File: FiniteElement.h

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (885 lines) | stat: -rw-r--r-- 36,417 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
// Copyright (C) 2020-2024 Garth N. Wells and Matthew W. Scroggs
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#pragma once

#include "traits.h"
#include <array>
#include <basix/finite-element.h>
#include <concepts>
#include <cstdint>
#include <dolfinx/mesh/cell_types.h>
#include <functional>
#include <memory>
#include <optional>
#include <span>
#include <utility>
#include <vector>

namespace dolfinx::fem
{
/// DOF transformation type
enum class doftransform : std::uint8_t
{
  standard = 0,          ///< Standard
  transpose = 1,         ///< Transpose
  inverse = 2,           ///< Inverse
  inverse_transpose = 3, ///< Transpose inverse
};

/// @brief Basix element holder
/// @tparam T Scalar type
template <std::floating_point T>
struct BasixElementData
{
  std::reference_wrapper<const basix::FiniteElement<T>>
      element; ///< Finite element.
  std::optional<std::vector<std::size_t>> value_shape
      = std::nullopt;    ///< Value shape. Can only be set for scalar `element`.
  bool symmetry = false; ///< Symmetry. Should only set set for 2nd-order tensor
                         ///< blocked elements.
};

/// Type deduction helper
template <typename U, typename V, typename W>
BasixElementData(U element, V bs, W symmetry)
    -> BasixElementData<typename std::remove_cvref<U>::type::scalar_type>;

/// @brief Model of a finite element.
///
/// Provides the dof layout on a reference element, and various methods
/// for evaluating and transforming the basis.
template <std::floating_point T>
class FiniteElement
{
public:
  /// Geometry type of the Mesh that the FunctionSpace is defined on.
  using geometry_type = T;

  /// @brief Create a finite element from a Basix finite element.
  /// @param[in] element Basix finite element.
  /// @param[in] value_shape Value shape for blocked element, e.g. `{3}`
  /// for a vector in 3D or `{2, 2}` for a rank-2 tensor in 2D. Can only
  /// be set for blocked scalar `element`. For other elements and scalar
  /// elements it should be `std::nullopt`.
  /// @param[in] symmetric Is the element a symmetric tensor? Should
  /// only set for 2nd-order tensor blocked elements.
  FiniteElement(const basix::FiniteElement<geometry_type>& element,
                const std::optional<std::vector<std::size_t>>& value_shape
                = std::nullopt,
                bool symmetric = false);

  /// @brief Create a mixed finite element from Basix finite elements.
  ///
  /// See FiniteElement(const std::vector<std::shared_ptr<const
  /// FiniteElement<geometry_type>>>&) for a discussion of mixed
  /// elements.
  ///
  /// @param[in] elements List of (Basix finite element, block size,
  /// symmetric) tuples, one for each element in the mixed element.
  FiniteElement(std::vector<BasixElementData<geometry_type>> elements);

  /// @brief Create a mixed finite element from a list of finite
  /// elements.
  ///
  /// This constructs a mixed element \f$E_0 \times E_1 \times \ldots
  /// \times E_{n-1}\f$. The *i*th sub-element \f$E_i\f$ can be accessed
  /// by ::extract_sub_element. Functions defined on mixed element
  /// spaces cannot be interpolated into directly. It is necessary to
  /// first extract a sub-Function (view), which can then be
  /// interpolated into.
  ///
  /// A mixed element can be constructed from one element. In this case
  /// the `FiniteElement` behaves like a mixed element and cannot be
  /// interpolated into. The underlying element can be accessed using
  /// ::extract_sub_element.
  ///
  /// @param[in] elements Finite elements to compose the mixed element
  /// from.
  FiniteElement(
      const std::vector<std::shared_ptr<const FiniteElement<geometry_type>>>&
          elements);

  /// @brief Create a quadrature element.
  /// @param[in] cell_type Cell type.
  /// @param[in] points Quadrature points.
  /// @param[in] pshape Shape of `points` array.
  /// @param[in] value_shape Value shape for the element.
  /// @param[in] symmetric Is the element a symmetric tensor?
  FiniteElement(mesh::CellType cell_type, std::span<const geometry_type> points,
                std::array<std::size_t, 2> pshape,
                std::vector<std::size_t> value_shape = {},
                bool symmetric = false);

  /// Copy constructor
  FiniteElement(const FiniteElement& element) = delete;

  /// Move constructor
  FiniteElement(FiniteElement&& element) = default;

