File: FiniteElement.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (641 lines) | stat: -rw-r--r-- 21,675 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// Copyright (C) 2020-2021 Garth N. Wells and Matthew W. Scroggs
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#include "FiniteElement.h"
#include <algorithm>
#include <array>
#include <basix/finite-element.h>
#include <basix/interpolation.h>
#include <basix/polyset.h>
#include <dolfinx/common/log.h>
#include <functional>
#include <numeric>
#include <utility>
#include <vector>

using namespace dolfinx;
using namespace dolfinx::fem;

namespace
{
/// @brief Create a list of fem::FiniteElement from Basix elements and
/// other data.
/// @tparam T
/// @param elements
/// @return List of DOLFINx elements
template <std::floating_point T>
std::vector<std::shared_ptr<const FiniteElement<T>>>
_build_element_list(std::vector<BasixElementData<T>> elements)
{
  std::vector<std::shared_ptr<const FiniteElement<T>>> _e;
  std::ranges::transform(elements, std::back_inserter(_e),
                         [](auto& data)
                         {
                           auto& [e, bs, symm] = data;
                           return std::make_shared<fem::FiniteElement<T>>(e, bs,
                                                                          symm);
                         });
  return _e;
}

/// Recursively extract sub finite element
template <std::floating_point T>
std::shared_ptr<const FiniteElement<T>>
_extract_sub_element(const FiniteElement<T>& finite_element,
                     std::span<const int> component)
{
  // Check that a sub system has been specified
  if (component.empty())
  {
    throw std::runtime_error("Cannot extract subsystem of finite element. No "
                             "system was specified");
  }

  // Check if there are any sub systems
  if (finite_element.num_sub_elements() == 0)
  {
    throw std::runtime_error("Cannot extract subsystem of finite element. "
                             "There are no subsystems.");
  }

  // Check the number of available sub systems
  if (component[0] >= finite_element.num_sub_elements())
  {
    throw std::runtime_error("Cannot extract subsystem of finite element. "
                             "Requested subsystem out of range.");
  }

  // Get sub system
  auto sub_element = finite_element.sub_elements()[component[0]];
  assert(sub_element);

  // Return sub system if sub sub system should not be extracted
  if (component.size() == 1)
    return sub_element;

  // Otherwise, recursively extract the sub sub system
  std::vector<int> sub_component(component.begin() + 1, component.end());

  return _extract_sub_element(*sub_element, sub_component);
}

int _compute_block_size(std::optional<std::vector<std::size_t>> value_shape,
                        bool symmetric)
{
  if (symmetric and value_shape)
  {
    if (value_shape->size() != 2
        or (value_shape->front() != value_shape->back()))
    {
      throw std::runtime_error(
          "Symmetric elements require square rank-2 value shape.");
    }

    return value_shape->front() * (value_shape->front() + 1) / 2;
  }
  else if (value_shape)
  {
    return std::accumulate(value_shape->begin(), value_shape->end(), 1,
                           std::multiplies{});
  }
  else
    return 1;
}
} // namespace

//-----------------------------------------------------------------------------
template <std::floating_point T>
FiniteElement<T>::FiniteElement(
    const basix::FiniteElement<T>& element,
    const std::optional<std::vector<std::size_t>>& value_shape, bool symmetric)
    : _value_shape(value_shape.value_or(element.value_shape())),
      _bs(_compute_block_size(value_shape, symmetric)),
      _cell_type(mesh::cell_type_from_basix_type(element.cell_type())),
      _space_dim(_bs * element.dim()),
      _reference_value_shape(element.value_shape()),
      _element(std::make_unique<basix::FiniteElement<T>>(element)),
      _symmetric(symmetric),
      _needs_dof_permutations(
          !element.dof_transformations_are_identity()
          and element.dof_transformations_are_permutations()),
      _needs_dof_transformations(
          !element.dof_transformations_are_identity()
          and !element.dof_transformations_are_permutations()),
      _entity_dofs(element.entity_dofs()),
      _entity_closure_dofs(element.entity_closure_dofs())
{
  if (value_shape and !element.value_shape().empty())
  {
    throw std::runtime_error("Blocked finite elements can be constructed only "
                             "from scalar base elements.");
  }

  if (value_shape)
  {
    _sub_elements
        = std::vector<std::shared_ptr<const FiniteElement<geometry_type>>>(
            _bs, std::make_shared<FiniteElement<T>>(element));
  }
  else
    _sub_elements = {};

  std::string family;
  switch (_element->family())
  {
  case basix::element::family::P:
    family = "Lagrange";
    break;
  case basix::element::family::DPC:
    family = "Discontinuous Lagrange";
    break;
  default:
    family = "unknown";
    break;
  }

