File: DirichletBC.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (438 lines) | stat: -rw-r--r-- 16,053 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// Copyright (C) 2007-2020 Anders Logg and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#include "DirichletBC.h"
#include "DofMap.h"
#include "FiniteElement.h"
#include <algorithm>
#include <array>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/sort.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <dolfinx/mesh/cell_types.h>
#include <map>
#include <numeric>
#include <utility>

using namespace dolfinx;
using namespace dolfinx::fem;

namespace
{

/// @brief Find the cell (local to process) and index of an entity
/// (local to cell) for a list of entities.
/// @param[in] mesh The mesh
/// @param[in] entities The list of entities
/// @param[in] dim The dimension of the entities
/// @returns A list of (cell_index, entity_index) pairs for each input
/// entity.
std::vector<std::pair<std::int32_t, int>>
find_local_entity_index(const mesh::Topology& topology,
                        std::span<const std::int32_t> entities, int dim)
{
  // Initialise entity-cell connectivity
  const int tdim = topology.dim();
  auto e_to_c = topology.connectivity(dim, tdim);
  if (!e_to_c)
  {
    throw std::runtime_error(
        "Entity-to-cell connectivity has not been computed. Missing dims "
        + std::to_string(dim) + "->" + std::to_string(tdim));
  }

  auto c_to_e = topology.connectivity(tdim, dim);
  if (!c_to_e)
  {
    throw std::runtime_error(
        "Cell-to-entity connectivity has not been computed. Missing dims "
        + std::to_string(tdim) + "->" + std::to_string(dim));
  }

  std::vector<std::pair<std::int32_t, int>> entity_indices;
  entity_indices.reserve(entities.size());
  for (std::int32_t e : entities)
  {
    // Get first attached cell
    assert(e_to_c->num_links(e) > 0);
    const int cell = e_to_c->links(e).front();

    // Get local index of facet with respect to the cell
    auto entities_d = c_to_e->links(cell);
    auto it = std::find(entities_d.begin(), entities_d.end(), e);
    assert(it != entities_d.end());
    std::size_t entity_local_index = std::distance(entities_d.begin(), it);
    entity_indices.emplace_back(cell, entity_local_index);
  }

  return entity_indices;
}
//-----------------------------------------------------------------------------

/// Find all DOFs on this process that have been detected on another
/// process
/// @param[in] comm A symmetric communicator
/// @param[in] map The index map with the dof layout
/// @param[in] bs_map The block size of the index map, i.e. the dof
/// array. It should be set to 1 if `dofs_local` contains block indices.
/// @param[in] dofs_local List of degrees of freedom on this rank
/// @returns Degrees of freedom found on the other ranks that exist on
/// this rank
std::vector<std::int32_t>
get_remote_dofs(MPI_Comm comm, const common::IndexMap& map, int bs_map,
                std::span<const std::int32_t> dofs_local)
{
  int num_neighbors(-1);
  {
    int outdegree(-2), weighted(-1);
    MPI_Dist_graph_neighbors_count(comm, &num_neighbors, &outdegree, &weighted);
    assert(num_neighbors == outdegree);
  }

  // Return early if there are no neighbors
  if (num_neighbors == 0)
    return {};

  // Figure out how many entries to receive from each neighbor
  const int num_dofs_block = dofs_local.size();
  std::vector<int> num_dofs_recv(num_neighbors);
  MPI_Request request;
  MPI_Ineighbor_allgather(&num_dofs_block, 1, MPI_INT, num_dofs_recv.data(), 1,
                          MPI_INT, comm, &request);

  std::vector<std::int64_t> dofs_global(dofs_local.size());
  if (bs_map == 1)
  {
    dofs_global.resize(dofs_local.size());
    map.local_to_global(dofs_local, dofs_global);
  }
  else
  {
    // Convert dofs indices to 'block' map indices
    std::vector<std::int32_t> dofs_local_m;
    dofs_local_m.reserve(dofs_local.size());
    std::ranges::transform(dofs_local, std::back_inserter(dofs_local_m),
                           [bs_map](auto dof) { return dof / bs_map; });

    // Compute global index of each block
    map.local_to_global(dofs_local_m, dofs_global);

    // Add offset
    std::ranges::transform(
        dofs_global, dofs_local, dofs_global.begin(),
        [bs_map](auto global_block, auto local_dof)
        { return bs_map * global_block + (local_dof % bs_map); });
  }

