1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
// Copyright (C) 2007-2020 Anders Logg and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "DirichletBC.h"
#include "DofMap.h"
#include "FiniteElement.h"
#include <algorithm>
#include <array>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/sort.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <dolfinx/mesh/cell_types.h>
#include <map>
#include <numeric>
#include <utility>
using namespace dolfinx;
using namespace dolfinx::fem;
namespace
{
/// @brief Find the cell (local to process) and index of an entity
/// (local to cell) for a list of entities.
/// @param[in] mesh The mesh
/// @param[in] entities The list of entities
/// @param[in] dim The dimension of the entities
/// @returns A list of (cell_index, entity_index) pairs for each input
/// entity.
std::vector<std::pair<std::int32_t, int>>
find_local_entity_index(const mesh::Topology& topology,
std::span<const std::int32_t> entities, int dim)
{
// Initialise entity-cell connectivity
const int tdim = topology.dim();
auto e_to_c = topology.connectivity(dim, tdim);
if (!e_to_c)
{
throw std::runtime_error(
"Entity-to-cell connectivity has not been computed. Missing dims "
+ std::to_string(dim) + "->" + std::to_string(tdim));
}
auto c_to_e = topology.connectivity(tdim, dim);
if (!c_to_e)
{
throw std::runtime_error(
"Cell-to-entity connectivity has not been computed. Missing dims "
+ std::to_string(tdim) + "->" + std::to_string(dim));
}
std::vector<std::pair<std::int32_t, int>> entity_indices;
entity_indices.reserve(entities.size());
for (std::int32_t e : entities)
{
// Get first attached cell
assert(e_to_c->num_links(e) > 0);
const int cell = e_to_c->links(e).front();
// Get local index of facet with respect to the cell
auto entities_d = c_to_e->links(cell);
auto it = std::find(entities_d.begin(), entities_d.end(), e);
assert(it != entities_d.end());
std::size_t entity_local_index = std::distance(entities_d.begin(), it);
entity_indices.emplace_back(cell, entity_local_index);
}
return entity_indices;
}
//-----------------------------------------------------------------------------
/// Find all DOFs on this process that have been detected on another
/// process
/// @param[in] comm A symmetric communicator
/// @param[in] map The index map with the dof layout
/// @param[in] bs_map The block size of the index map, i.e. the dof
/// array. It should be set to 1 if `dofs_local` contains block indices.
/// @param[in] dofs_local List of degrees of freedom on this rank
/// @returns Degrees of freedom found on the other ranks that exist on
/// this rank
std::vector<std::int32_t>
get_remote_dofs(MPI_Comm comm, const common::IndexMap& map, int bs_map,
std::span<const std::int32_t> dofs_local)
{
int num_neighbors(-1);
{
int outdegree(-2), weighted(-1);
MPI_Dist_graph_neighbors_count(comm, &num_neighbors, &outdegree, &weighted);
assert(num_neighbors == outdegree);
}
// Return early if there are no neighbors
if (num_neighbors == 0)
return {};
// Figure out how many entries to receive from each neighbor
const int num_dofs_block = dofs_local.size();
std::vector<int> num_dofs_recv(num_neighbors);
MPI_Request request;
MPI_Ineighbor_allgather(&num_dofs_block, 1, MPI_INT, num_dofs_recv.data(), 1,
MPI_INT, comm, &request);
std::vector<std::int64_t> dofs_global(dofs_local.size());
if (bs_map == 1)
{
dofs_global.resize(dofs_local.size());
map.local_to_global(dofs_local, dofs_global);
}
else
{
// Convert dofs indices to 'block' map indices
std::vector<std::int32_t> dofs_local_m;
dofs_local_m.reserve(dofs_local.size());
std::ranges::transform(dofs_local, std::back_inserter(dofs_local_m),
[bs_map](auto dof) { return dof / bs_map; });
// Compute global index of each block
map.local_to_global(dofs_local_m, dofs_global);
// Add offset
std::ranges::transform(
dofs_global, dofs_local, dofs_global.begin(),
[bs_map](auto global_block, auto local_dof)
{ return bs_map * global_block + (local_dof % bs_map); });
}
MPI_Wait(&request, MPI_STATUS_IGNORE);
// Compute displacements for data to receive. Last entry has total
// number of received items.
std::vector<int> disp(num_neighbors + 1, 0);
std::partial_sum(num_dofs_recv.begin(), num_dofs_recv.end(),
std::next(disp.begin()));
// NOTE: We could consider only dofs that we know are shared and use
// MPI_Neighbor_alltoallv to send only to relevant processes.
