
// Could avoid search by creating look-up array
auto it = std::ranges::lower_bound(submap_owned, idx);
assert(it != submap_owned.end() and *it == idx);
std::size_t idx_local_submap = std::distance(submap_owned.begin(), it);
send_gidx.push_back(idx_local_submap + submap_offset);
}
}
// --- Step 3 ---: Send submap global indices to process that ghost
// them
std::vector<std::int64_t> recv_gidx(send_disp.back());
{
// Create neighbourhood comm (owner -> ghost)
MPI_Comm comm1;
int ierr = MPI_Dist_graph_create_adjacent(
imap.comm(), submap_src.size(), submap_src.data(), MPI_UNWEIGHTED,
submap_dest.size(), submap_dest.data(), MPI_UNWEIGHTED, MPI_INFO_NULL,
false, &comm1);
dolfinx::MPI::check_error(imap.comm(), ierr);
// Send indices to ghosting ranks
ierr = MPI_Neighbor_alltoallv(send_gidx.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT64_T,
recv_gidx.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T, comm1);
dolfinx::MPI::check_error(imap.comm(), ierr);
ierr = MPI_Comm_free(&comm1);
dolfinx::MPI::check_error(imap.comm(), ierr);
}
// --- Step 4---: Unpack received data
std::vector<std::int64_t> ghost_submap_gidx(submap_ghosts_global.size());
for (std::size_t i = 0; i < recv_gidx.size(); ++i)
ghost_submap_gidx[ghost_perm[i]] = recv_gidx[i];
return ghost_submap_gidx;
}
} // namespace
//-----------------------------------------------------------------------------
std::vector<int32_t>
common::compute_owned_indices(std::span<const std::int32_t> indices,
const IndexMap& map)
{
// Require that indices are sorted and unique
assert(std::ranges::is_sorted(indices));
std::span ghosts = map.ghosts();
std::vector<int> owners(map.owners().begin(), map.owners().end());
// Find first index that is not owned by this rank
std::int32_t size_local = map.size_local();
const auto it_owned_end = std::ranges::lower_bound(indices, size_local);
// Get global indices and owners for ghost indices
std::size_t first_ghost_index = std::distance(indices.begin(), it_owned_end);
std::int32_t num_ghost_indices = indices.size() - first_ghost_index;
std::vector<std::int64_t> global_indices(num_ghost_indices);
std::vector<int> ghost_owners(num_ghost_indices);
for (std::int32_t i = 0; i < num_ghost_indices; ++i)
{
std::int32_t idx = indices[first_ghost_index + i];
std::int32_t pos = idx - size_local;
global_indices[i] = ghosts[pos];
ghost_owners[i] = owners[pos];
}
// Sort indices and owners
std::ranges::sort(global_indices);
std::ranges::sort(ghost_owners);
std::span dest = map.dest();
std::span src = map.src();
// Count number of ghost per destination
std::vector<int> send_sizes(src.size(), 0);
std::vector<int> send_disp(src.size() + 1, 0);
auto it = ghost_owners.begin();
for (std::size_t i = 0; i < src.size(); ++i)
{
int owner = src[i];
auto begin = std::find(it, ghost_owners.end(), owner);
auto end = std::upper_bound(begin, ghost_owners.end(), owner);
// Count number of ghosts (if any)
send_sizes[i] = std::distance(begin, end);
send_disp[i + 1] = send_disp[i] + send_sizes[i];
if (begin != end)
it = end;
}
// Create ghost -> owner comm
MPI_Comm comm;
int ierr = MPI_Dist_graph_create_adjacent(
map.comm(), dest.size(), dest.data(), MPI_UNWEIGHTED, src.size(),
src.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm);
dolfinx::MPI::check_error(map.comm(), ierr);
// Exchange number of indices to send/receive from each rank
std::vector<int> recv_sizes(dest.size(), 0);
send_sizes.reserve(1);
recv_sizes.reserve(1);
ierr = MPI_Neighbor_alltoall(send_sizes.data(), 1, MPI_INT, recv_sizes.data(),
1, MPI_INT, comm);