  /// Destructor
  ~FiniteElement() = default;

  /// Copy assignment
  FiniteElement& operator=(const FiniteElement& element) = delete;

  /// Move assignment
  FiniteElement& operator=(FiniteElement&& element) = default;

  /// @brief Check if two elements are equivalent.
  /// @return True is the two elements are the same.
  /// @note Equality can be checked only for non-mixed elements. For a
  /// mixed element, this function will throw an exception.
  bool operator==(const FiniteElement& e) const;

  /// @brief Check if two elements are not equivalent.
  /// @return True is the two elements are not the same.
  /// @note Equality can be checked only for non-mixed elements. For a
  /// mixed element, this function will raise an exception.
  bool operator!=(const FiniteElement& e) const;

  /// @brief Cell shape that the element is defined on.
  mesh::CellType cell_type() const noexcept;

  /// @brief String identifying the finite element.
  /// @return Element signature
  /// @warning The function is provided for convenience, but it should
  /// not be relied upon for determining the element type. Use other
  /// functions, commonly returning enums, to determine element
  /// properties.
  std::string signature() const noexcept;

  /// @brief Dimension of the finite element function space (the number
  /// of degrees-of-freedom for the element).
  ///
  /// For 'blocked' elements, this function returns the dimension of the
  /// full element rather than the dimension of the base element.
  ///
  /// @return Dimension of the finite element space.
  int space_dimension() const noexcept;

  /// @brief Block size of the finite element function space.
  ///
  /// For non-blocked elements, this is always 1. For blocked elements,
  /// this is the number of DOFs collocated at each DOF point. For
  /// blocked elements the block size is equal to the value size, except
  /// for symmetric rank-2 tensor blocked elements. For a symmetric
  /// rank-2 tensor blocked element the block size is 3 in 2D and 6 in
  /// 3D.
  ///
  /// @return Block size of the finite element space.
  int block_size() const noexcept;

  /// @brief Value size of the finite element field.
  ///
  /// The value size is the number of components in the finite element
  /// field. It is the product of the value shape, e.g. is is 1 for a
  /// scalar function, 2 for a 2D vector, 9 for a second-order tensor in
  /// 3D, etc. For blocked elements, this function returns the value
  /// size for the full 'blocked' element.
  ///
  /// @note The return value of this function is inconsistent with
  /// value_shape() for rank-2 'symmetric' elements. Due to issues
  /// elsewhere in the code base, rank-2 symmetric fields have value
  /// shape `{3}` (2D) or `{6}` rather than `{2, 2}` and `{3, 3}`,
  /// respectively. For symmetric rank-2 tensors this function returns 4
  /// for 2D cases and 9 for 3D cases. This inconsistency will be fixed
  /// in the future.
  ///
  /// @throws Exception is thrown for a mixed element as mixed elements
  /// do not have a value shape.
  /// @return The value size.
  int value_size() const;

  /// @brief Value shape of the finite element field.
  ///
  /// The value shape describes the shape of the finite element field,
  /// e.g. `{}` for a scalar, `{2}` for a vector in 2D, `{3, 3}` for a
  /// rank-2 tensor in 3D, etc.
  ///
  /// @throws Exception is thrown for a mixed element as mixed elements
  /// do not have a value shape.
  /// @return The value shape.
  std::span<const std::size_t> value_shape() const;

  /// @brief Value size of the base (non-blocked) finite element field.
  ///
  /// The reference value size is the product of the reference value
  /// shape, e.g. it is  1 for a scalar element, 2 for a 2D
  /// (non-blocked) vector, 9 for a (non-blocked) second-order tensor in
  /// 3D, etc.
  ///
  /// For blocked elements, this function returns the value shape for
  /// the 'base' element from which the blocked element is composed. For
  /// other elements, the return value is the same as
  /// FiniteElement::value_shape.
  ///
  /// @throws Exception is thrown for a mixed element as mixed elements
  /// do not have a value shape.
  /// @return The value size.
  int reference_value_size() const;

  /// @brief Value shape of the base (non-blocked) finite element field.
  ///
  /// For non-blocked elements, this function returns the same as
  /// FiniteElement::value_shape. For blocked and quadrature elements
  /// the returned shape will be `{}`.
  ///
  /// Mixed elements do not have a reference value shape.
  ///
  /// @throws Exception is thrown for a mixed element as mixed elements
  /// do not have a value shape.
  /// @return The value shape.
  std::span<const std::size_t> reference_value_shape() const;

