1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
// Copyright (C) 2022-2025 Igor Baratta and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "IndexMap.h"
#include "MPI.h"
#include "sort.h"
#include <algorithm>
#include <concepts>
#include <functional>
#include <memory>
#include <mpi.h>
#include <numeric>
#include <span>
#include <type_traits>
#include <vector>
namespace dolfinx::common
{
/// @brief A Scatterer supports the scattering and gathering of
/// distributed data that is associated with a common::IndexMap, using
/// MPI.
///
/// Scatter and gather operations can use:
/// 1. MPI neighbourhood collectives (recommended), or
/// 2. Non-blocking point-to-point communication modes.
///
/// The implementation is designed for sparse communication
/// patterns, as is typical of patterns based on an IndexMap.
///
/// A Scatterer is stateless, i.e. it provides the required information
/// and static data for a given parallel communication pattern but does
/// not provide any communication caches or track the status of MPI
/// requests. Callers of the a Scatterer's members are responsible for
/// managing buffer and MPI request handles.
///
/// @tparam Container Container type for storing the 'local' and
/// 'remote' indices. On CPUs this is normally
/// `std::vector<std::int32_t>`. For GPUs the container should store the
/// indices on the device, e.g. using
/// `thrust::device_vector<std::int32_t>`.
template <class Container = std::vector<std::int32_t>>
class Scatterer
{
static_assert(std::is_integral_v<typename Container::value_type>);
template <class>
friend class Scatterer;
public:
/// Container type used to store local and remote indices.
using container_type = Container;
/// @brief Create a scatterer for data with a layout described by an
/// IndexMap and a block size.
///
/// @param[in] map Index map that describes the parallel layout of
/// data.
/// @param[in] bs Number of values associated with each `map` index
/// (the block size).
Scatterer(const IndexMap& map, int bs)
: _src(map.src().begin(), map.src().end()),
_dest(map.dest().begin(), map.dest().end()),
_sizes_remote(_src.size(), 0), _displs_remote(_src.size() + 1),
_sizes_local(_dest.size()), _displs_local(_dest.size() + 1)
{
if (dolfinx::MPI::size(map.comm()) == 1)
return;
int ierr;
// Check that src and dest ranks are unique and sorted
assert(std::ranges::is_sorted(_src));
assert(std::ranges::is_sorted(_dest));
// Create communicators with directed edges:
// (0) owner -> ghost,
// (1) ghost -> owner
MPI_Comm comm0;
ierr = MPI_Dist_graph_create_adjacent(
map.comm(), _src.size(), _src.data(), MPI_UNWEIGHTED, _dest.size(),
_dest.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm0);
_comm0 = dolfinx::MPI::Comm(comm0, false);
dolfinx::MPI::check_error(map.comm(), ierr);
MPI_Comm comm1;
ierr = MPI_Dist_graph_create_adjacent(
map.comm(), _dest.size(), _dest.data(), MPI_UNWEIGHTED, _src.size(),
_src.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm1);
_comm1 = dolfinx::MPI::Comm(comm1, false);
dolfinx::MPI::check_error(map.comm(), ierr);
// Build permutation array that sorts ghost indices by owning rank
std::span owners = map.owners();
std::vector<std::int32_t> perm(owners.size());
std::iota(perm.begin(), perm.end(), 0);
dolfinx::radix_sort(perm, [&owners](auto index) { return owners[index]; });
// Sort (i) ghost indices and (ii) ghost index owners by rank
// (using perm array)
std::span ghosts = map.ghosts();
std::vector<int> owners_sorted(owners.size());
std::vector<std::int64_t> ghosts_sorted(owners.size());
std::ranges::transform(perm, owners_sorted.begin(),
[&owners](auto idx) { return owners[idx]; });
std::ranges::transform(perm, ghosts_sorted.begin(),
[&ghosts](auto idx) { return ghosts[idx]; });
// For data associated with ghost indices, packed by owning
// (neighbourhood) rank, compute sizes and displacements. I.e., when
// sending ghost index data from this rank to the owning ranks,
// disp[i] is the first entry in the buffer sent to neighbourhood
// rank i, and disp[i + 1] - disp[i] is the number of values sent to
// rank i.