dolfinx::MPI::check_error(comm, ierr);
// Prepare receive displacement array
std::vector<int> recv_disp(dest.size() + 1, 0);
std::partial_sum(recv_sizes.begin(), recv_sizes.end(),
std::next(recv_disp.begin()));
// Send ghost indices to owner, and receive owned indices
std::vector<std::int64_t> recv_buffer(recv_disp.back());
std::vector<std::int64_t>& send_buffer = global_indices;
ierr = MPI_Neighbor_alltoallv(send_buffer.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T,
recv_buffer.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT64_T, comm);
dolfinx::MPI::check_error(comm, ierr);
ierr = MPI_Comm_free(&comm);
dolfinx::MPI::check_error(map.comm(), ierr);
// Remove duplicates from received indices
{
std::ranges::sort(recv_buffer);
auto [unique_end, range_end] = std::ranges::unique(recv_buffer);
recv_buffer.erase(unique_end, range_end);
}
// Copy owned and ghost indices into return array
std::vector<std::int32_t> owned;
owned.reserve(num_ghost_indices + recv_buffer.size());
std::copy(indices.begin(), it_owned_end, std::back_inserter(owned));
std::ranges::transform(recv_buffer, std::back_inserter(owned),
[range = map.local_range()](auto idx)
{
assert(idx >= range[0]);
assert(idx < range[1]);
return idx - range[0];
});
{
std::ranges::sort(owned);
auto [unique_end, range_end] = std::ranges::unique(owned);
owned.erase(unique_end, range_end);
}
return owned;
}
//-----------------------------------------------------------------------------
std::tuple<std::int64_t, std::vector<std::int32_t>,
std::vector<std::vector<std::int64_t>>,
std::vector<std::vector<int>>>
common::stack_index_maps(
const std::vector<std::pair<std::reference_wrapper<const IndexMap>, int>>&
maps)
{
// Compute process offset for stacked index map
const std::int64_t process_offset = std::accumulate(
maps.begin(), maps.end(), std::int64_t(0),
[](std::int64_t c, auto& map) -> std::int64_t
{ return c + map.first.get().local_range()[0] * map.second; });
// Get local offset (into new map) for each index map
std::vector<std::int32_t> local_sizes;
std::ranges::transform(maps, std::back_inserter(local_sizes), [](auto& map)
{ return map.second * map.first.get().size_local(); });
std::vector<std::int32_t> local_offset(local_sizes.size() + 1, 0);
std::partial_sum(local_sizes.begin(), local_sizes.end(),
std::next(local_offset.begin()));
// Build list of src ranks (ranks that own ghosts)
std::set<int> src_set;
std::set<int> dest_set;
for (auto& [map, _] : maps)
{
std::span _src = map.get().src();
std::span _dest = map.get().dest();
src_set.insert(_src.begin(), _src.end());
dest_set.insert(_dest.begin(), _dest.end());
}
std::vector<int> src(src_set.begin(), src_set.end());
std::vector<int> dest(dest_set.begin(), dest_set.end());
// Create neighbour comms (0: ghost -> owner, 1: (owner -> ghost)
MPI_Comm comm0, comm1;
int ierr = MPI_Dist_graph_create_adjacent(
maps.at(0).first.get().comm(), dest.size(), dest.data(), MPI_UNWEIGHTED,
src.size(), src.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm0);
dolfinx::MPI::check_error(maps.at(0).first.get().comm(), ierr);
ierr = MPI_Dist_graph_create_adjacent(
maps.at(0).first.get().comm(), src.size(), src.data(), MPI_UNWEIGHTED,
dest.size(), dest.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm1);
dolfinx::MPI::check_error(maps.at(0).first.get().comm(), ierr);
// NOTE: We could perform each MPI call just once rather than per map,
// but the complexity may not be worthwhile since this function is
// typically used for 'block' (rather the nested) problems, which is
// not the most efficient approach anyway.