  /// @brief Local DOFs associated with each sub-entity of the cell.
  const std::vector<std::vector<std::vector<int>>>&
  entity_dofs() const noexcept;

  /// @brief Local DOFs associated with the closure of each sub-entity
  /// of the cell.
  const std::vector<std::vector<std::vector<int>>>&
  entity_closure_dofs() const noexcept;

  /// Does the element represent a symmetric 2-tensor?
  bool symmetric() const;

  /// @brief Evaluate derivatives of the basis functions up to given order
  /// at points in the reference cell.
  ///
  /// @param[in,out] values Array that will be filled with the tabulated
  /// basis values. Must have shape `(num_derivatives, num_points,
  /// num_dofs, reference_value_size)` (row-major storage)
  /// @param[in] X The reference coordinates at which to evaluate the
  /// basis functions. Shape is `(num_points, topological dimension)`
  /// (row-major storage).
  /// @param[in] shape Shape of `X`.
  /// @param[in] order Number of derivatives (up to and including
  /// this order) to tabulate for.
  void tabulate(std::span<geometry_type> values,
                std::span<const geometry_type> X,
                std::array<std::size_t, 2> shape, int order) const;

  /// @brief Evaluate all derivatives of the basis functions up to given
  /// order at given points in reference cell.
  ///
  /// @param[in] X The reference coordinates at which to evaluate the
  /// basis functions. Shape is `(num_points, topological dimension)`
  /// (row-major storage).
  /// @param[in] shape Shape of `X`.
  /// @param[in] order Number of derivatives (up to and including this
  /// order) to tabulate for.
  /// @return Basis function values and array shape (row-major storage).
  std::pair<std::vector<geometry_type>, std::array<std::size_t, 4>>
  tabulate(std::span<const geometry_type> X, std::array<std::size_t, 2> shape,
           int order) const;

  /// @brief Number of sub elements (for a mixed or blocked element).
  /// @return Number of sub elements.
  int num_sub_elements() const noexcept;

  /// @brief Check if element is a mixed element.
  ///
  /// A mixed element is composed of two or more elements of different
  /// types. A blocked element, e.g. a Lagrange element with block size
  /// >= 1 is not considered mixed.
  ///
  /// @return True if element is mixed.
  bool is_mixed() const noexcept;

  /// Get subelements (if any)
  const std::vector<std::shared_ptr<const FiniteElement<geometry_type>>>&
  sub_elements() const noexcept;

  /// Extract sub finite element for component
  std::shared_ptr<const FiniteElement<geometry_type>>
  extract_sub_element(const std::vector<int>& component) const;

  /// @brief Return underlying Basix element (if it exists).
  /// @throws Throws a std::runtime_error is there no Basix element.
  const basix::FiniteElement<geometry_type>& basix_element() const;

  /// @brief Get the map type used by the element
  basix::maps::type map_type() const;

  /// Check if interpolation into the finite element space is an
  /// identity operation given the evaluation on an expression at
  /// specific points, i.e. the degree-of-freedom are equal to point
  /// evaluations. The function will return `true` for Lagrange
  /// elements.
  /// @return True if interpolation is an identity operation
  bool interpolation_ident() const noexcept;

  /// Check if the push forward/pull back map from the values on
  /// reference to the values on a physical cell for this element is the
  /// identity map.
  /// @return True if the map is the identity
  bool map_ident() const noexcept;

  /// @brief Points on the reference cell at which an expression needs
  /// to be evaluated in order to interpolate the expression in the
  /// finite element space.
  ///
  /// For Lagrange elements the points will just be the nodal positions.
  /// For other elements the points will typically be the quadrature
  /// points used to evaluate moment degrees of freedom.
  /// @return Interpolation point coordinates on the reference cell,
  /// returning the (0) coordinates data (row-major) storage and (1) the
  /// shape `(num_points, tdim)`.
  std::pair<std::vector<geometry_type>, std::array<std::size_t, 2>>
  interpolation_points() const;

  /// Interpolation operator (matrix) `Pi` that maps a function
  /// evaluated at the points provided by
  /// FiniteElement::interpolation_points to the element degrees of
  /// freedom, i.e. dofs = Pi f_x. See the Basix documentation for
  /// basix::FiniteElement::interpolation_matrix for how the data in
  /// `f_x` should be ordered.
  /// @return The interpolation operator `Pi`, returning the data for
  /// `Pi` (row-major storage) and the shape `(num_dofs, num_points *
  /// value_size)`
  std::pair<std::vector<geometry_type>, std::array<std::size_t, 2>>
  interpolation_operator() const;

