1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
// Copyright (C) 2009-2025 Anders Logg and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "MPI.h"
#include <algorithm>
#include <boost/functional/hash.hpp>
#include <dolfinx/graph/AdjacencyList.h>
#include <mpi.h>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
/// Generic tools
namespace dolfinx::common
{
///@brief Sort two arrays based on the values in array `indices`.
///
/// Any duplicate indices and the corresponding value are removed. In
/// the case of duplicates, the entry with the smallest value is
/// retained.
///
/// @param[in] indices Array of indices.
/// @param[in] values Array of values.
/// @return Sorted (indices, values), with sorting based on indices.
template <typename U, typename V>
std::pair<std::vector<typename U::value_type>,
std::vector<typename V::value_type>>
sort_unique(const U& indices, const V& values)
{
if (indices.size() != values.size())
throw std::runtime_error("Cannot sort two arrays of different lengths");
using T = typename std::pair<typename U::value_type, typename V::value_type>;
std::vector<T> data(indices.size());
std::ranges::transform(indices, values, data.begin(),
[](auto& idx, auto& v) -> T { return {idx, v}; });
// Sort make unique
std::ranges::sort(data);
auto it = std::ranges::unique(data, [](auto& a, auto& b)
{ return a.first == b.first; })
.begin();
std::vector<typename U::value_type> indices_new;
std::vector<typename V::value_type> values_new;
indices_new.reserve(data.size());
values_new.reserve(data.size());
std::transform(data.begin(), it, std::back_inserter(indices_new),
[](auto& d) { return d.first; });
std::transform(data.begin(), it, std::back_inserter(values_new),
[](auto& d) { return d.second; });
return {std::move(indices_new), std::move(values_new)};
}
/// @brief Compute a hash of a given object
///
/// The hash is computed using Boost container hash
/// (https://www.boost.org/doc/libs/release/libs/container_hash/).
///
/// @param[in] x The object to compute a hash of.
/// @return The hash values.
template <class T>
std::size_t hash_local(const T& x)
{
boost::hash<T> hash;
return hash(x);
}
/// @brief Compute a hash for a distributed (MPI) object.
///
/// A hash is computed on each process for the local part of the object.
/// Then, a hash of the std::vector containing each local hash key in
/// rank order is returned.
///
/// @note Collective
///
/// @param[in] comm The communicator on which to compute the hash.
/// @param[in] x The object to compute a hash of.
/// @return The hash values.
template <class T>
std::size_t hash_global(MPI_Comm comm, const T& x)
{
// Compute local hash
std::size_t local_hash = hash_local(x);
// Gather hash keys on root process
std::vector<std::size_t> all_hashes(dolfinx::MPI::size(comm));
int err = MPI_Gather(&local_hash, 1, dolfinx::MPI::mpi_t<std::size_t>,
all_hashes.data(), 1, dolfinx::MPI::mpi_t<std::size_t>,
0, comm);
dolfinx::MPI::check_error(comm, err);
// Hash the received hash keys
boost::hash<std::vector<std::size_t>> hash;
std::size_t global_hash = hash(all_hashes);
// Broadcast hash key to all processes
err = MPI_Bcast(&global_hash, 1, dolfinx::MPI::mpi_t<std::size_t>, 0, comm);
dolfinx::MPI::check_error(comm, err);
return global_hash;
}
/// @brief Build communication graph data as a JSON string.
///
/// The data string can be decoded (loaded) to create a Python object
/// from which a [NetworkX](https://networkx.org/) graph can be
/// constructed.
///
/// See ::comm_graph for a description of the data.
///
/// @param[in] g Communication graph.
/// @return JSON string representing the communication graph. Edge
/// data is data volume (`weight`) and local/remote memory indicator
/// (`local==1` is an edge to an shared memory process/rank, other
/// wise the target node is a remote memory rank).
std::string comm_to_json(
const graph::AdjacencyList<std::tuple<int, std::size_t, std::int8_t>,
std::pair<std::int32_t, std::int32_t>>& g);
} // namespace dolfinx::common
|