std::vector<std::vector<std::int64_t>> ghosts_new(maps.size());
std::vector<std::vector<int>> ghost_owners_new(maps.size());
// For each map, send ghost indices to owner and owners send back the
// new index
for (std::size_t m = 0; m < maps.size(); ++m)
{
const int bs = maps[m].second;
const IndexMap& map = maps[m].first.get();
std::span ghosts = map.ghosts();
std::span owners = map.owners();
// For each owning rank (on comm), create vector of this rank's
// ghosts
std::vector<std::int64_t> send_indices;
std::vector<std::int32_t> send_sizes;
std::vector<std::size_t> ghost_buffer_pos;
{
std::vector<std::vector<std::int64_t>> ghost_by_rank(src.size());
std::vector<std::vector<std::size_t>> pos_to_ghost(src.size());
for (std::size_t i = 0; i < ghosts.size(); ++i)
{
auto it = std::ranges::lower_bound(src, owners[i]);
assert(it != src.end() and *it == owners[i]);
int r = std::distance(src.begin(), it);
ghost_by_rank[r].push_back(ghosts[i]);
pos_to_ghost[r].push_back(i);
}
// Count number of ghosts per dest
std::ranges::transform(ghost_by_rank, std::back_inserter(send_sizes),
[](auto& g) { return g.size(); });
// Send buffer and ghost position to send buffer position
for (auto& g : ghost_by_rank)
send_indices.insert(send_indices.end(), g.begin(), g.end());
for (auto& p : pos_to_ghost)
ghost_buffer_pos.insert(ghost_buffer_pos.end(), p.begin(), p.end());
}
// Send how many indices I ghost to each owner, and receive how many
// of my indices other ranks ghost
std::vector<std::int32_t> recv_sizes(dest.size(), 0);
send_sizes.reserve(1);
recv_sizes.reserve(1);
ierr = MPI_Neighbor_alltoall(send_sizes.data(), 1, MPI_INT32_T,
recv_sizes.data(), 1, MPI_INT32_T, comm0);
dolfinx::MPI::check_error(comm0, ierr);
// Prepare displacement vectors
std::vector<int> send_disp(src.size() + 1, 0),
recv_disp(dest.size() + 1, 0);
std::partial_sum(send_sizes.begin(), send_sizes.end(),
std::next(send_disp.begin()));
std::partial_sum(recv_sizes.begin(), recv_sizes.end(),
std::next(recv_disp.begin()));
// Send ghost indices to owner, and receive indices
std::vector<std::int64_t> recv_indices(recv_disp.back());
ierr = MPI_Neighbor_alltoallv(send_indices.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T,
recv_indices.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT64_T, comm0);
dolfinx::MPI::check_error(comm0, ierr);
// For each received index (which I should own), compute its new
// index in the concatenated index map
std::vector<std::int64_t> ghost_old_to_new;
ghost_old_to_new.reserve(recv_indices.size());
std::int64_t offset_old = map.local_range()[0];
std::int64_t offset_new = local_offset[m] + process_offset;
for (std::int64_t idx : recv_indices)
{
auto idx_local = idx - offset_old;
assert(idx_local >= 0);
ghost_old_to_new.push_back(bs * idx_local + offset_new);
}
// Send back/receive new indices
std::vector<std::int64_t> ghosts_new_idx(send_disp.back());
ierr = MPI_Neighbor_alltoallv(ghost_old_to_new.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT64_T,
ghosts_new_idx.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T, comm1);
dolfinx::MPI::check_error(comm1, ierr);
// Unpack new indices and store owner
std::vector<std::int64_t>& ghost_idx = ghosts_new[m];
ghost_idx.resize(bs * map.ghosts().size());
std::vector<int>& owners_new = ghost_owners_new[m];
owners_new.resize(bs * map.ghosts().size());
for (std::size_t i = 0; i < send_disp.size() - 1; ++i)
{
int rank = src[i];
for (int j = send_disp[i]; j < send_disp[i + 1]; ++j)
{
std::size_t p = ghost_buffer_pos[j];
for (int k = 0; k < bs; ++k)
{
ghost_idx[bs * p + k] = ghosts_new_idx[j] + k;
owners_new[bs * p + k] = rank;
}
}
}
}
// Destroy communicators
ierr = MPI_Comm_free(&comm0);
dolfinx::MPI::check_error(maps.at(0).first.get().comm(), ierr);
ierr = MPI_Comm_free(&comm1);
dolfinx::MPI::check_error(maps.at(0).first.get().comm(), ierr);
return {process_offset, std::move(local_offset), std::move(ghosts_new),
std::move(ghost_owners_new)};
}
//-----------------------------------------------------------------------------
std::pair<IndexMap, std::vector<std::int32_t>>
common::create_sub_index_map(const IndexMap& imap,
std::span<const std::int32_t> indices,
IndexMapOrder order, bool allow_owner_change)
{
// Compute the owned, ghost, and ghost owners of submap indices.