  /// @brief Create a matrix that maps degrees of freedom from one
  /// element to this element (interpolation).
  ///
  /// @param[in] from The element to interpolate from.
  /// @return Matrix operator that maps the `from` degrees-of-freedom to
  /// the degrees-of-freedom of this element. The (0) matrix data
  /// (row-major storage) and (1) the shape (num_dofs of `this` element,
  /// num_dofs of `from`) are returned.
  ///
  /// @pre The two elements must use the same mapping between the
  /// reference and physical cells.
  /// @note Does not support mixed elements.
  std::pair<std::vector<geometry_type>, std::array<std::size_t, 2>>
  create_interpolation_operator(const FiniteElement& from) const;

  /// @brief Check if DOF transformations are needed for this element.
  ///
  /// DOF transformations will be needed for elements which might not be
  /// continuous when two neighbouring cells disagree on the orientation
  /// of a shared sub-entity, and when this cannot be corrected for by
  /// permuting the DOF numbering in the dofmap.
  ///
  /// For example, Raviart-Thomas elements will need DOF
  /// transformations, as the neighbouring cells may disagree on the
  /// orientation of a basis function, and this orientation cannot be
  /// corrected for by permuting the DOF numbers on each cell.
  ///
  /// @return True if DOF transformations are required.
  bool needs_dof_transformations() const noexcept;

  /// @brief Check if DOF permutations are needed for this element.
  ///
  /// DOF permutations will be needed for elements which might not be
  /// continuous when two neighbouring cells disagree on the orientation
  /// of a shared subentity, and when this can be corrected for by
  /// permuting the DOF numbering in the dofmap.
  ///
  /// For example, higher order Lagrange elements will need DOF
  /// permutations, as the arrangement of DOFs on a shared sub-entity
  /// may be different from the point of view of neighbouring cells, and
  /// this can be corrected for by permuting the DOF numbers on each
  /// cell.
  ///
  /// @return True if DOF transformations are required.
  bool needs_dof_permutations() const noexcept;

  /// @brief Return a function that applies a DOF transformation
  /// operator to some data (see T_apply()).
  ///
  /// The transformation is applied from the left-hand side, i.e.
  /// \f[ u \leftarrow T u. \f]
  ///
  /// If the transformation for the (sub)element is a permutation only,
  /// the returned function will do change the ordering for the
  /// (sub)element as it is assumed that permutations are incorporated
  /// into the degree-of-freedom map.
  ///
  /// See the documentation for T_apply() for a description of the
  /// transformation for a single element type. This function generates
  /// a function that can apply the transformation to a mixed element.
  ///
  /// The signature of the returned function has four arguments:
  /// - [in,out] data The data to be transformed. This data is flattened
  ///   with row-major layout, shape=(num_dofs, block_size)
  /// - [in] cell_info Permutation data for the cell. The size of this
  ///   is num_cells. For elements where no transformations are required,
  ///   an empty span can be passed in.
  /// - [in] cell The cell number.
  /// - [in] n The block_size of the input data.
  ///
  /// @param[in] ttype The transformation type. Typical usage is:
  /// - doftransform::standard Transforms *basis function data* from the
  /// reference element to the conforming 'physical' element, e.g.
  /// \f$\phi = T \tilde{\phi}\f$.
  /// - doftransform::transpose Transforms *degree-of-freedom data* from
  /// the conforming (physical) ordering to the reference ordering, e.g.
  /// \f$\tilde{u} = T^{T} u\f$.
  /// - doftransform::inverse: Transforms *basis function data* from the
  /// the conforming (physical) ordering to the reference ordering, e.g.
  /// \f$\tilde{\phi} = T^{-1} \phi\f$.
  /// - doftransform::inverse_transpose: Transforms *degree-of-freedom
  /// data* from the reference element to the conforming (physical)
  /// ordering, e.g. \f$u = T^{-t} \tilde{u}\f$.
  /// @param[in] scalar_element Indicates whether the scalar
  /// transformations should be returned for a vector element.
  template <typename U>
  std::function<void(std::span<U>, std::span<const std::uint32_t>, std::int32_t,
                     int)>
  dof_transformation_fn(doftransform ttype, bool scalar_element = false) const
  {
    if (!needs_dof_transformations())
    {
      // If no permutation needed, return function that does nothing
      return [](std::span<U>, std::span<const std::uint32_t>, std::int32_t, int)
      {
        // Do nothing
      };
    }

