1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
// Copyright (C) 2018-2020 Garth N. Wells and Chris N. Richardson
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "ElementDofLayout.h"
#include <algorithm>
#include <array>
#include <basix/element-families.h>
#include <basix/mdspan.hpp>
#include <cmath>
#include <concepts>
#include <cstdint>
#include <dolfinx/common/math.h>
#include <dolfinx/mesh/cell_types.h>
#include <limits>
#include <memory>
#include <span>
namespace basix
{
template <std::floating_point T>
class FiniteElement;
}
namespace dolfinx::fem
{
/// A CoordinateElement manages coordinate mappings for isoparametric
/// cells.
/// @todo A dof layout on a reference cell needs to be defined.
/// @tparam T Floating point (real) type for the geometry and for the
/// element basis.
template <std::floating_point T>
class CoordinateElement
{
public:
/// @brief Create a coordinate element from a Basix element.
/// @param[in] element Basix finite element
explicit CoordinateElement(
std::shared_ptr<const basix::FiniteElement<T>> element);
/// @brief Create a Lagrange coordinate element.
/// @param[in] celltype Cell shape.
/// @param[in] degree Polynomial degree of the map.
/// @param[in] type Type of Lagrange element (see Basix documentation
/// for possible types).
CoordinateElement(mesh::CellType celltype, int degree,
basix::element::lagrange_variant type
= basix::element::lagrange_variant::unset);
/// Destructor
virtual ~CoordinateElement() = default;
/// @brief Cell shape.
/// @return The cell shape
mesh::CellType cell_shape() const;
/// @brief The polynomial degree of the element.
/// @return The degree
int degree() const;
/// @brief The dimension of the coordinate element space.
///
/// The number of basis function is returned. E.g., for a linear
/// triangle cell the dimension will be 3.
///
/// @return Dimension of the coordinate element space.
int dim() const;
/// @brief Variant of the element
basix::element::lagrange_variant variant() const;
/// @brief Element hash.
///
/// This is the Basix element hash.
std::uint64_t hash() const;
/// @brief Shape of array to fill when calling `tabulate`.
/// @param[in] nd The order of derivatives, up to and including, to
/// compute. Use 0 for the basis functions only
/// @param[in] num_points Number of points at which to evaluate the
/// basis functions.
/// @return Shape of the array to be filled by `tabulate`, where (0)
/// is derivative index, (1) is the point index, (2) is the basis
/// function index and (3) is the basis function component.
std::array<std::size_t, 4> tabulate_shape(std::size_t nd,
std::size_t num_points) const;
/// @brief Evaluate basis values and derivatives at set of points.
/// @param[in] nd The order of derivatives, up to and including, to
/// compute. Use 0 for the basis functions only.
/// @param[in] X The points at which to compute the basis functions.
/// The shape of X is (number of points, geometric dimension).
/// @param[in] shape The shape of `X`.
/// @param[out] basis The array to fill with the basis function
/// values. The shape can be computed using `tabulate_shape`.
void tabulate(int nd, std::span<const T> X, std::array<std::size_t, 2> shape,
std::span<T> basis) const;
/// @brief Given the closure DOFs \f$\tilde{d}\f$ of a cell sub-entity in
/// reference ordering, this function computes the permuted degrees-of-freedom
/// \f[ d = P \tilde{d},\f]
/// ordered to be consistent with the entity's mesh orientation, where
/// \f$P\f$ is a permutation matrix. This accounts for orientation
/// discrepancies between the entity's cell and mesh orientation. All DOFs are
/// rotated and reflected together, unlike `permute`, which considered
/// sub-entities independently.
///
/// @param[in,out] d Indices associated with the reference element
/// degree-of-freedom (in). Indices associated with each physical
/// element degree-of-freedom (out).
/// @param[in] cell_info Permutation info for the cell
/// @param[in] entity_type The cell type of the sub-entity
/// @param[in] entity_index The local (with respect to the cell) index of the
/// entity
void permute_subentity_closure(std::span<std::int32_t> d,
std::uint32_t cell_info,
mesh::CellType entity_type,
int entity_index) const;
/// Compute Jacobian for a cell with given geometry using the
/// basis functions and first order derivatives.
/// @param[in] dphi Derivatives of the basis functions (shape=(tdim,
/// num geometry nodes))
/// @param[in] cell_geometry The cell nodes coordinates (shape=(num
/// geometry nodes, gdim))
/// @param[out] J The Jacobian. It must have shape=(gdim, tdim) and
/// must initialized to zero
template <typename U, typename V, typename W>
static void compute_jacobian(const U& dphi, const V& cell_geometry, W&& J)
{
math::dot(cell_geometry, dphi, J, true);
}
/// @brief Compute the inverse of the Jacobian.
/// @param[in] J Jacobian (shape=(gdim, tdim)).
/// @param[out] K Inverse Jacobian (shape=(tdim, gdim)).
template <typename U, typename V>
static void compute_jacobian_inverse(const U& J, V&& K)
{
int gdim = J.extent(0);
int tdim = K.extent(0);
if (gdim == tdim)
math::inv(J, K);
else
math::pinv(J, K);
}
/// @brief Compute the determinant of the Jacobian.