assert(_sizes_remote.size() == _src.size());
assert(_displs_remote.size() == _src.size() + 1);
auto begin = owners_sorted.begin();
for (std::size_t i = 0; i < _src.size(); i++)
{
auto upper = std::upper_bound(begin, owners_sorted.end(), _src[i]);
std::size_t num_ind = std::distance(begin, upper);
_displs_remote[i + 1] = _displs_remote[i] + num_ind;
_sizes_remote[i] = num_ind;
begin = upper;
}
// For data associated with owned indices that are ghosted by other
// ranks, compute the size and displacement arrays. When sending
// data associated with ghost indices to the owner, these size and
// displacement arrays are for the receive buffer.
// Compute sizes and displacements of local data (how many local
// elements to be sent/received grouped by neighbors)
assert(_sizes_local.size() == _dest.size());
assert(_displs_local.size() == _dest.size() + 1);
_sizes_remote.reserve(1);
_sizes_local.reserve(1);
ierr = MPI_Neighbor_alltoall(_sizes_remote.data(), 1, MPI_INT32_T,
_sizes_local.data(), 1, MPI_INT32_T,
_comm1.comm());
dolfinx::MPI::check_error(_comm1.comm(), ierr);
std::partial_sum(_sizes_local.begin(), _sizes_local.end(),
std::next(_displs_local.begin()));
assert((int)ghosts_sorted.size() == _displs_remote.back());
assert((int)ghosts_sorted.size() == _displs_remote.back());
// Send ghost global indices to owning rank, and receive owned
// indices that are ghosts on other ranks
std::vector<std::int64_t> recv_buffer(_displs_local.back(), 0);
ierr = MPI_Neighbor_alltoallv(
ghosts_sorted.data(), _sizes_remote.data(), _displs_remote.data(),
MPI_INT64_T, recv_buffer.data(), _sizes_local.data(),
_displs_local.data(), MPI_INT64_T, _comm1.comm());
dolfinx::MPI::check_error(_comm1.comm(), ierr);
const std::array<std::int64_t, 2> range = map.local_range();
#ifndef NDEBUG
// Check that all received indice are within the owned range
std::ranges::for_each(recv_buffer, [range](auto idx)
{ assert(idx >= range[0] and idx < range[1]); });
#endif
{
// Scale sizes and displacements by block size
for (auto& x : {std::ref(_sizes_local), std::ref(_displs_local),
std::ref(_sizes_remote), std::ref(_displs_remote)})
{
std::ranges::transform(x.get(), x.get().begin(),
[bs](auto e) { return e *= bs; });
}
}
{
// Expand local indices using block size and convert it from
// global to local numbering
std::vector<typename container_type::value_type> idx(recv_buffer.size()
* bs);
std::int64_t offset = range[0] * bs;
for (std::size_t i = 0; i < recv_buffer.size(); i++)
for (int j = 0; j < bs; j++)
idx[i * bs + j] = (recv_buffer[i] * bs + j) - offset;
_local_inds = std::move(idx);
}
{
// Expand remote indices using block size
std::vector<typename container_type::value_type> idx(perm.size() * bs);
for (std::size_t i = 0; i < perm.size(); i++)
for (int j = 0; j < bs; j++)
idx[i * bs + j] = perm[i] * bs + j;
_remote_inds = std::move(idx);
}
}
/// @brief Copy constructor
Scatterer(const Scatterer& scatterer) = default;
/// @brief Cast-copy constructor.
///
/// Create a copy of a Scatterer, were the copy uses a different
/// storage container for indices that are used in MPI communication.
/// Example usage includes creating from a CPU-suitable Scatterer a
/// GPU-suitable Scatterer that can be used with GPU-aware MPI to move
/// data between devices. This would be typical when copying a
/// la::Vector or la::MatrixCSR to/from a GPU. When copying a vector
/// or matrix to/from a GPU, the underlying Scatter that manages
/// parallel communication will usually be copied too with a different
/// storage container.