    if (!_sub_elements.empty())
    {
      if (!_reference_value_shape) // Mixed element
      {
        std::vector<std::function<void(
            std::span<U>, std::span<const std::uint32_t>, std::int32_t, int)>>
            sub_element_fns;
        std::vector<int> dims;
        for (std::size_t i = 0; i < _sub_elements.size(); ++i)
        {
          sub_element_fns.push_back(
              _sub_elements[i]->template dof_transformation_fn<U>(ttype));
          dims.push_back(_sub_elements[i]->space_dimension());
        }

        return [dims, sub_element_fns](std::span<U> data,
                                       std::span<const std::uint32_t> cell_info,
                                       std::int32_t cell, int block_size)
        {
          std::size_t offset = 0;
          for (std::size_t e = 0; e < sub_element_fns.size(); ++e)
          {
            const std::size_t width = dims[e] * block_size;
            sub_element_fns[e](data.subspan(offset, width), cell_info, cell,
                               block_size);
            offset += width;
          }
        };
      }
      else if (!scalar_element)
      {
        // Blocked element
        std::function<void(std::span<U>, std::span<const std::uint32_t>,
                           std::int32_t, int)>
            sub_fn
            = _sub_elements.front()->template dof_transformation_fn<U>(ttype);
        const int ebs = _bs;
        return [ebs, sub_fn](std::span<U> data,
                             std::span<const std::uint32_t> cell_info,
                             std::int32_t cell, int data_block_size)
        { sub_fn(data, cell_info, cell, ebs * data_block_size); };
      }
    }

    switch (ttype)
    {
    case doftransform::inverse_transpose:
      return [this](std::span<U> data, std::span<const std::uint32_t> cell_info,
                    std::int32_t cell, int block_size)
      { Tt_inv_apply(data, cell_info[cell], block_size); };
    case doftransform::transpose:
      return [this](std::span<U> data, std::span<const std::uint32_t> cell_info,
                    std::int32_t cell, int block_size)
      { Tt_apply(data, cell_info[cell], block_size); };
    case doftransform::inverse:
      return [this](std::span<U> data, std::span<const std::uint32_t> cell_info,
                    std::int32_t cell, int block_size)
      { Tinv_apply(data, cell_info[cell], block_size); };
    case doftransform::standard:
      return [this](std::span<U> data, std::span<const std::uint32_t> cell_info,
                    std::int32_t cell, int block_size)
      { T_apply(data, cell_info[cell], block_size); };
    default:
      throw std::runtime_error("Unknown transformation type");
    }
  }

  /// @brief Return a function that applies DOF transformation to some
  /// transposed data (see T_apply_right()).
  ///
  /// The transformation is applied from the right-hand side, i.e.
  /// \f[ u^{t} \leftarrow u^{t} T. \f]
  ///
  /// If the transformation for the (sub)element is a permutation only,
  /// the returned function will do change the ordering for the
  /// (sub)element as it is assumed that permutations are incorporated
  /// into the degree-of-freedom map.
  ///
  /// The signature of the returned function has four arguments:
  /// - [in,out] data The data to be transformed. This data is flattened
  ///   with row-major layout, shape=(num_dofs, block_size)
  /// - [in] cell_info Permutation data for the cell. The size of this
  ///   is num_cells. For elements where no transformations are required,
  ///   an empty span can be passed in.
  /// - [in] cell The cell number
  /// - [in] block_size The block_size of the input data
  ///
  /// @param[in] ttype Transformation type. See dof_transformation_fn().
  /// @param[in] scalar_element Indicate if the scalar transformations
  /// should be returned for a vector element.
  template <typename U>
  std::function<void(std::span<U>, std::span<const std::uint32_t>, std::int32_t,
                     int)>
  dof_transformation_right_fn(doftransform ttype,
                              bool scalar_element = false) const
  {
    if (!needs_dof_transformations())
    {
      // If no permutation needed, return function that does nothing
      return [](std::span<U>, std::span<const std::uint32_t>, std::int32_t, int)
      {
        // Do nothing
      };
    }
    else if (!_sub_elements.empty())
    {
      if (!_reference_value_shape) // Mixed element
      {
        std::vector<std::function<void(
            std::span<U>, std::span<const std::uint32_t>, std::int32_t, int)>>
            sub_element_fns;
        for (std::size_t i = 0; i < _sub_elements.size(); ++i)
        {
          sub_element_fns.push_back(
              _sub_elements[i]->template dof_transformation_right_fn<U>(ttype));
        }

