1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
// Copyright (C) 2021 Igor Baratta
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "types.h"
#include <algorithm>
#include <array>
#include <basix/mdspan.hpp>
#include <cmath>
#include <string>
#include <type_traits>
namespace dolfinx::math
{
/// Compute the cross product u x v
/// @param u The first vector. It must have size 3.
/// @param v The second vector. It must have size 3.
/// @return The cross product `u x v`. The type will be the same as `u`.
template <typename U, typename V>
std::array<typename U::value_type, 3> cross(const U& u, const V& v)
{
assert(u.size() == 3);
assert(v.size() == 3);
return {u[1] * v[2] - u[2] * v[1], u[2] * v[0] - u[0] * v[2],
u[0] * v[1] - u[1] * v[0]};
}
/// Kahan’s method to compute x = ad − bc with fused multiply-adds. The
/// absolute error is bounded by 1.5 ulps, units of least precision.
template <typename T>
T difference_of_products(T a, T b, T c, T d) noexcept
{
T w = b * c;
T err = std::fma(-b, c, w);
T diff = std::fma(a, d, -w);
return diff + err;
}
/// Compute the determinant of a small matrix (1x1, 2x2, or 3x3)
/// @note Tailored for use in computations using the Jacobian
/// @param[in] A The matrix to compute the determinant of. Row-major
/// storage.
/// @param[in] shape The shape of `A`
/// @return The determinate of `A`
template <typename T>
auto det(const T* A, std::array<std::size_t, 2> shape)
{
assert(shape[0] == shape[1]);
// const int nrows = shape[0];
switch (shape[0])
{
case 1:
return *A;
case 2:
/* A(0, 0), A(0, 1), A(1, 0), A(1, 1) */
return difference_of_products(A[0], A[1], A[2], A[3]);
case 3:
{
// Leibniz formula combined with Kahan’s method for accurate
// computation of 3 x 3 determinants
T w0 = difference_of_products(A[3 + 1], A[3 + 2], A[3 * 2 + 1],
A[2 * 3 + 2]);
T w1 = difference_of_products(A[3], A[3 + 2], A[3 * 2], A[3 * 2 + 2]);
T w2 = difference_of_products(A[3], A[3 + 1], A[3 * 2], A[3 * 2 + 1]);
T w3 = difference_of_products(A[0], A[1], w1, w0);
T w4 = std::fma(A[2], w2, w3);
return w4;
}
default:
throw std::runtime_error("math::det is not implemented for "
+ std::to_string(A[0]) + "x" + std::to_string(A[1])
+ " matrices.");
}
}
/// Compute the determinant of a small matrix (1x1, 2x2, or 3x3)
/// @note Tailored for use in computations using the Jacobian
/// @param[in] A The matrix tp compute the determinant of
/// @return The determinate of @p A
template <typename Matrix>
auto det(Matrix A)
{
static_assert(Matrix::rank() == 2, "Must be rank 2");
assert(A.extent(0) == A.extent(1));
using value_type = typename Matrix::value_type;
const int nrows = A.extent(0);
switch (nrows)
{
case 1:
return A(0, 0);
case 2:
return difference_of_products(A(0, 0), A(0, 1), A(1, 0), A(1, 1));
case 3:
{
// Leibniz formula combined with Kahan’s method for accurate
// computation of 3 x 3 determinants
value_type w0 = difference_of_products(A(1, 1), A(1, 2), A(2, 1), A(2, 2));
value_type w1 = difference_of_products(A(1, 0), A(1, 2), A(2, 0), A(2, 2));
value_type w2 = difference_of_products(A(1, 0), A(1, 1), A(2, 0), A(2, 1));
value_type w3 = difference_of_products(A(0, 0), A(0, 1), w1, w0);
value_type w4 = std::fma(A(0, 2), w2, w3);
return w4;
}
default:
throw std::runtime_error("math::det is not implemented for "
+ std::to_string(A.extent(0)) + "x"
+ std::to_string(A.extent(1)) + " matrices.");
}
}
/// Compute the inverse of a square matrix A (1x1, 2x2 or 3x3) and
/// assign the result to a preallocated matrix B.
/// @param[in] A The matrix to compute the inverse of.
/// @param[out] B The inverse of A. It must be pre-allocated to be the
/// same shape as @p A.