///
/// @param s Scatterer to copy
template <class U>
Scatterer(const Scatterer<U>& s)
: _comm0(s._comm0), _comm1(s._comm1), _src(s._src), _dest(s._dest),
_remote_inds(s._remote_inds.begin(), s._remote_inds.end()),
_sizes_remote(s._sizes_remote), _displs_remote(s._displs_remote),
_local_inds(s._local_inds.begin(), s._local_inds.end()),
_sizes_local(s._sizes_local), _displs_local(s._displs_local)
{
}
/// @brief Start a non-blocking send of owned data to ranks that ghost
/// the data using *MPI neighbourhood collective communication*
/// (recommended).
///
/// The communication is completed by calling Scatterer::scatter_end.
/// See ::local_indices for instructions on packing `send_buffer` and
/// ::remote_indices for instructions on unpacking `recv_buffer`.
///
/// @note The send and receive buffers must **not** to be changed or
/// accessed until after a call to Scatterer::scatter_end.
///
/// @note The pointers `send_buffer` and `recv_buffer` must be
/// pointers to the data on the *target device*. E.g., if the send and
/// receive buffers are allocated on a GPU, the `send_buffer` and
/// `recv_buffer` should be device pointers.
///
/// @param[in] send_buffer Packed local data associated with each
/// owned local index to be sent to processes where the data is
/// ghosted. See Scatterer::local_indices for the order of the buffer
/// and how to pack.
/// @param[in,out] recv_buffer Buffer for storing received data. See
/// Scatterer::remote_indices for the order of the buffer and how to unpack.
/// @param[in] request MPI request handle for tracking the status of
/// the non-blocking communication. The same request handle should be
/// passed to Scatterer::scatter_end to complete the communication.
template <typename T>
void scatter_fwd_begin(const T* send_buffer, T* recv_buffer,
MPI_Request& request) const
{
// Return early if there are no incoming or outgoing edges
if (_sizes_local.empty() and _sizes_remote.empty())
return;
int ierr = MPI_Ineighbor_alltoallv(
send_buffer, _sizes_local.data(), _displs_local.data(),
dolfinx::MPI::mpi_t<T>, recv_buffer, _sizes_remote.data(),
_displs_remote.data(), dolfinx::MPI::mpi_t<T>, _comm0.comm(), &request);
dolfinx::MPI::check_error(_comm0.comm(), ierr);
}
/// @brief Start a non-blocking send of owned data to ranks that ghost
/// the data using *point-to-point MPI communication*.
///
/// See ::scatter_fwd_begin for a detailed explanation of usage,
/// including on the send and receive buffer packing and unpacking
///
/// @note Use of the neighbourhood version of ::scatter_fwd_begin is
/// recommended over this version.
///
/// @param[in] send_buffer Send buffer.
/// @param[in,out] recv_buffer Receive buffer.
/// @param[in] requests List of MPI request handles. The length of the
/// list must be ::num_p2p_requests()
template <typename T>
void scatter_fwd_begin(const T* send_buffer, T* recv_buffer,
std::span<MPI_Request> requests) const
{
if (requests.size() != _dest.size() + _src.size())
{
throw std::runtime_error(
"Point-to-point scatterer has wrong number of MPI_Requests.");
}
// Return early if there are no incoming or outgoing edges
if (_sizes_local.empty() and _sizes_remote.empty())
return;
for (std::size_t i = 0; i < _src.size(); ++i)
{
int ierr = MPI_Irecv(recv_buffer + _displs_remote[i], _sizes_remote[i],
dolfinx::MPI::mpi_t<T>, _src[i], MPI_ANY_TAG,
_comm0.comm(), &requests[i]);
dolfinx::MPI::check_error(_comm0.comm(), ierr);
}
for (std::size_t i = 0; i < _dest.size(); ++i)
{
int ierr = MPI_Isend(send_buffer + _displs_local[i], _sizes_local[i],
dolfinx::MPI::mpi_t<T>, _dest[i], 0, _comm0.comm(),
&requests[i + _src.size()]);
dolfinx::MPI::check_error(_comm0.comm(), ierr);
}
}
/// @brief Start a non-blocking send of ghost data to ranks that own
/// the data using *MPI neighbourhood collective communication*
/// (recommended).
///
/// The communication is completed by calling Scatterer::scatter_end.
/// See ::remote_indices for instructions on packing `send_buffer` and
/// ::local_indices for instructions on unpacking `recv_buffer`.