// NOTE: All indices are local and numbered w.r.t. the original (imap)
// index map
auto [submap_owned, submap_ghost, submap_ghost_owners, submap_src,
submap_dest]
= compute_submap_indices(imap, indices, order, allow_owner_change);
// Compute submap offset for this rank
std::int64_t submap_local_size = submap_owned.size();
std::int64_t submap_offset = 0;
int ierr = MPI_Exscan(&submap_local_size, &submap_offset, 1, MPI_INT64_T,
MPI_SUM, imap.comm());
dolfinx::MPI::check_error(imap.comm(), ierr);
// Compute the global indices (w.r.t. the submap) of the submap ghosts
std::vector<std::int64_t> submap_ghost_global(submap_ghost.size());
imap.local_to_global(submap_ghost, submap_ghost_global);
std::vector<std::int64_t> submap_ghost_gidxs = compute_submap_ghost_indices(
submap_src, submap_dest, submap_owned, submap_ghost_global,
submap_ghost_owners, submap_offset, imap);
// Create a map from (local) indices in the submap to the corresponding
// (local) index in the original map
std::vector<std::int32_t> sub_imap_to_imap;
sub_imap_to_imap.reserve(submap_owned.size() + submap_ghost.size());
sub_imap_to_imap.insert(sub_imap_to_imap.end(), submap_owned.begin(),
submap_owned.end());
sub_imap_to_imap.insert(sub_imap_to_imap.end(), submap_ghost.begin(),
submap_ghost.end());
return {IndexMap(imap.comm(), submap_local_size, {submap_src, submap_dest},
submap_ghost_gidxs, submap_ghost_owners),
std::move(sub_imap_to_imap)};
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
IndexMap::IndexMap(MPI_Comm comm, std::int32_t local_size) : _comm(comm, true)
{
// Get global offset (index), using partial exclusive reduction
std::int64_t offset = 0;
const std::int64_t local_size_tmp = local_size;
MPI_Request request_scan;
int ierr = MPI_Iexscan(&local_size_tmp, &offset, 1, MPI_INT64_T, MPI_SUM,
_comm.comm(), &request_scan);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Send local size to sum reduction to get global size
MPI_Request request;
ierr = MPI_Iallreduce(&local_size_tmp, &_size_global, 1, MPI_INT64_T, MPI_SUM,
comm, &request);
dolfinx::MPI::check_error(_comm.comm(), ierr);
ierr = MPI_Wait(&request_scan, MPI_STATUS_IGNORE);
dolfinx::MPI::check_error(_comm.comm(), ierr);
_local_range = {offset, offset + local_size};
// Wait for the MPI_Iallreduce to complete
ierr = MPI_Wait(&request, MPI_STATUS_IGNORE);
dolfinx::MPI::check_error(_comm.comm(), ierr);
}
//-----------------------------------------------------------------------------
IndexMap::IndexMap(MPI_Comm comm, std::int32_t local_size,
std::span<const std::int64_t> ghosts,
std::span<const int> owners, int tag)
: IndexMap(comm, local_size, build_src_dest(comm, owners, tag), ghosts,
owners)
{
// Do nothing
}
//-----------------------------------------------------------------------------
IndexMap::IndexMap(MPI_Comm comm, std::int32_t local_size,
const std::array<std::vector<int>, 2>& src_dest,
std::span<const std::int64_t> ghosts,
std::span<const int> owners)
: _comm(comm, true), _ghosts(ghosts.begin(), ghosts.end()),
_owners(owners.begin(), owners.end()), _src(src_dest[0]),
_dest(src_dest[1])
{
assert(ghosts.size() == owners.size());
assert(std::ranges::is_sorted(src_dest[0]));
assert(std::ranges::is_sorted(src_dest[1]));
// Get global offset (index), using partial exclusive reduction
std::int64_t offset = 0;
const std::int64_t local_size_tmp = local_size;
MPI_Request request_scan;
int ierr = MPI_Iexscan(&local_size_tmp, &offset, 1, MPI_INT64_T, MPI_SUM,
comm, &request_scan);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Send local size to sum reduction to get global size
MPI_Request request;
ierr = MPI_Iallreduce(&local_size_tmp, &_size_global, 1, MPI_INT64_T, MPI_SUM,
comm, &request);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Wait for MPI_Iexscan to complete (get offset)
ierr = MPI_Wait(&request_scan, MPI_STATUS_IGNORE);
dolfinx::MPI::check_error(_comm.comm(), ierr);
_local_range = {offset, offset + local_size};