        return [this, sub_element_fns](std::span<U> data,
                                       std::span<const std::uint32_t> cell_info,
                                       std::int32_t cell, int block_size)
        {
          std::size_t offset = 0;
          for (std::size_t e = 0; e < sub_element_fns.size(); ++e)
          {
            sub_element_fns[e](data.subspan(offset, data.size() - offset),
                               cell_info, cell, block_size);
            offset += _sub_elements[e]->space_dimension();
          }
        };
      }
      else if (!scalar_element)
      {
        // Blocked element
        // The transformation from the left can be used here as blocked
        // elements use xyzxyzxyz ordering, and so applying the DOF
        // transformation from the right is equivalent to applying the DOF
        // transformation from the left to data using xxxyyyzzz ordering
        std::function<void(std::span<U>, std::span<const std::uint32_t>,
                           std::int32_t, int)>
            sub_fn
            = _sub_elements.front()->template dof_transformation_fn<U>(ttype);
        return [this, sub_fn](std::span<U> data,
                              std::span<const std::uint32_t> cell_info,
                              std::int32_t cell, int data_block_size)
        {
          const int ebs = block_size();
          const std::size_t dof_count = data.size() / data_block_size;
          for (int block = 0; block < data_block_size; ++block)
          {
            sub_fn(data.subspan(block * dof_count, dof_count), cell_info, cell,
                   ebs);
          }
        };
      }
    }

    switch (ttype)
    {
    case doftransform::inverse_transpose:
      return [this](std::span<U> data, std::span<const std::uint32_t> cell_info,
                    std::int32_t cell, int n)
      { Tt_inv_apply_right(data, cell_info[cell], n); };
    case doftransform::transpose:
      return [this](std::span<U> data, std::span<const std::uint32_t> cell_info,
                    std::int32_t cell, int n)
      { Tt_apply_right(data, cell_info[cell], n); };
    case doftransform::inverse:
      return [this](std::span<U> data, std::span<const std::uint32_t> cell_info,
                    std::int32_t cell, int n)
      { Tinv_apply_right(data, cell_info[cell], n); };
    case doftransform::standard:
      return [this](std::span<U> data, std::span<const std::uint32_t> cell_info,
                    std::int32_t cell, int n)
      { T_apply_right(data, cell_info[cell], n); };
    default:
      throw std::runtime_error("Unknown transformation type");
    }
  }

  /// @brief Transform basis functions from the reference element
  /// ordering and orientation to the globally consistent physical
  /// element ordering and orientation.
  ///
  /// Consider that the value of a finite element function \f$f_{h}\f$
  /// at a point is given by
  /// \f[
  ///  f_{h} = \phi^{T} c,
  /// \f]
  /// where \f$f_{h}\f$ has shape \f$r \times 1\f$, \f$\phi\f$ has shape
  /// \f$d \times r\f$ and holds the finite element basis functions,
  /// and \f$c\f$ has shape \f$d \times 1\f$ and holds the
  /// degrees-of-freedom. The basis functions and
  /// degree-of-freedom are with respect to the physical element
  /// orientation. If the degrees-of-freedom on the physical element
  /// orientation are given by
  /// \f[
  /// \phi = T \tilde{\phi},
  /// \f]
  /// where \f$T\f$ is a \f$d \times d\f$ matrix, it follows from
  /// \f$f_{h} = \phi^{T} c = \tilde{\phi}^{T} T^{T} c\f$ that
  /// \f[
  ///  \tilde{c} = T^{T} c.
  /// \f]
  ///
  /// This function applies \f$T\f$ to data. The transformation is
  /// performed in-place. The operator \f$T\f$ is orthogonal for many
  /// elements, but not all.
  ///
  /// This function calls the corresponding Basix function.
  ///
  /// @param[in,out] data Data to transform. The shape is `(m, n)`,
  /// where `m` is the number of dgerees-of-freedom and the storage is
  /// row-major.
  /// @param[in] cell_permutation Permutation data for the cell
  /// @param[in] n Number of columns in `data`.
  template <typename U>
  void T_apply(std::span<U> data, std::uint32_t cell_permutation, int n) const
  {
    assert(_element);
    _element->T_apply(data, n, cell_permutation);
  }