///
/// @note The send and receive buffers must **not** to be changed or
/// accessed until after a call to Scatterer::scatter_end.
///
/// @note The pointers `send_buffer` and `recv_buffer` must be
/// pointers to the data on the *target device*. E.g., if the send and
/// receive buffers are allocated on a GPU, the `send_buffer` and
/// `recv_buffer` should be device pointers.
///
/// @param[in] send_buffer Data associated with each ghost index. This
/// data is sent to process that owns the index. See
/// Scatterer::remote_indices for the order of the buffer and how to
/// pack.
/// @param[in,out] recv_buffer Buffer for storing received data. See
/// Scatterer::local_indices for the order of the buffer and how to
/// unpack.
/// @param[in] request MPI request handle for tracking the status of
/// the non-blocking communication. The same request handle should be
/// passed to Scatterer::scatter_end to complete the communication.
template <typename T>
void scatter_rev_begin(const T* send_buffer, T* recv_buffer,
MPI_Request& request) const
{
// Return early if there are no incoming or outgoing edges
if (_sizes_local.empty() and _sizes_remote.empty())
return;
int ierr = MPI_Ineighbor_alltoallv(
send_buffer, _sizes_remote.data(), _displs_remote.data(), MPI::mpi_t<T>,
recv_buffer, _sizes_local.data(), _displs_local.data(), MPI::mpi_t<T>,
_comm1.comm(), &request);
dolfinx::MPI::check_error(_comm1.comm(), ierr);
}
/// @brief Start a non-blocking send of ghost data to ranks that own
/// the data using *point-to-point MPI communication*.
///
/// See ::scatter_rev_begin for a detailed explanation of usage,
/// including on the send and receive buffer packing and unpacking
///
/// @note Use of the neighbourhood version of ::scatter_rev_begin is
/// recommended over this version
///
/// @param[in] send_buffer Send buffer.
/// @param[in,out] recv_buffer Receive buffer.
/// @param[in] requests List of MPI request handles. The length of the
/// list must be ::num_p2p_requests()
template <typename T>
void scatter_rev_begin(const T* send_buffer, T* recv_buffer,
std::span<MPI_Request> requests) const
{
if (requests.size() != _dest.size() + _src.size())
{
throw std::runtime_error(
"Point-to-point scatterer has wrong number of MPI_Requests.");
}
// Return early if there are no incoming or outgoing edges
if (_sizes_local.empty() and _sizes_remote.empty())
return;
// Start non-blocking send from this process to ghost owners
for (std::size_t i = 0; i < _dest.size(); i++)
{
int ierr = MPI_Irecv(recv_buffer + _displs_local[i], _sizes_local[i],
dolfinx::MPI::mpi_t<T>, _dest[i], MPI_ANY_TAG,
_comm0.comm(), &requests[i]);
dolfinx::MPI::check_error(_comm0.comm(), ierr);
}
// Start non-blocking receive from neighbor process for which an
// owned index is a ghost
for (std::size_t i = 0; i < _src.size(); i++)
{
int ierr = MPI_Isend(send_buffer + _displs_remote[i], _sizes_remote[i],
dolfinx::MPI::mpi_t<T>, _src[i], 0, _comm0.comm(),
&requests[i + _dest.size()]);
dolfinx::MPI::check_error(_comm0.comm(), ierr);
}
}
/// @brief Complete non-blocking MPI point-to-point sends.
///
/// This function completes the communication started by
/// ::scatter_fwd_begin or ::scatter_rev_begin.
///
/// @param[in] requests MPI request handles for tracking the status of
/// sends.
void scatter_end(std::span<MPI_Request> requests) const
{
// Return early if there are no incoming or outgoing edges
if (_sizes_local.empty() and _sizes_remote.empty())
return;
// Wait for communication to complete
MPI_Waitall(requests.size(), requests.data(), MPI_STATUS_IGNORE);
}
/// @brief Complete a non-blocking MPI neighbourhood collective send.
///
/// This function completes the communication started by
/// ::scatter_fwd_begin or ::scatter_rev_begin.
///
/// @param[in] request MPI request handle for tracking the status of
/// the send.
void scatter_end(MPI_Request& request) const
{
scatter_end(std::span<MPI_Request>(&request, 1));
}
/// @brief Array of indices for packing/unpacking owned data to/from a
/// send/receive buffer.