  MPI_Wait(&request, MPI_STATUS_IGNORE);

  // Compute displacements for data to receive. Last entry has total
  // number of received items.
  std::vector<int> disp(num_neighbors + 1, 0);
  std::partial_sum(num_dofs_recv.begin(), num_dofs_recv.end(),
                   std::next(disp.begin()));

  // NOTE: We could consider only dofs that we know are shared and use
  // MPI_Neighbor_alltoallv to send only to relevant processes.
  // Send/receive global index of dofs with bcs to all neighbors
  std::vector<std::int64_t> dofs_received(disp.back());
  MPI_Ineighbor_allgatherv(dofs_global.data(), dofs_global.size(), MPI_INT64_T,
                           dofs_received.data(), num_dofs_recv.data(),
                           disp.data(), MPI_INT64_T, comm, &request);

  // FIXME: check that dofs is sorted
  // Build vector of local dof indices that have been marked by another
  // process
  const std::array<std::int64_t, 2> range = map.local_range();
  std::span ghosts = map.ghosts();

  // Build map from ghost global index to local position
  // NOTE: Should we use map here or just one vector with ghosts and
  // std::distance?
  std::vector<std::pair<std::int64_t, std::int32_t>> global_local_ghosts;
  global_local_ghosts.reserve(ghosts.size());
  const std::int32_t local_size = range[1] - range[0];
  for (std::size_t i = 0; i < ghosts.size(); ++i)
    global_local_ghosts.emplace_back(ghosts[i], i + local_size);
  std::map<std::int64_t, std::int32_t> global_to_local(
      global_local_ghosts.begin(), global_local_ghosts.end());

  MPI_Wait(&request, MPI_STATUS_IGNORE);
  std::vector<std::int32_t> dofs;
  for (auto dof_global : dofs_received)
  {
    // Insert owned dofs, else search in ghosts
    std::int64_t block = dof_global / bs_map;
    if (block >= range[0] and block < range[1])
      dofs.push_back(dof_global - bs_map * range[0]);
    else
    {
      if (auto it = global_to_local.find(block); it != global_to_local.end())
      {
        int offset = dof_global % bs_map;
        dofs.push_back(bs_map * it->second + offset);
      }
    }
  }

  return dofs;
}
//-----------------------------------------------------------------------------
} // namespace

//-----------------------------------------------------------------------------
std::vector<std::int32_t> fem::locate_dofs_topological(
    const mesh::Topology& topology, const DofMap& dofmap, int dim,
    std::span<const std::int32_t> entities, bool remote)
{
  mesh::CellType cell_type = topology.cell_type();

  // Prepare an element - local dof layout for dofs on entities of the
  // entity_dim
  const int num_cell_entities = mesh::cell_num_entities(cell_type, dim);
  std::vector<std::vector<int>> entity_dofs;
  entity_dofs.reserve(num_cell_entities);
  for (int i = 0; i < num_cell_entities; ++i)
  {
    entity_dofs.push_back(
        dofmap.element_dof_layout().entity_closure_dofs(dim, i));
  }

  // Get cell index and local entity index
  std::vector<std::pair<std::int32_t, int>> entity_indices
      = find_local_entity_index(topology, entities, dim);

  std::vector<std::int32_t> dofs;
  dofs.reserve(entities.size()
               * dofmap.element_dof_layout().num_entity_closure_dofs(dim));

  // V is a sub space we need to take the block size of the dofmap and
  // the index map into account as they can differ
  const int bs = dofmap.bs();
  const int element_bs = dofmap.element_dof_layout().block_size();

  // Iterate over marked facets
  if (element_bs == bs)
  {
    // Work with blocks
    for (auto [cell, entity_local_index] : entity_indices)
    {
      // Get cell dofmap and loop over entity dofs
      auto cell_dofs = dofmap.cell_dofs(cell);
      for (int index : entity_dofs[entity_local_index])
        dofs.push_back(cell_dofs[index]);
    }
  }
  else if (bs == 1)
  {
    // Space is not blocked, unroll dofs
    for (auto [cell, entity_local_index] : entity_indices)
    {
      // Get cell dofmap and loop over facet dofs and 'unpack' blocked
      // dofs
      std::span<const std::int32_t> cell_dofs = dofmap.cell_dofs(cell);
      for (int index : entity_dofs[entity_local_index])
      {
        for (int k = 0; k < element_bs; ++k)
        {
          const std::div_t pos = std::div(element_bs * index + k, bs);
          dofs.push_back(bs * cell_dofs[pos.quot] + pos.rem);
        }
      }
    }
  }
  else
    throw std::runtime_error("Block size combination not supported");