// Send/receive global index of dofs with bcs to all neighbors
std::vector<std::int64_t> dofs_received(disp.back());
MPI_Ineighbor_allgatherv(dofs_global.data(), dofs_global.size(), MPI_INT64_T,
dofs_received.data(), num_dofs_recv.data(),
disp.data(), MPI_INT64_T, comm, &request);
// FIXME: check that dofs is sorted
// Build vector of local dof indices that have been marked by another
// process
const std::array<std::int64_t, 2> range = map.local_range();
std::span ghosts = map.ghosts();
// Build map from ghost global index to local position
// NOTE: Should we use map here or just one vector with ghosts and
// std::distance?
std::vector<std::pair<std::int64_t, std::int32_t>> global_local_ghosts;
global_local_ghosts.reserve(ghosts.size());
const std::int32_t local_size = range[1] - range[0];
for (std::size_t i = 0; i < ghosts.size(); ++i)
global_local_ghosts.emplace_back(ghosts[i], i + local_size);
std::map<std::int64_t, std::int32_t> global_to_local(
global_local_ghosts.begin(), global_local_ghosts.end());
MPI_Wait(&request, MPI_STATUS_IGNORE);
std::vector<std::int32_t> dofs;
for (auto dof_global : dofs_received)
{
// Insert owned dofs, else search in ghosts
std::int64_t block = dof_global / bs_map;
if (block >= range[0] and block < range[1])
dofs.push_back(dof_global - bs_map * range[0]);
else
{
if (auto it = global_to_local.find(block); it != global_to_local.end())
{
int offset = dof_global % bs_map;
dofs.push_back(bs_map * it->second + offset);
}
}
}
return dofs;
}
//-----------------------------------------------------------------------------
} // namespace
//-----------------------------------------------------------------------------
std::vector<std::int32_t> fem::locate_dofs_topological(
const mesh::Topology& topology, const DofMap& dofmap, int dim,
std::span<const std::int32_t> entities, bool remote)
{
mesh::CellType cell_type = topology.cell_type();
// Prepare an element - local dof layout for dofs on entities of the
// entity_dim
const int num_cell_entities = mesh::cell_num_entities(cell_type, dim);
std::vector<std::vector<int>> entity_dofs;
entity_dofs.reserve(num_cell_entities);
for (int i = 0; i < num_cell_entities; ++i)
{
entity_dofs.push_back(
dofmap.element_dof_layout().entity_closure_dofs(dim, i));
}
// Get cell index and local entity index
std::vector<std::pair<std::int32_t, int>> entity_indices
= find_local_entity_index(topology, entities, dim);
std::vector<std::int32_t> dofs;
dofs.reserve(entities.size()
* dofmap.element_dof_layout().num_entity_closure_dofs(dim));
// V is a sub space we need to take the block size of the dofmap and
// the index map into account as they can differ
const int bs = dofmap.bs();
const int element_bs = dofmap.element_dof_layout().block_size();
// Iterate over marked facets
if (element_bs == bs)
{
// Work with blocks
for (auto [cell, entity_local_index] : entity_indices)
{
// Get cell dofmap and loop over entity dofs
auto cell_dofs = dofmap.cell_dofs(cell);
for (int index : entity_dofs[entity_local_index])
dofs.push_back(cell_dofs[index]);
}
}
else if (bs == 1)
{
// Space is not blocked, unroll dofs
for (auto [cell, entity_local_index] : entity_indices)
{
// Get cell dofmap and loop over facet dofs and 'unpack' blocked
// dofs
std::span<const std::int32_t> cell_dofs = dofmap.cell_dofs(cell);
for (int index : entity_dofs[entity_local_index])
{
for (int k = 0; k < element_bs; ++k)
{
const std::div_t pos = std::div(element_bs * index + k, bs);
dofs.push_back(bs * cell_dofs[pos.quot] + pos.rem);
}
}
}
}
else
throw std::runtime_error("Block size combination not supported");
// TODO: is removing duplicates at this point worth the effort?