// Wait for the MPI_Iallreduce to complete
ierr = MPI_Wait(&request, MPI_STATUS_IGNORE);
dolfinx::MPI::check_error(_comm.comm(), ierr);
}
//-----------------------------------------------------------------------------
std::array<std::int64_t, 2> IndexMap::local_range() const noexcept
{
return _local_range;
}
//-----------------------------------------------------------------------------
std::int32_t IndexMap::num_ghosts() const noexcept { return _ghosts.size(); }
//-----------------------------------------------------------------------------
std::int32_t IndexMap::size_local() const noexcept
{
return _local_range[1] - _local_range[0];
}
//-----------------------------------------------------------------------------
std::int64_t IndexMap::size_global() const noexcept { return _size_global; }
//-----------------------------------------------------------------------------
std::span<const std::int64_t> IndexMap::ghosts() const noexcept
{
return _ghosts;
}
//-----------------------------------------------------------------------------
void IndexMap::local_to_global(std::span<const std::int32_t> local,
std::span<std::int64_t> global) const
{
assert(local.size() <= global.size());
const std::int32_t local_size = _local_range[1] - _local_range[0];
std::ranges::transform(
local, global.begin(),
[local_size, local_range = _local_range[0], &ghosts = _ghosts](auto local)
{
if (local < local_size)
return local_range + local;
else
{
assert((local - local_size) < (int)ghosts.size());
return ghosts[local - local_size];
}
});
}
//-----------------------------------------------------------------------------
void IndexMap::global_to_local(std::span<const std::int64_t> global,
std::span<std::int32_t> local) const
{
const std::int32_t local_size = _local_range[1] - _local_range[0];
std::vector<std::pair<std::int64_t, std::int32_t>> global_to_local(
_ghosts.size());
for (std::size_t i = 0; i < _ghosts.size(); ++i)
global_to_local[i] = {_ghosts[i], i + local_size};
std::ranges::sort(global_to_local);
std::ranges::transform(
global, local.begin(),
[range = _local_range,
&global_to_local](std::int64_t index) -> std::int32_t
{
if (index >= range[0] and index < range[1])
return index - range[0];
else
{
auto it = std::ranges::lower_bound(global_to_local, index,
std::ranges::less(),
[](auto e) { return e.first; });
return (it != global_to_local.end() and it->first == index)
? it->second
: -1;
}
});
}
//-----------------------------------------------------------------------------
std::vector<std::int64_t> IndexMap::global_indices() const
{
const std::int32_t local_size = _local_range[1] - _local_range[0];
const std::int32_t num_ghosts = _ghosts.size();
const std::int64_t global_offset = _local_range[0];
std::vector<std::int64_t> global(local_size + num_ghosts);
std::iota(global.begin(), std::next(global.begin(), local_size),
global_offset);
std::ranges::copy(_ghosts, std::next(global.begin(), local_size));
return global;
}
//-----------------------------------------------------------------------------
MPI_Comm IndexMap::comm() const { return _comm.comm(); }
//----------------------------------------------------------------------------
graph::AdjacencyList<int> IndexMap::index_to_dest_ranks(int tag) const
{
const std::int64_t offset = _local_range[0];
// Build lists of src and dest ranks
std::vector<int> src = _owners;
std::ranges::sort(src);
auto [unique_end, range_end] = std::ranges::unique(src);
src.erase(unique_end, range_end);
std::vector<int> dest
= dolfinx::MPI::compute_graph_edges_nbx(_comm.comm(), src, tag);
std::ranges::sort(dest);
// Array (local idx, ghosting rank) pairs for owned indices
std::vector<std::pair<std::int32_t, int>> idx_to_rank;
// 1. Build adjacency list data for owned indices (index, [sharing
// ranks])
std::vector<std::int32_t> offsets{0};
std::vector<int> data;
{
// Build list of (owner rank, index) pairs for each ghost index, and sort