/// @param[in] J Jacobian (shape=(gdim, tdim)).
/// @param[in] w Working memory, required when gdim != tdim. Size
/// must be at least 2 * gdim * tdim.
/// @return Determinant of `J`.
template <typename U>
static double
compute_jacobian_determinant(const U& J, std::span<typename U::value_type> w)
{
static_assert(U::rank() == 2, "Must be rank 2");
if (J.extent(0) == J.extent(1))
return math::det(J);
else
{
assert(w.size() >= 2 * J.extent(0) * J.extent(1));
using X = typename U::element_type;
using mdspan2_t = md::mdspan<X, md::dextents<std::size_t, 2>>;
mdspan2_t B(w.data(), J.extent(1), J.extent(0));
mdspan2_t BA(w.data() + J.extent(0) * J.extent(1), B.extent(0),
J.extent(1));
for (std::size_t i = 0; i < B.extent(0); ++i)
for (std::size_t j = 0; j < B.extent(1); ++j)
B(i, j) = J(j, i);
// Zero working memory of BA
std::fill_n(BA.data_handle(), BA.size(), 0);
math::dot(B, J, BA);
return std::sqrt(math::det(BA));
}
}
/// Compute and return the dof layout
ElementDofLayout create_dof_layout() const;
/// @brief Compute physical coordinates x for points X in the
/// reference configuration.
/// @param[in,out] x The physical coordinates of the reference points
/// X (rank 2).
/// @param[in] cell_geometry Cell node physical coordinates (rank 2).
/// @param[in] phi Tabulated basis functions at reference points X
/// (rank 2).
template <typename U, typename V, typename W>
static void push_forward(U&& x, const V& cell_geometry, const W& phi)
{
for (std::size_t i = 0; i < x.extent(0); ++i)
for (std::size_t j = 0; j < x.extent(1); ++j)
x(i, j) = 0;
// Compute x = phi * cell_geometry;
math::dot(phi, cell_geometry, x);
}
/// @brief Compute reference coordinates X for physical coordinates x
/// for an affine map. For the affine case, `x = J X + x0`, and this
/// function computes `X = K(x -x0)` where `K = J^{-1}`.
/// @param[out] X Reference coordinates to compute
/// (`shape=(num_points, tdim)`),
/// @param[in] K Inverse of the geometry Jacobian (`shape=(tdim,
/// gdim)`).
/// @param[in] x0 Physical coordinate of reference coordinate `X0=(0,
/// 0, 0)`.
/// @param[in] x Physical coordinates (shape=(num_points, gdim)).
template <typename U, typename V, typename W>
static void pull_back_affine(U&& X, const V& K, std::array<T, 3> x0,
const W& x)
{
assert(X.extent(0) == x.extent(0));
assert(X.extent(1) == K.extent(0));
assert(x.extent(1) == K.extent(1));
for (std::size_t i = 0; i < X.extent(0); ++i)
for (std::size_t j = 0; j < X.extent(1); ++j)
X(i, j) = 0;
// Calculate X for each point
for (std::size_t p = 0; p < x.extent(0); ++p)
for (std::size_t i = 0; i < K.extent(0); ++i)
for (std::size_t j = 0; j < K.extent(1); ++j)
X(p, i) += K(i, j) * (x(p, j) - x0[j]);
}
/// mdspan typedef
template <typename X>
using mdspan2_t = md::mdspan<X, md::dextents<std::size_t, 2>>;
/// @brief Compute reference coordinates `X` for physical coordinates
/// `x` for a non-affine map.
/// @param [in,out] X The reference coordinates to compute
/// (shape=`(num_points, tdim)`).
/// @param [in] x Physical coordinates (`shape=(num_points, gdim)`).
/// @param [in] cell_geometry Cell nodes coordinates (`shape=(num
/// geometry nodes, gdim)`).
/// @param [in] tol Tolerance for termination of Newton method.
/// @param [in] maxit Maximum number of Newton iterations
/// @note If convergence is not achieved within `maxit`, the function
/// throws a runtime error.
void pull_back_nonaffine(mdspan2_t<T> X, mdspan2_t<const T> x,
mdspan2_t<const T> cell_geometry,
double tol = 1.0e-6, int maxit = 15) const;
/// @brief Permute a list of DOF numbers on a cell.
void permute(std::span<std::int32_t> dofs, std::uint32_t cell_perm) const;
/// @brief Reverses a DOF permutation
void permute_inv(std::span<std::int32_t> dofs, std::uint32_t cell_perm) const;
/// @brief Indicates whether the geometry DOF numbers on each cell
/// need permuting.
///
/// For higher order geometries (where there is more than one DOF on a
/// subentity of the cell), this will be true.
bool needs_dof_permutations() const;
/// Check is geometry map is affine
/// @return True is geometry map is affine
bool is_affine() const noexcept { return _is_affine; }
private:
// Flag denoting affine map
bool _is_affine;
// Basix Element
std::shared_ptr<const basix::FiniteElement<T>> _element;
};
} // namespace dolfinx::fem
|