// Remove duplicates
std::ranges::sort(dofs);
auto [unique_end, range_end] = std::ranges::unique(dofs);
dofs.erase(unique_end, range_end);
if (remote)
{
// Get bc dof indices (local) in V spaces on this process that were
// found by other processes, e.g. a vertex dof on this process that
// has no connected facets on the boundary.
auto map = dofmap.index_map;
assert(map);
// Create 'symmetric' neighbourhood communicator
MPI_Comm comm;
{
std::span src = map->src();
std::span dest = map->dest();
std::vector<int> ranks;
std::ranges::set_union(src, dest, std::back_inserter(ranks));
auto [unique_end, range_end] = std::ranges::unique(ranks);
ranks.erase(unique_end, range_end);
MPI_Dist_graph_create_adjacent(
map->comm(), ranks.size(), ranks.data(), MPI_UNWEIGHTED, ranks.size(),
ranks.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm);
}
std::vector<std::int32_t> dofs_remote;
if (int map_bs = dofmap.index_map_bs(); map_bs == bs)
dofs_remote = get_remote_dofs(comm, *map, 1, dofs);
else
dofs_remote = get_remote_dofs(comm, *map, map_bs, dofs);
MPI_Comm_free(&comm);
// Add received bc indices to dofs_local, sort, and remove
// duplicates
dofs.insert(dofs.end(), dofs_remote.begin(), dofs_remote.end());
std::ranges::sort(dofs);
auto [unique_end, range_end] = std::ranges::unique(dofs);
dofs.erase(unique_end, range_end);
}
return dofs;
}
//-----------------------------------------------------------------------------
std::array<std::vector<std::int32_t>, 2> fem::locate_dofs_topological(
const mesh::Topology& topology,
std::array<std::reference_wrapper<const DofMap>, 2> dofmaps, const int dim,
std::span<const std::int32_t> entities, bool remote)
{
// Get dofmaps
const DofMap& dofmap0 = dofmaps.at(0).get();
const DofMap& dofmap1 = dofmaps.at(1).get();
// Check that dof layouts are the same
assert(dofmap0.element_dof_layout() == dofmap1.element_dof_layout());
mesh::CellType cell_type = topology.cell_type();
// Build vector of local dofs for each cell entity
const int num_cell_entities = mesh::cell_num_entities(cell_type, dim);
std::vector<std::vector<int>> entity_dofs;
entity_dofs.reserve(num_cell_entities);
for (int i = 0; i < num_cell_entities; ++i)
{
entity_dofs.push_back(
dofmap0.element_dof_layout().entity_closure_dofs(dim, i));
}
const std::array bs = {dofmap0.bs(), dofmap1.bs()};
// Get cell index and local entity index
std::vector<std::pair<std::int32_t, int>> entity_indices
= find_local_entity_index(topology, entities, dim);
// Iterate over marked facets
const int element_bs = dofmap0.element_dof_layout().block_size();
std::array<std::vector<std::int32_t>, 2> bc_dofs;
bc_dofs[0].reserve(entities.size()
* dofmap0.element_dof_layout().num_entity_closure_dofs(dim)
* element_bs);
bc_dofs[1].reserve(entities.size()
* dofmap0.element_dof_layout().num_entity_closure_dofs(dim)
* element_bs);
for (auto [cell, entity_local_index] : entity_indices)
{
// Get cell dofmap
std::span<const std::int32_t> cell_dofs0 = dofmap0.cell_dofs(cell);
std::span<const std::int32_t> cell_dofs1 = dofmap1.cell_dofs(cell);
assert(bs[0] * cell_dofs0.size() == bs[1] * cell_dofs1.size());
// Loop over facet dofs and 'unpack' blocked dofs
for (int index : entity_dofs[entity_local_index])
{
for (int k = 0; k < element_bs; ++k)
{
const int local_pos = element_bs * index + k;
const std::div_t pos0 = std::div(local_pos, bs[0]);
const std::div_t pos1 = std::div(local_pos, bs[1]);
std::int32_t dof_index0 = bs[0] * cell_dofs0[pos0.quot] + pos0.rem;
std::int32_t dof_index1 = bs[1] * cell_dofs1[pos1.quot] + pos1.rem;
bc_dofs[0].push_back(dof_index0);
bc_dofs[1].push_back(dof_index1);
}
}
}
// TODO: is removing duplicates at this point worth the effort?