std::vector<std::pair<int, std::int64_t>> owner_to_ghost;
std::ranges::transform(_ghosts, _owners, std::back_inserter(owner_to_ghost),
[](auto idx, auto r) -> std::pair<int, std::int64_t>
{ return {r, idx}; });
std::ranges::sort(owner_to_ghost);
// Build send buffer (the second component of each pair in
// owner_to_ghost) to send to rank that owns the index
std::vector<std::int64_t> send_buffer;
send_buffer.reserve(owner_to_ghost.size());
std::ranges::transform(owner_to_ghost, std::back_inserter(send_buffer),
[](auto x) { return x.second; });
// Compute send sizes and displacements
std::vector<int> send_sizes, send_disp{0};
auto it = owner_to_ghost.begin();
while (it != owner_to_ghost.end())
{
auto it1 = std::find_if(it, owner_to_ghost.end(),
[r = it->first](auto x) { return x.first != r; });
send_sizes.push_back(std::distance(it, it1));
send_disp.push_back(send_disp.back() + send_sizes.back());
it = it1;
}
// Create ghost -> owner comm
MPI_Comm comm0;
int ierr = MPI_Dist_graph_create_adjacent(
_comm.comm(), dest.size(), dest.data(), MPI_UNWEIGHTED, src.size(),
src.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm0);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Exchange number of indices to send/receive from each rank
std::vector<int> recv_sizes(dest.size(), 0);
send_sizes.reserve(1);
recv_sizes.reserve(1);
ierr = MPI_Neighbor_alltoall(send_sizes.data(), 1, MPI_INT,
recv_sizes.data(), 1, MPI_INT, comm0);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Prepare receive displacement array
std::vector<int> recv_disp(dest.size() + 1, 0);
std::partial_sum(recv_sizes.begin(), recv_sizes.end(),
std::next(recv_disp.begin()));
// Send ghost indices to owner, and receive owned indices
std::vector<std::int64_t> recv_buffer(recv_disp.back());
ierr = MPI_Neighbor_alltoallv(send_buffer.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T,
recv_buffer.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT64_T, comm0);
dolfinx::MPI::check_error(_comm.comm(), ierr);
ierr = MPI_Comm_free(&comm0);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Build array of (local index, ghosting local rank), and sort
for (std::size_t r = 0; r < recv_disp.size() - 1; ++r)
for (int j = recv_disp[r]; j < recv_disp[r + 1]; ++j)
idx_to_rank.push_back({recv_buffer[j] - offset, r});
std::ranges::sort(idx_to_rank);
// -- Send to ranks that ghost my indices all the sharing ranks
// Build adjacency list data for (owned index) -> (ghosting ranks)
data.reserve(idx_to_rank.size());
std::ranges::transform(idx_to_rank, std::back_inserter(data),
[](auto x) { return x.second; });
offsets.reserve(this->size_local() + this->num_ghosts() + 1);
{
auto it = idx_to_rank.begin();
// Loop over owned indices
for (std::int32_t i = 0; i < this->size_local(); ++i)
{
auto it1 = std::find_if(it, idx_to_rank.end(),
[i](auto x) { return x.first != i; });
offsets.push_back(offsets.back() + std::distance(it, it1));
it = it1;
}
}
}
// 2. Build and add adjacency list data for non-owned indices
// (index, [sharing ranks]). Non-owned indices are ghosted but
// not owned by this rank.
{
// Send data for owned indices back to ghosting ranks (this is
// necessary to share with ghosting ranks all the ranks that also
// ghost a ghost index)
std::vector<std::int64_t> send_buffer;
std::vector<int> send_sizes;
{
const int rank = dolfinx::MPI::rank(_comm.comm());
std::vector<std::vector<std::int64_t>> dest_idx_to_rank(dest.size());
for (std::size_t n = 0; n < offsets.size() - 1; ++n)
{
std::span<const std::int32_t> ranks(data.data() + offsets[n],
offsets[n + 1] - offsets[n]);
for (auto r0 : ranks)
{
for (auto r : ranks)
{
assert(r0 < (int)dest_idx_to_rank.size());
if (r0 != r)
{
dest_idx_to_rank[r0].push_back(n + offset);
dest_idx_to_rank[r0].push_back(dest[r]);
}
}
dest_idx_to_rank[r0].push_back(n + offset);
dest_idx_to_rank[r0].push_back(rank);
}
}
// Count number of ghosts per destination and build send buffer