  _signature = "Basix element " + family + " " + std::to_string(_bs);
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
FiniteElement<T>::FiniteElement(std::vector<BasixElementData<T>> elements)
    : FiniteElement(_build_element_list(std::move(elements)))
{
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
FiniteElement<T>::FiniteElement(
    const std::vector<std::shared_ptr<const FiniteElement<T>>>& elements)
    : _value_shape(std::nullopt), _bs(1),
      _cell_type(elements.front()->cell_type()), _space_dim(-1),
      _sub_elements(elements), _reference_value_shape(std::nullopt),
      _symmetric(false), _needs_dof_permutations(false),
      _needs_dof_transformations(false)
{
  _signature = "Mixed element (";

  const std::vector<std::vector<std::vector<int>>>& ed
      = elements.front()->entity_dofs();
  _entity_dofs.resize(ed.size());

  _entity_closure_dofs.resize(ed.size());
  for (std::size_t i = 0; i < ed.size(); ++i)
  {
    _entity_dofs[i].resize(ed[i].size());
    _entity_closure_dofs[i].resize(ed[i].size());
  }

  int dof_offset = 0;
  for (auto& e : elements)
  {
    _signature += e->signature() + ", ";

    if (e->needs_dof_permutations())
      _needs_dof_permutations = true;
    if (e->needs_dof_transformations())
      _needs_dof_transformations = true;

    const std::size_t sub_bs = e->block_size();
    for (std::size_t i = 0; i < _entity_dofs.size(); ++i)
    {
      for (std::size_t j = 0; j < _entity_dofs[i].size(); ++j)
      {
        std::vector<int> sub_ed = e->entity_dofs()[i][j];
        std::vector<int> sub_ecd = e->entity_closure_dofs()[i][j];
        for (auto k : sub_ed)
        {
          for (std::size_t b = 0; b < sub_bs; ++b)
            _entity_dofs[i][j].push_back(dof_offset + k * sub_bs + b);
        }
        for (auto k : sub_ecd)
        {
          for (std::size_t b = 0; b < sub_bs; ++b)
            _entity_closure_dofs[i][j].push_back(dof_offset + k * sub_bs + b);
        }
      }
    }

    dof_offset += e->space_dimension();
  }

  _space_dim = dof_offset;
  _signature += ")";
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
FiniteElement<T>::FiniteElement(mesh::CellType cell_type,
                                std::span<const geometry_type> points,
                                std::array<std::size_t, 2> pshape,
                                std::vector<std::size_t> value_shape,
                                bool symmetric)
    : _value_shape(value_shape),
      _bs(_compute_block_size(value_shape, symmetric)), _cell_type(cell_type),
      _signature("Quadrature element " + std::to_string(pshape[0]) + " "
                 + std::to_string(_bs)),
      _space_dim(pshape[0] * _bs), _sub_elements({}),
      _reference_value_shape(std::vector<std::size_t>()), _element(nullptr),
      _symmetric(symmetric), _needs_dof_permutations(false),
      _needs_dof_transformations(false),
      _entity_dofs(mesh::cell_dim(cell_type) + 1),
      _entity_closure_dofs(mesh::cell_dim(cell_type) + 1),
      _points(std::vector<T>(points.begin(), points.end()), pshape)
{
  const int tdim = mesh::cell_dim(cell_type);
  for (int d = 0; d <= tdim; ++d)
  {
    int num_entities = mesh::cell_num_entities(cell_type, d);
    _entity_dofs[d].resize(num_entities);
    _entity_closure_dofs[d].resize(num_entities);
  }

  for (std::size_t i = 0; i < pshape[0]; ++i)
  {
    _entity_dofs[tdim][0].push_back(i);
    _entity_closure_dofs[tdim][0].push_back(i);
  }
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
bool FiniteElement<T>::operator==(const FiniteElement& e) const
{
  if (!_element or !e._element)
  {
    throw std::runtime_error(
        "Missing a Basix element. Cannot check for equivalence");
  }