  // TODO: is removing duplicates at this point worth the effort?
  // Remove duplicates
  std::ranges::sort(dofs);
  auto [unique_end, range_end] = std::ranges::unique(dofs);
  dofs.erase(unique_end, range_end);

  if (remote)
  {
    // Get bc dof indices (local) in V spaces on this process that were
    // found by other processes, e.g. a vertex dof on this process that
    // has no connected facets on the boundary.
    auto map = dofmap.index_map;
    assert(map);

    // Create 'symmetric' neighbourhood communicator
    MPI_Comm comm;
    {
      std::span src = map->src();
      std::span dest = map->dest();
      std::vector<int> ranks;
      std::ranges::set_union(src, dest, std::back_inserter(ranks));
      auto [unique_end, range_end] = std::ranges::unique(ranks);
      ranks.erase(unique_end, range_end);
      MPI_Dist_graph_create_adjacent(
          map->comm(), ranks.size(), ranks.data(), MPI_UNWEIGHTED, ranks.size(),
          ranks.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm);
    }

    std::vector<std::int32_t> dofs_remote;
    if (int map_bs = dofmap.index_map_bs(); map_bs == bs)
      dofs_remote = get_remote_dofs(comm, *map, 1, dofs);
    else
      dofs_remote = get_remote_dofs(comm, *map, map_bs, dofs);

    MPI_Comm_free(&comm);

    // Add received bc indices to dofs_local, sort, and remove
    // duplicates
    dofs.insert(dofs.end(), dofs_remote.begin(), dofs_remote.end());
    std::ranges::sort(dofs);
    auto [unique_end, range_end] = std::ranges::unique(dofs);
    dofs.erase(unique_end, range_end);
  }

  return dofs;
}
//-----------------------------------------------------------------------------
std::array<std::vector<std::int32_t>, 2> fem::locate_dofs_topological(
    const mesh::Topology& topology,
    std::array<std::reference_wrapper<const DofMap>, 2> dofmaps, const int dim,
    std::span<const std::int32_t> entities, bool remote)
{
  // Get dofmaps
  const DofMap& dofmap0 = dofmaps.at(0).get();
  const DofMap& dofmap1 = dofmaps.at(1).get();

  // Check that dof layouts are the same
  assert(dofmap0.element_dof_layout() == dofmap1.element_dof_layout());

  mesh::CellType cell_type = topology.cell_type();

  // Build vector of local dofs for each cell entity
  const int num_cell_entities = mesh::cell_num_entities(cell_type, dim);
  std::vector<std::vector<int>> entity_dofs;
  entity_dofs.reserve(num_cell_entities);
  for (int i = 0; i < num_cell_entities; ++i)
  {
    entity_dofs.push_back(
        dofmap0.element_dof_layout().entity_closure_dofs(dim, i));
  }

  const std::array bs = {dofmap0.bs(), dofmap1.bs()};

  // Get cell index and local entity index
  std::vector<std::pair<std::int32_t, int>> entity_indices
      = find_local_entity_index(topology, entities, dim);

  // Iterate over marked facets
  const int element_bs = dofmap0.element_dof_layout().block_size();
  std::array<std::vector<std::int32_t>, 2> bc_dofs;
  bc_dofs[0].reserve(entities.size()
                     * dofmap0.element_dof_layout().num_entity_closure_dofs(dim)
                     * element_bs);
  bc_dofs[1].reserve(entities.size()
                     * dofmap0.element_dof_layout().num_entity_closure_dofs(dim)
                     * element_bs);
  for (auto [cell, entity_local_index] : entity_indices)
  {
    // Get cell dofmap
    std::span<const std::int32_t> cell_dofs0 = dofmap0.cell_dofs(cell);
    std::span<const std::int32_t> cell_dofs1 = dofmap1.cell_dofs(cell);
    assert(bs[0] * cell_dofs0.size() == bs[1] * cell_dofs1.size());