/// @warning This function does not check if A is invertible
template <typename U, typename V>
void inv(U A, V B)
{
static_assert(U::rank() == 2, "Must be rank 2");
static_assert(V::rank() == 2, "Must be rank 2");
using value_type = typename U::value_type;
const std::size_t nrows = A.extent(0);
switch (nrows)
{
case 1:
B(0, 0) = 1 / A(0, 0);
break;
case 2:
{
value_type idet = 1. / det(A);
B(0, 0) = idet * A(1, 1);
B(0, 1) = -idet * A(0, 1);
B(1, 0) = -idet * A(1, 0);
B(1, 1) = idet * A(0, 0);
break;
}
case 3:
{
value_type w0 = difference_of_products(A(1, 1), A(1, 2), A(2, 1), A(2, 2));
value_type w1 = difference_of_products(A(1, 0), A(1, 2), A(2, 0), A(2, 2));
value_type w2 = difference_of_products(A(1, 0), A(1, 1), A(2, 0), A(2, 1));
value_type w3 = difference_of_products(A(0, 0), A(0, 1), w1, w0);
value_type det = std::fma(A(0, 2), w2, w3);
assert(det != 0.);
value_type idet = 1 / det;
B(0, 0) = w0 * idet;
B(1, 0) = -w1 * idet;
B(2, 0) = w2 * idet;
B(0, 1) = difference_of_products(A(0, 2), A(0, 1), A(2, 2), A(2, 1)) * idet;
B(0, 2) = difference_of_products(A(0, 1), A(0, 2), A(1, 1), A(1, 2)) * idet;
B(1, 1) = difference_of_products(A(0, 0), A(0, 2), A(2, 0), A(2, 2)) * idet;
B(1, 2) = difference_of_products(A(1, 0), A(0, 0), A(1, 2), A(0, 2)) * idet;
B(2, 1) = difference_of_products(A(2, 0), A(0, 0), A(2, 1), A(0, 1)) * idet;
B(2, 2) = difference_of_products(A(0, 0), A(1, 0), A(0, 1), A(1, 1)) * idet;
break;
}
default:
throw std::runtime_error("math::inv is not implemented for "
+ std::to_string(A.extent(0)) + "x"
+ std::to_string(A.extent(1)) + " matrices.");
}
}
/// Compute C += A * B
/// @param[in] A Input matrix
/// @param[in] B Input matrix
/// @param[in, out] C Filled to be C += A * B
/// @param[in] transpose Computes C += A^T * B^T if false, otherwise
/// computed C += A^T * B^T
template <typename U, typename V, typename P>
void dot(U A, V B, P C, bool transpose = false)
{
static_assert(U::rank() == 2, "Must be rank 2");
static_assert(V::rank() == 2, "Must be rank 2");
static_assert(P::rank() == 2, "Must be rank 2");
if (transpose)
{
assert(A.extent(0) == B.extent(1));
for (std::size_t i = 0; i < A.extent(1); i++)
for (std::size_t j = 0; j < B.extent(0); j++)
for (std::size_t k = 0; k < A.extent(0); k++)
C(i, j) += A(k, i) * B(j, k);
}
else
{
assert(A.extent(1) == B.extent(0));
for (std::size_t i = 0; i < A.extent(0); i++)
for (std::size_t j = 0; j < B.extent(1); j++)
for (std::size_t k = 0; k < A.extent(1); k++)
C(i, j) += A(i, k) * B(k, j);
}
}
/// @brief Compute the left pseudo inverse of a rectangular matrix `A`
/// (3x2, 3x1, or 2x1), such that pinv(A) * A = I.
/// @param[in] A The matrix to the compute the pseudo inverse of.
/// @param[out] P The pseudo inverse of `A`. It must be pre-allocated
/// with a size which is the transpose of the size of `A`.
/// @pre The matrix `A` must be full rank
template <typename U, typename V>
void pinv(U A, V P)
{
static_assert(U::rank() == 2, "Must be rank 2");
static_assert(V::rank() == 2, "Must be rank 2");
assert(A.extent(0) > A.extent(1));
assert(P.extent(1) == A.extent(0));
assert(P.extent(0) == A.extent(1));
using T = typename U::value_type;
if (A.extent(1) == 2)
{
std::array<T, 6> ATb;
std::array<T, 4> ATAb, Invb;
md::mdspan<T, md::extents<std::size_t, 2, 3>> AT(ATb.data(), 2, 3);
md::mdspan<T, md::extents<std::size_t, 2, 2>> ATA(ATAb.data(), 2, 2);
md::mdspan<T, md::extents<std::size_t, 2, 2>> Inv(Invb.data(), 2, 2);
for (std::size_t i = 0; i < AT.extent(0); ++i)
for (std::size_t j = 0; j < AT.extent(1); ++j)
AT(i, j) = A(j, i);
std::ranges::fill(ATAb, 0.0);
for (std::size_t i = 0; i < P.extent(0); ++i)
for (std::size_t j = 0; j < P.extent(1); ++j)
P(i, j) = 0;
// pinv(A) = (A^T * A)^-1 * A^T
dot(AT, A, ATA);
inv(ATA, Inv);
dot(Inv, AT, P);
}
else if (A.extent(1) == 1)
{
T res = 0;
for (std::size_t i = 0; i < A.extent(0); ++i)
for (std::size_t j = 0; j < A.extent(1); ++j)
res += A(i, j) * A(i, j);
for (std::size_t i = 0; i < A.extent(0); ++i)
for (std::size_t j = 0; j < A.extent(1); ++j)
P(j, i) = (1 / res) * A(i, j);
}
else
{
throw std::runtime_error("math::pinv is not implemented for "
+ std::to_string(A.extent(0)) + "x"
+ std::to_string(A.extent(1)) + " matrices.");
}
}
} // namespace dolfinx::math
|