// Remove duplicates
std::vector<std::int32_t> perm(bc_dofs[0].size());
std::iota(perm.begin(), perm.end(), 0);
dolfinx::radix_sort(perm,
[&dofs = bc_dofs[0]](auto index) { return dofs[index]; });
std::array<std::vector<std::int32_t>, 2> sorted_bc_dofs = bc_dofs;
for (std::size_t b = 0; b < 2; ++b)
{
std::ranges::transform(perm, sorted_bc_dofs[b].begin(),
[&bc_dofs = bc_dofs[b]](auto p)
{ return bc_dofs[p]; });
auto [unique_end, range_end] = std::ranges::unique(sorted_bc_dofs[b]);
sorted_bc_dofs[b].erase(unique_end, range_end);
}
if (!remote)
return sorted_bc_dofs;
else
{
// Get bc dof indices (local) for each of spaces on this process that
// were found by other processes, e.g. a vertex dof on this process
// that has no connected facets on the boundary.
auto map0 = dofmap0.index_map;
assert(map0);
// Create 'symmetric' neighbourhood communicator
MPI_Comm comm;
{
std::span src = map0->src();
std::span dest = map0->dest();
std::vector<int> ranks;
std::ranges::set_union(src, dest, std::back_inserter(ranks));
auto [unique_end, range_end] = std::ranges::unique(ranks);
ranks.erase(unique_end, range_end);
MPI_Dist_graph_create_adjacent(map0->comm(), ranks.size(), ranks.data(),
MPI_UNWEIGHTED, ranks.size(), ranks.data(),
MPI_UNWEIGHTED, MPI_INFO_NULL, false,
&comm);
}
std::vector<std::int32_t> dofs_remote = get_remote_dofs(
comm, *map0, dofmap0.index_map_bs(), sorted_bc_dofs[0]);
// Add received bc indices to dofs_local
sorted_bc_dofs[0].insert(sorted_bc_dofs[0].end(), dofs_remote.begin(),
dofs_remote.end());
dofs_remote = get_remote_dofs(comm, *(dofmap1.index_map),
dofmap1.index_map_bs(), sorted_bc_dofs[1]);
sorted_bc_dofs[1].insert(sorted_bc_dofs[1].end(), dofs_remote.begin(),
dofs_remote.end());
assert(sorted_bc_dofs[0].size() == sorted_bc_dofs[1].size());
MPI_Comm_free(&comm);
// Remove duplicates and sort
perm.resize(sorted_bc_dofs[0].size());
std::iota(perm.begin(), perm.end(), 0);
dolfinx::radix_sort(perm, [&dofs = sorted_bc_dofs[0]](auto index)
{ return dofs[index]; });
std::array<std::vector<std::int32_t>, 2> out_dofs = sorted_bc_dofs;
for (std::size_t b = 0; b < 2; ++b)
{
std::ranges::transform(perm, out_dofs[b].begin(),
[&sorted_dofs = sorted_bc_dofs[b]](auto p)
{ return sorted_dofs[p]; });
auto [unique_end, range_end] = std::ranges::unique(out_dofs[b]);
out_dofs[b].erase(unique_end, range_end);
}
assert(out_dofs[0].size() == out_dofs[1].size());
return out_dofs;
}
}
//-----------------------------------------------------------------------------
|