  /// @brief Apply the inverse transpose of the operator applied by
  /// T_apply().
  ///
  /// The transformation \f[ v = T^{-T} u \f] is performed in-place.
  ///
  /// @param[in,out] data The data to be transformed. This data is
  /// flattened with row-major layout, `shape=(num_dofs, block_size)`.
  /// @param[in] cell_permutation Permutation data for the cell.
  /// @param[in] n Block_size of the input data.
  template <typename U>
  void Tt_inv_apply(std::span<U> data, std::uint32_t cell_permutation,
                    int n) const
  {
    assert(_element);
    _element->Tt_inv_apply(data, n, cell_permutation);
  }

  /// @brief Apply the transpose of the operator applied by T_apply().
  ///
  /// The transformation \f[ u \leftarrow  T^{T} u \f] is performed
  /// in-place.
  ///
  /// @param[in,out] data The data to be transformed. This data is
  /// flattened with row-major layout, `shape=(num_dofs, block_size)`.
  /// @param[in] cell_permutation Permutation data for the cell.
  /// @param[in] n The block size of the input data.
  template <typename U>
  void Tt_apply(std::span<U> data, std::uint32_t cell_permutation, int n) const
  {
    assert(_element);
    _element->Tt_apply(data, n, cell_permutation);
  }

  /// @brief Apply the inverse of the operator applied by T_apply().
  ///
  /// The transformation \f[ v = T^{-1} u \f] is performed in-place.
  ///
  /// @param[in,out] data The data to be transformed. This data is
  /// flattened with row-major layout, `shape=(num_dofs, block_size)`.
  /// @param[in] cell_permutation Permutation data for the cell.
  /// @param[in] n Block size of the input data.
  template <typename U>
  void Tinv_apply(std::span<U> data, std::uint32_t cell_permutation,
                  int n) const
  {
    assert(_element);
    _element->Tinv_apply(data, n, cell_permutation);
  }

  /// @brief Right(post)-apply the operator applied by T_apply().
  ///
  /// Computes \f[ v^{T} = u^{T} T \f] in-place.
  ///
  /// @param[in,out] data The data to be transformed. This data is
  /// flattened with row-major layout, `shape=(num_dofs, block_size)`.
  /// @param[in] cell_permutation Permutation data for the cell
  /// @param[in] n Block size of the input data
  template <typename U>
  void T_apply_right(std::span<U> data, std::uint32_t cell_permutation,
                     int n) const
  {
    assert(_element);
    _element->T_apply_right(data, n, cell_permutation);
  }

  /// @brief Right(post)-apply the inverse of the operator applied by
  /// T_apply().
  ///
  /// Computes \f[ v^{T} = u^{T} T^{-1} \f] in-place.
  ///
  /// @param[in,out] data Data to be transformed. This data is flattened
  /// with row-major layout, `shape=(num_dofs, block_size)`.
  /// @param[in] cell_permutation Permutation data for the cell
  /// @param[in] n Block size of the input data
  template <typename U>
  void Tinv_apply_right(std::span<U> data, std::uint32_t cell_permutation,
                        int n) const
  {
    assert(_element);
    _element->Tinv_apply_right(data, n, cell_permutation);
  }

  /// @brief Right(post)-apply the transpose of the operator applied by
  /// T_apply().
  ///
  /// Computes \f[ v^{T} = u^{T} T^{T} \f] in-place.
  ///
  /// @param[in,out] data Data to be transformed. The data is flattened
  /// with row-major layout, `shape=(num_dofs, block_size)`.
  /// @param[in] cell_permutation Permutation data for the cell
  /// @param[in] n Block size of the input data.
  template <typename U>
  void Tt_apply_right(std::span<U> data, std::uint32_t cell_permutation,
                      int n) const
  {
    assert(_element);
    _element->Tt_apply_right(data, n, cell_permutation);
  }

  /// @brief Right(post)-apply the transpose inverse of the operator
  /// applied by T_apply().
  ///
  /// Computes \f[ v^{T} = u^{T} T^{-T} \f] in-place.
  ///
  /// @param[in,out] data Data to be transformed. This data is flattened
  /// with row-major layout, `shape=(num_dofs, block_size)`.
  /// @param[in] cell_permutation Permutation data for the cell.
  /// @param[in] n Block size of the input data.
  template <typename U>
  void Tt_inv_apply_right(std::span<U> data, std::uint32_t cell_permutation,
                          int n) const
  {
    assert(_element);
    _element->Tt_inv_apply_right(data, n, cell_permutation);
  }