  return *_element == *e._element;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
bool FiniteElement<T>::operator!=(const FiniteElement& e) const
{
  return !(*this == e);
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
mesh::CellType FiniteElement<T>::cell_type() const noexcept
{
  return _cell_type;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::string FiniteElement<T>::signature() const noexcept
{
  return _signature;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
int FiniteElement<T>::space_dimension() const noexcept
{
  return _space_dim;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
int FiniteElement<T>::value_size() const
{
  if (_value_shape)
  {
    return std::accumulate(_value_shape->begin(), _value_shape->end(), 1,
                           std::multiplies{});
  }
  else
    throw std::runtime_error("Element does not have a value_shape.");
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::span<const std::size_t> FiniteElement<T>::value_shape() const
{
  if (_value_shape)
    return *_value_shape;
  else
    throw std::runtime_error("Element does not have a value_shape.");
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
int FiniteElement<T>::reference_value_size() const
{
  if (_reference_value_shape)
  {
    return std::accumulate(_reference_value_shape->begin(),
                           _reference_value_shape->end(), 1, std::multiplies{});
  }
  else
    throw std::runtime_error("Element does not have a reference_value_shape.");
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::span<const std::size_t> FiniteElement<T>::reference_value_shape() const
{
  if (_reference_value_shape)
    return *_reference_value_shape;
  else
    throw std::runtime_error("Element does not have a reference_value_shape.");
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
const std::vector<std::vector<std::vector<int>>>&
FiniteElement<T>::entity_dofs() const noexcept
{
  return _entity_dofs;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
const std::vector<std::vector<std::vector<int>>>&
FiniteElement<T>::entity_closure_dofs() const noexcept
{
  return _entity_closure_dofs;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
bool FiniteElement<T>::symmetric() const
{
  return _symmetric;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
int FiniteElement<T>::block_size() const noexcept
{
  return _bs;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
void FiniteElement<T>::tabulate(std::span<T> values, std::span<const T> X,
                                std::array<std::size_t, 2> shape,
                                int order) const
{
  assert(_element);
  _element->tabulate(order, X, shape, values);
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::pair<std::vector<T>, std::array<std::size_t, 4>>
FiniteElement<T>::tabulate(std::span<const T> X,
                           std::array<std::size_t, 2> shape, int order) const
{
  assert(_element);
  return _element->tabulate(order, X, shape);
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
int FiniteElement<T>::num_sub_elements() const noexcept
{
  return _sub_elements.size();
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
bool FiniteElement<T>::is_mixed() const noexcept
{
  return !_reference_value_shape;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
const std::vector<std::shared_ptr<const FiniteElement<T>>>&
FiniteElement<T>::sub_elements() const noexcept
{
  return _sub_elements;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::shared_ptr<const FiniteElement<T>>
FiniteElement<T>::extract_sub_element(const std::vector<int>& component) const
{
  // Recursively extract sub element
  auto sub_finite_element = _extract_sub_element(*this, component);
  spdlog::debug("Extracted finite element for sub-system: {}",
                sub_finite_element->signature().c_str());
  return sub_finite_element;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
const basix::FiniteElement<T>& FiniteElement<T>::basix_element() const
{
  if (_element)
    return *_element;
  else
  {
    throw std::runtime_error("No Basix element available. "
                             "Maybe this is a mixed element?");
  }
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
basix::maps::type FiniteElement<T>::map_type() const
{
  if (_element)
    return _element->map_type();
  else
  {
    throw std::runtime_error("Cannot element map type - no Basix element "
                             "available. Maybe this is a mixed element?");
  }
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
bool FiniteElement<T>::map_ident() const noexcept
{
  if (!_element
      and _points.second.front()
              > 0) // Quadratute elements must use identity map
  {
    return true;
  }

  assert(_element);
  return _element->map_type() == basix::maps::type::identity;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
bool FiniteElement<T>::interpolation_ident() const noexcept
{
  if (!_element and _points.second[0] > 0)
    return true;
  else
  {
    assert(_element);
    return _element->interpolation_is_identity();
  }
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::pair<std::vector<T>, std::array<std::size_t, 2>>
FiniteElement<T>::interpolation_points() const
{
  if (_points.second[0] > 0)
    return _points;
  else
  {
    if (!_element)
    {
      throw std::runtime_error(
          "Cannot get interpolation points - no Basix element available. Maybe "
          "this is a mixed element?");
    }

    return _element->points();
  }
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::pair<std::vector<T>, std::array<std::size_t, 2>>
FiniteElement<T>::interpolation_operator() const
{
  if (!_element)
  {
    throw std::runtime_error("No underlying element for interpolation. "
                             "Cannot interpolate mixed elements directly.");
  }

  return _element->interpolation_matrix();
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::pair<std::vector<T>, std::array<std::size_t, 2>>
FiniteElement<T>::create_interpolation_operator(const FiniteElement& from) const
{
  assert(_element);
  assert(from._element);
  if (_element->map_type() != from._element->map_type())
  {
    throw std::runtime_error("Interpolation between elements with different "
                             "maps is not supported.");
  }