std::ranges::transform(dest_idx_to_rank, std::back_inserter(send_sizes),
[](auto& x) { return x.size(); });
for (auto& d : dest_idx_to_rank)
send_buffer.insert(send_buffer.end(), d.begin(), d.end());
// Create owner -> ghost comm
MPI_Comm comm;
int ierr = MPI_Dist_graph_create_adjacent(
_comm.comm(), src.size(), src.data(), MPI_UNWEIGHTED, dest.size(),
dest.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Send how many indices I ghost to each owner, and receive how
// many of my indices other ranks ghost
std::vector<int> recv_sizes(src.size(), 0);
send_sizes.reserve(1);
recv_sizes.reserve(1);
ierr = MPI_Neighbor_alltoall(send_sizes.data(), 1, MPI_INT,
recv_sizes.data(), 1, MPI_INT, comm);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Prepare displacement vectors
std::vector<int> send_disp(dest.size() + 1, 0);
std::vector<int> recv_disp(src.size() + 1, 0);
std::partial_sum(send_sizes.begin(), send_sizes.end(),
std::next(send_disp.begin()));
std::partial_sum(recv_sizes.begin(), recv_sizes.end(),
std::next(recv_disp.begin()));
std::vector<std::int64_t> recv_indices(recv_disp.back());
ierr = MPI_Neighbor_alltoallv(send_buffer.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T,
recv_indices.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT64_T, comm);
dolfinx::MPI::check_error(_comm.comm(), ierr);
ierr = MPI_Comm_free(&comm);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Build list of (ghost index, ghost position) pairs for indices
// ghosted by this rank, and sort
std::vector<std::pair<std::int64_t, std::int32_t>> idx_to_pos;
idx_to_pos.reserve(2 * _ghosts.size());
for (auto idx : _ghosts)
idx_to_pos.push_back({idx, idx_to_pos.size()});
std::ranges::sort(idx_to_pos);
// Build list of (local ghost position, sharing rank) pairs from
// the received data, and sort
std::vector<std::pair<std::int32_t, int>> idxpos_to_rank;
for (std::size_t i = 0; i < recv_indices.size(); i += 2)
{
std::int64_t idx = recv_indices[i];
auto it = std::ranges::lower_bound(
idx_to_pos, std::pair<std::int64_t, std::int32_t>{idx, 0},
[](auto a, auto b) { return a.first < b.first; });
assert(it != idx_to_pos.end() and it->first == idx);
int rank = recv_indices[i + 1];
idxpos_to_rank.push_back({it->second, rank});
}
std::ranges::sort(idxpos_to_rank);
// Add processed received data to adjacency list data array, and
// extend offset array
std::ranges::transform(idxpos_to_rank, std::back_inserter(data),
[](auto x) { return x.second; });
auto it = idxpos_to_rank.begin();
for (std::size_t i = 0; i < _ghosts.size(); ++i)
{
auto it1
= std::find_if(it, idxpos_to_rank.end(), [i](auto x)
{ return x.first != static_cast<std::int32_t>(i); });
offsets.push_back(offsets.back() + std::distance(it, it1));
it = it1;
}
}
}
// Convert ranks for owned indices from neighbour to global ranks
std::ranges::transform(idx_to_rank, data.begin(),
[&dest](auto x) { return dest[x.second]; });
return graph::AdjacencyList(std::move(data), std::move(offsets));
}
//-----------------------------------------------------------------------------
std::vector<std::int32_t> IndexMap::shared_indices() const
{
// Each process gets a chunk of consecutive indices (global indices)
// Sorting the ghosts groups them by owner
std::vector<std::int64_t> send_buffer(_ghosts);
std::ranges::sort(send_buffer);
std::vector<int32_t> owners(_owners);
std::ranges::sort(owners);
std::vector<int> send_sizes, send_disp{0};
// Count number of ghost per destination
auto it = owners.begin();
while (it != owners.end())
{
auto it1 = std::upper_bound(it, owners.end(), *it);
send_sizes.push_back(std::distance(it, it1));
send_disp.push_back(send_disp.back() + send_sizes.back());
// Advance iterator
it = it1;
}
// Create ghost -> owner comm
MPI_Comm comm;
int ierr = MPI_Dist_graph_create_adjacent(
_comm.comm(), _dest.size(), _dest.data(), MPI_UNWEIGHTED, _src.size(),
_src.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm);
dolfinx::MPI::check_error(_comm.comm(), ierr);