  /// @brief Permute indices associated with degree-of-freedoms on the
  /// reference element ordering to the globally consistent physical
  /// element degree-of-freedom ordering.
  ///
  /// Given an array \f$\tilde{d}\f$ that holds an integer associated
  /// with each degree-of-freedom and following the reference element
  /// degree-of-freedom ordering, this function computes
  ///   \f[ d = P \tilde{d},\f]
  /// where \f$P\f$ is a permutation matrix and \f$d\f$ holds the
  /// integers in \f$\tilde{d}\f$ but permuted to follow the globally
  /// consistent physical element degree-of-freedom ordering. The
  /// permutation is computed in-place.
  ///
  /// @param[in,out] doflist Indices associated with the
  /// degrees-of-freedom. Size=`num_dofs`.
  /// @param[in] cell_permutation Permutation data for the cell.
  void permute(std::span<std::int32_t> doflist,
               std::uint32_t cell_permutation) const;

  /// @brief Perform the inverse of the operation applied by permute().
  ///
  /// Given an array \f$d\f$ that holds an integer associated with each
  /// degree-of-freedom and following the globally consistent physical
  /// element degree-of-freedom ordering, this function computes
  /// \f[
  ///  \tilde{d} = P^{T} d,
  /// \f]
  /// where \f$P^{T}\f$ is a permutation matrix and \f$\tilde{d}\f$
  /// holds the integers in \f$d\f$ but permuted to follow the reference
  /// element degree-of-freedom ordering. The permutation is computed
  /// in-place.
  ///
  /// @param[in,out] doflist Indices associated with the
  /// degrees-of-freedom. Size=`num_dofs`.
  /// @param[in] cell_permutation Permutation data for the cell.
  void permute_inv(std::span<std::int32_t> doflist,
                   std::uint32_t cell_permutation) const;

  /// @brief Return a function that applies a degree-of-freedom
  /// permutation to some data.
  ///
  /// The returned function can apply permute() to mixed-elements.
  ///
  /// The signature of the returned function has three arguments:
  /// - [in,out] doflist The numbers of the DOFs, a span of length num_dofs
  /// - [in] cell_permutation Permutation data for the cell
  /// - [in] block_size The block_size of the input data
  ///
  /// @param[in] inverse Indicates if the inverse transformation should
  /// be returned.
  /// @param[in] scalar_element Indicates is the scalar transformations
  /// should be returned for a vector element.
  std::function<void(std::span<std::int32_t>, std::uint32_t)>
  dof_permutation_fn(bool inverse = false, bool scalar_element = false) const;

private:
  // Value shape. For blocked elements this is larger than
  // _reference_value_shape. For non-blocked 'primal' elements it is
  // equal to _reference_value_shape. For mixed elements, it is
  // std::nullopt.
  std::optional<std::vector<std::size_t>> _value_shape;

  // Block size for BlockedElements. This gives the number of DOFs
  // co-located at each dof 'point'.
  int _bs;

  // Element cell shape
  mesh::CellType _cell_type;

  // Element signature
  std::string _signature;

  // Dimension of the finite element space (accounting for any blocking)
  int _space_dim;

  // List of sub-elements (if any)
  std::vector<std::shared_ptr<const FiniteElement<geometry_type>>>
      _sub_elements;

  // Value space shape, e.g. {} for a scalar, {3, 3} for a tensor in 3D.
  // For a mixed element it is std::nullopt.
  std::optional<std::vector<std::size_t>> _reference_value_shape;

  // Basix Element (nullptr for mixed elements)
  std::unique_ptr<basix::FiniteElement<geometry_type>> _element;

  // Indicate whether this element represents a symmetric 2-tensor
  bool _symmetric;

  // Indicate whether the element needs permutations or transformations
  bool _needs_dof_permutations;
  bool _needs_dof_transformations;

  std::vector<std::vector<std::vector<int>>> _entity_dofs;
  std::vector<std::vector<std::vector<int>>> _entity_closure_dofs;

  // Quadrature points of a quadrature element (0 dimensional array for
  // all elements except quadrature elements)
  std::pair<std::vector<geometry_type>, std::array<std::size_t, 2>> _points;
};

} // namespace dolfinx::fem