  if (_bs == 1 or from._bs == 1)
  {
    // If one of the elements has bs=1, Basix can figure out the size of
    // the matrix
    return basix::compute_interpolation_operator<T>(*from._element, *_element);
  }
  else if (_bs > 1 and from._bs == _bs)
  {
    // If bs != 1 for at least one element, then bs0 == bs1 for this
    // case
    const auto [data, dshape]
        = basix::compute_interpolation_operator<T>(*from._element, *_element);
    std::array<std::size_t, 2> shape = {dshape[0] * _bs, dshape[1] * _bs};
    std::vector<T> out(shape[0] * shape[1]);

    // NOTE: Alternatively this operation could be implemented during
    // matvec with the original matrix.
    for (std::size_t i = 0; i < dshape[0]; ++i)
      for (std::size_t j = 0; j < dshape[1]; ++j)
        for (int k = 0; k < _bs; ++k)
          out[shape[1] * (i * _bs + k) + (j * _bs + k)]
              = data[dshape[1] * i + j];

    return {std::move(out), shape};
  }
  else
  {
    throw std::runtime_error(
        "Interpolation for element combination is not supported.");
  }
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
bool FiniteElement<T>::needs_dof_transformations() const noexcept
{
  return _needs_dof_transformations;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
bool FiniteElement<T>::needs_dof_permutations() const noexcept
{
  return _needs_dof_permutations;
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
void FiniteElement<T>::permute(std::span<std::int32_t> doflist,
                               std::uint32_t cell_permutation) const
{
  _element->permute(doflist, cell_permutation);
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
void FiniteElement<T>::permute_inv(std::span<std::int32_t> doflist,
                                   std::uint32_t cell_permutation) const
{
  _element->permute_inv(doflist, cell_permutation);
}
//-----------------------------------------------------------------------------
/// @cond
template <std::floating_point T>
std::function<void(std::span<std::int32_t>, std::uint32_t)>
FiniteElement<T>::dof_permutation_fn(bool inverse, bool scalar_element) const
/// @endcond
{
  if (!needs_dof_permutations())
    return [](std::span<std::int32_t>, std::uint32_t) {};

  if (!_sub_elements.empty())
  {
    if (_bs == 1)
    {
      // Mixed element
      std::vector<std::function<void(std::span<std::int32_t>, std::uint32_t)>>
          sub_element_functions;
      std::vector<int> dims;
      for (std::size_t i = 0; i < _sub_elements.size(); ++i)
      {
        sub_element_functions.push_back(
            _sub_elements[i]->dof_permutation_fn(inverse));
        dims.push_back(_sub_elements[i]->space_dimension());
      }

      return [dims, sub_element_functions](std::span<std::int32_t> doflist,
                                           std::uint32_t cell_permutation)
      {
        std::size_t start = 0;
        for (std::size_t e = 0; e < sub_element_functions.size(); ++e)
        {
          sub_element_functions[e](doflist.subspan(start, dims[e]),
                                   cell_permutation);
          start += dims[e];
        }
      };
    }
    else if (!scalar_element)
    {
      // Blocked element
      std::function<void(std::span<std::int32_t>, std::uint32_t)>
          sub_element_function
          = _sub_elements.front()->dof_permutation_fn(inverse);
      int dim = _sub_elements.front()->space_dimension();
      int bs = _bs;
      return
          [sub_element_function, bs, subdofs = std::vector<std::int32_t>(dim)](
              std::span<std::int32_t> doflist,
              std::uint32_t cell_permutation) mutable
      {
        for (int k = 0; k < bs; ++k)
        {
          for (std::size_t i = 0; i < subdofs.size(); ++i)
            subdofs[i] = doflist[bs * i + k];
          sub_element_function(subdofs, cell_permutation);
          for (std::size_t i = 0; i < subdofs.size(); ++i)
            doflist[bs * i + k] = subdofs[i];
        }
      };
    }
  }

  if (inverse)
  {
    return
        [this](std::span<std::int32_t> doflist, std::uint32_t cell_permutation)
    { permute_inv(doflist, cell_permutation); };
  }
  else
  {
    return
        [this](std::span<std::int32_t> doflist, std::uint32_t cell_permutation)
    { permute(doflist, cell_permutation); };
  }
}
//-----------------------------------------------------------------------------
template class fem::FiniteElement<float>;
template class fem::FiniteElement<double>;
//-----------------------------------------------------------------------------