    // Loop over facet dofs and 'unpack' blocked dofs
    for (int index : entity_dofs[entity_local_index])
    {
      for (int k = 0; k < element_bs; ++k)
      {
        const int local_pos = element_bs * index + k;
        const std::div_t pos0 = std::div(local_pos, bs[0]);
        const std::div_t pos1 = std::div(local_pos, bs[1]);
        std::int32_t dof_index0 = bs[0] * cell_dofs0[pos0.quot] + pos0.rem;
        std::int32_t dof_index1 = bs[1] * cell_dofs1[pos1.quot] + pos1.rem;
        bc_dofs[0].push_back(dof_index0);
        bc_dofs[1].push_back(dof_index1);
      }
    }
  }

  // TODO: is removing duplicates at this point worth the effort?
  // Remove duplicates
  std::vector<std::int32_t> perm(bc_dofs[0].size());
  std::iota(perm.begin(), perm.end(), 0);
  dolfinx::radix_sort(perm,
                      [&dofs = bc_dofs[0]](auto index) { return dofs[index]; });

  std::array<std::vector<std::int32_t>, 2> sorted_bc_dofs = bc_dofs;
  for (std::size_t b = 0; b < 2; ++b)
  {
    std::ranges::transform(perm, sorted_bc_dofs[b].begin(),
                           [&bc_dofs = bc_dofs[b]](auto p)
                           { return bc_dofs[p]; });
    auto [unique_end, range_end] = std::ranges::unique(sorted_bc_dofs[b]);
    sorted_bc_dofs[b].erase(unique_end, range_end);
  }

  if (!remote)
    return sorted_bc_dofs;
  else
  {
    // Get bc dof indices (local) for each of spaces on this process that
    // were found by other processes, e.g. a vertex dof on this process
    // that has no connected facets on the boundary.

    auto map0 = dofmap0.index_map;
    assert(map0);

    // Create 'symmetric' neighbourhood communicator
    MPI_Comm comm;
    {
      std::span src = map0->src();
      std::span dest = map0->dest();
      std::vector<int> ranks;
      std::ranges::set_union(src, dest, std::back_inserter(ranks));
      auto [unique_end, range_end] = std::ranges::unique(ranks);
      ranks.erase(unique_end, range_end);
      MPI_Dist_graph_create_adjacent(map0->comm(), ranks.size(), ranks.data(),
                                     MPI_UNWEIGHTED, ranks.size(), ranks.data(),
                                     MPI_UNWEIGHTED, MPI_INFO_NULL, false,
                                     &comm);
    }

    std::vector<std::int32_t> dofs_remote = get_remote_dofs(
        comm, *map0, dofmap0.index_map_bs(), sorted_bc_dofs[0]);

    // Add received bc indices to dofs_local
    sorted_bc_dofs[0].insert(sorted_bc_dofs[0].end(), dofs_remote.begin(),
                             dofs_remote.end());

    dofs_remote = get_remote_dofs(comm, *(dofmap1.index_map),
                                  dofmap1.index_map_bs(), sorted_bc_dofs[1]);
    sorted_bc_dofs[1].insert(sorted_bc_dofs[1].end(), dofs_remote.begin(),
                             dofs_remote.end());
    assert(sorted_bc_dofs[0].size() == sorted_bc_dofs[1].size());

    MPI_Comm_free(&comm);

    // Remove duplicates and sort
    perm.resize(sorted_bc_dofs[0].size());
    std::iota(perm.begin(), perm.end(), 0);
    dolfinx::radix_sort(perm, [&dofs = sorted_bc_dofs[0]](auto index)
                        { return dofs[index]; });

    std::array<std::vector<std::int32_t>, 2> out_dofs = sorted_bc_dofs;
    for (std::size_t b = 0; b < 2; ++b)
    {
      std::ranges::transform(perm, out_dofs[b].begin(),
                             [&sorted_dofs = sorted_bc_dofs[b]](auto p)
                             { return sorted_dofs[p]; });
      auto [unique_end, range_end] = std::ranges::unique(out_dofs[b]);
      out_dofs[b].erase(unique_end, range_end);
    }

    assert(out_dofs[0].size() == out_dofs[1].size());
    return out_dofs;
  }
}
//-----------------------------------------------------------------------------