std::vector<int> recv_sizes(_dest.size(), 0);
send_sizes.reserve(1);
recv_sizes.reserve(1);
ierr = MPI_Neighbor_alltoall(send_sizes.data(), 1, MPI_INT, recv_sizes.data(),
1, MPI_INT, comm);
dolfinx::MPI::check_error(_comm.comm(), ierr);
// Prepare receive displacement array
std::vector<int> recv_disp(_dest.size() + 1, 0);
std::partial_sum(recv_sizes.begin(), recv_sizes.end(),
std::next(recv_disp.begin()));
// Send ghost indices to owner, and receive owned indices
std::vector<std::int64_t> recv_buffer(recv_disp.back());
ierr = MPI_Neighbor_alltoallv(send_buffer.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T,
recv_buffer.data(), recv_sizes.data(),
recv_disp.data(), MPI_INT64_T, comm);
dolfinx::MPI::check_error(_comm.comm(), ierr);
ierr = MPI_Comm_free(&comm);
dolfinx::MPI::check_error(_comm.comm(), ierr);
std::vector<std::int32_t> shared;
shared.reserve(recv_buffer.size());
std::ranges::transform(recv_buffer, std::back_inserter(shared),
[range = _local_range](auto idx)
{
assert(idx >= range[0]);
assert(idx < range[1]);
return idx - range[0];
});
// Sort and remove duplicates
std::ranges::sort(shared);
auto [unique_end, range_end] = std::ranges::unique(shared);
shared.erase(unique_end, range_end);
return shared;
}
//-----------------------------------------------------------------------------
std::span<const int> IndexMap::src() const noexcept { return _src; }
//-----------------------------------------------------------------------------
std::span<const int> IndexMap::dest() const noexcept { return _dest; }
//-----------------------------------------------------------------------------
std::vector<std::int32_t> IndexMap::weights_src() const
{
std::vector<std::int32_t> weights(_src.size(), 0);
for (int r : _owners)
{
auto it = std::ranges::lower_bound(_src, r);
assert(it != _src.end() and *it == r);
std::size_t pos = std::distance(_src.begin(), it);
assert(pos < weights.size());
weights[pos] += 1;
}
return weights;
}
//-----------------------------------------------------------------------------
std::vector<std::int32_t> IndexMap::weights_dest() const
{
int ierr = 0;
std::vector<std::int32_t> w_src = this->weights_src();
std::vector<MPI_Request> requests(_dest.size() + _src.size());
std::vector<std::int32_t> w_dest(_dest.size());
for (std::size_t i = 0; i < _dest.size(); ++i)
{
ierr = MPI_Irecv(w_dest.data() + i, 1, MPI_INT32_T, _dest[i], MPI_ANY_TAG,
_comm.comm(), &requests[i]);
dolfinx::MPI::check_error(_comm.comm(), ierr);
}
for (std::size_t i = 0; i < _src.size(); ++i)
{
ierr = MPI_Isend(w_src.data() + i, 1, MPI_INT32_T, _src[i], 0, _comm.comm(),
&requests[i + _dest.size()]);
dolfinx::MPI::check_error(_comm.comm(), ierr);
}
ierr = MPI_Waitall(requests.size(), requests.data(), MPI_STATUS_IGNORE);
dolfinx::MPI::check_error(_comm.comm(), ierr);
return w_dest;
}
//-----------------------------------------------------------------------------
std::array<std::vector<int>, 2> IndexMap::rank_type(int split_type) const
{
int ierr;
MPI_Comm comm_s;
ierr = MPI_Comm_split_type(_comm.comm(), split_type, 0, MPI_INFO_NULL,
&comm_s);
dolfinx::MPI::check_error(_comm.comm(), ierr);
int size_s = dolfinx::MPI::size(comm_s);
int rank = dolfinx::MPI::rank(_comm.comm());
// Note: in most cases, size_s will be much smaller than the size of
// _comm
std::vector<int> ranks_s(size_s);
ierr = MPI_Allgather(&rank, 1, MPI_INT, ranks_s.data(), 1, MPI_INT, comm_s);
dolfinx::MPI::check_error(comm_s, ierr);
std::vector<int> split_dest, split_src;
std::ranges::set_intersection(_dest, ranks_s, std::back_inserter(split_dest));
assert(std::ranges::is_sorted(split_dest));
std::ranges::set_intersection(_src, ranks_s, std::back_inserter(split_src));
assert(std::ranges::is_sorted(split_src));
ierr = MPI_Comm_free(&comm_s);
dolfinx::MPI::check_error(comm_s, ierr);
return {std::move(split_dest), std::move(split_src)};
}
//-----------------------------------------------------------------------------
|