///
/// For a forward scatter, the indices are used to copy required
/// entries in the owned part of the data array into the appropriate
/// position in a send buffer. For a reverse scatter, indices are used
/// for assigning (accumulating) the receive buffer values into
/// correct position in the owned part of the data array.
///
/// For a forward scatter, if `x` is the owned part of an array and
/// `send_buffer` is the send buffer, `send_buffer` is packed such
/// that:
///
/// auto& idx = scatterer.local_indices()
/// std::vector<T> send_buffer(idx.size())
/// for (std::size_t i = 0; i < idx.size(); ++i)
/// send_buffer[i] = x[idx[i]];
///
/// For a reverse scatter, if `recv_buffer` is the received buffer,
/// then `x` is updated by
///
/// auto& idx = scatterer.local_indices()
/// std::vector<T> recv_buffer(idx.size())
/// for (std::size_t i = 0; i < idx.size(); ++i)
/// x[idx[i]] = op(recv_buffer[i], x[idx[i]]);
///
/// where `op` is a binary operation, e.g. `x[idx[i]] = buffer[i]` or
/// `x[idx[i]] += buffer[i]`.
///
/// @return Indices container.
const container_type& local_indices() const noexcept { return _local_inds; }
/// @brief Array of indices for packing/unpacking ghost data to/from a
/// send/receive buffer.
///
/// For a forward scatter, the indices are to copy required entries in
/// the owned array into the appropriate position in a send buffer.
/// For a reverse scatter, indices are used for assigning
/// (accumulating) the receive buffer values to correct position in
/// the owned array.
///
/// For a forward scatter, if `xg` is the ghost part of the data array
/// and `recv_buffer` is the receive buffer, `xg` is updated that
///
/// auto& idx = scatterer.remote_indices()
/// std::vector<T> recv_buffer(idx.size())
/// for (std::size_t i = 0; i < idx.size(); ++i)
/// xg[idx[i]] = recv_buffer[i];
///
/// For a reverse scatter, if `send_buffer` is the send buffer, then
/// `send_buffer` is packaged such that:
///
/// auto& idx = scatterer.local_indices()
/// std::vector<T> send_buffer(idx.size())
/// for (std::size_t i = 0; i < idx.size(); ++i)
/// send_buffer[i] = xg[idx[i]];
///
/// @return Indices container.
const container_type& remote_indices() const noexcept { return _remote_inds; }
/// @brief Number of required `MPI_Request`s for point-to-point
/// communication.
///
/// @return Numer of required MPI request handles.
std::size_t num_p2p_requests() { return _dest.size() + _src.size(); }
private:
// Communicator where the source ranks own the indices in the callers
// halo, and the destination ranks 'ghost' indices owned by the
// caller. I.e.,
// - in-edges (src) are from ranks that own my ghosts
// - out-edges (dest) go to ranks that 'ghost' my owned indices
dolfinx::MPI::Comm _comm0{MPI_COMM_NULL};
// Communicator where the source ranks have ghost indices that are
// owned by the caller, and the destination ranks are the owners of
// indices in the callers halo region. I.e.,
// - in-edges (src) are from ranks that 'ghost' my owned indices
// - out-edges (dest) are to the owning ranks of my ghost indices
dolfinx::MPI::Comm _comm1{MPI_COMM_NULL};
// Set of ranks that own ghosts
// FIXME: Should we store the index map instead?
std::vector<int> _src;
// Set of ranks ghost owned indices
// FIXME: Should we store the index map instead?
std::vector<int> _dest;
// Permutation indices used to pack and unpack ghost data (remote)
container_type _remote_inds;
// Number of remote indices (ghosts) for each neighbor process
std::vector<int> _sizes_remote;
// Displacements of remote data for mpi scatter and gather
std::vector<int> _displs_remote;
// Permutation indices used to pack and unpack local shared data
// (owned indices that are shared with other processes). Indices are
// grouped by neighbor process.
container_type _local_inds;
// Number of local shared indices per neighbor process
std::vector<int> _sizes_local;
// Displacements of local data for mpi scatter and gather
std::vector<int> _displs_local;
};
} // namespace dolfinx::common
|