1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
|
// Copyright (C) 2019-2025 Garth N. Wells, Chris Richardson, Joseph P. Dean and
// Jørgen S. Dokken
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "FunctionSpace.h"
#include "traits.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <concepts>
#include <cstdint>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/types.h>
#include <dolfinx/mesh/EntityMap.h>
#include <dolfinx/mesh/Mesh.h>
#include <functional>
#include <map>
#include <memory>
#include <optional>
#include <ranges>
#include <span>
#include <tuple>
#include <utility>
#include <vector>
namespace dolfinx::fem
{
template <dolfinx::scalar T>
class Constant;
template <dolfinx::scalar T, std::floating_point U>
class Function;
/// @brief Type of integral
enum class IntegralType : std::int8_t
{
cell = 0, ///< Cell
exterior_facet = 1, ///< Facet
interior_facet = 2, ///< Interior facet
vertex = 3, ///< Vertex
ridge = 4 ///< Ridge
};
/// @brief Represents integral data, containing the kernel, and a list
/// of entities to integrate over and the indicies of the coefficient
/// functions (relative to the Form) active for this integral.
template <dolfinx::scalar T, std::floating_point U = scalar_value_t<T>>
struct integral_data
{
/// @brief Create a structure to hold integral data.
/// @param[in] kernel Integration kernel function.
/// @param[in] entities Indices of entities to integrate over.
/// @param[in] coeffs Indices of the coefficients that are present
/// (active) in `kernel`.
template <typename K, typename V, typename W>
requires std::is_convertible_v<
std::remove_cvref_t<K>,
std::function<void(T*, const T*, const T*, const U*,
const int*, const uint8_t*, void*)>>
and std::is_convertible_v<std::remove_cvref_t<V>,
std::vector<std::int32_t>>
and std::is_convertible_v<std::remove_cvref_t<W>,
std::vector<int>>
integral_data(K&& kernel, V&& entities, W&& coeffs)
: kernel(std::forward<K>(kernel)), entities(std::forward<V>(entities)),
coeffs(std::forward<W>(coeffs))
{
}
/// @brief The integration kernel.
std::function<void(T*, const T*, const T*, const U*, const int*,
const uint8_t*, void*)>
kernel;
/// @brief The entities to integrate over for this integral. These are
/// the entities in 'full' mesh.
std::vector<std::int32_t> entities;
/// @brief Indices of coefficients (from the form) that are in this
/// integral.
std::vector<int> coeffs;
};
/// @brief A representation of finite element variational forms.
///
/// A note on the order of trial and test spaces: FEniCS numbers
/// argument spaces starting with the leading dimension of the
/// corresponding tensor (matrix). In other words, the test space is
/// numbered 0 and the trial space is numbered 1. However, in order to
/// have a notation that agrees with most existing finite element
/// literature, in particular
///
/// \f[ a = a(u, v) \f]
///
/// the spaces are numbered from right to left
///
/// \f[ a: V_1 \times V_0 \rightarrow \mathbb{R} \f]
///
/// This is reflected in the ordering of the spaces that should be
/// supplied to generated subclasses. In particular, when a bilinear
/// form is initialized, it should be initialized as `a(V_1, V_0) =
/// ...`, where `V_1` is the trial space and `V_0` is the test space.
/// However, when a form is initialized by a list of argument spaces
/// (the variable `function_spaces` in the constructors below), the list
/// of spaces should start with space number 0 (the test space) and then
/// space number 1 (the trial space).
///
/// @tparam T Scalar type in the form.
/// @tparam U Float (real) type used for the finite element and
/// geometry.
/// @tparam Kern Element kernel.
template <dolfinx::scalar T, std::floating_point U = dolfinx::scalar_value_t<T>>
class Form
{
public:
/// Scalar type
using scalar_type = T;
/// Geometry type
using geometry_type = U;
/// @brief Create a finite element form.
///
/// @note User applications will normally call a factory function
/// rather using this interface directly.
///
/// @param[in] V Function spaces for the form arguments, e.g. test and
/// trial function spaces.
/// @param[in] integrals Integrals in the form, where
/// `integrals[IntegralType, i, kernel index]` returns the `i`th integral
/// (`integral_data`) of type `IntegralType` with kernel index `kernel index`.
/// The `i`-index refers to the position of a kernel when flattened by
/// sorted subdomain ids, sorted by subdomain ids. The subdomain ids can
/// contain duplicate entries referring to different kernels over the same
/// subdomain.
/// @param[in] coefficients Coefficients in the form.
/// @param[in] constants Constants in the form.
/// @param[in] mesh Mesh of the domain to integrate over (the
/// 'integration domain').
/// @param[in] needs_facet_permutations Set to `true` is any of the
/// integration kernels require cell permutation data.
/// @param[in] entity_maps If any trial functions, test functions, or
/// coefficients in the form are not defined on `mesh` (the
/// 'integration domain'),`entity_maps` must be supplied. For each key
/// (a mesh, which is different to `mesh`) an array map must be
/// provided which relates the entities in `mesh` to the entities in
/// the key mesh e.g. for a key/value pair `(mesh0, emap)` in
/// `entity_maps`, `emap[i]` is the entity in `mesh0` corresponding to
/// entity `i` in `mesh`.
///
/// @note For the single domain case, pass an empty `entity_maps`.
template <typename X>
requires std::is_convertible_v<
std::remove_cvref_t<X>,
std::map<std::tuple<IntegralType, int, int>,
integral_data<scalar_type, geometry_type>>>
Form(
const std::vector<std::shared_ptr<const FunctionSpace<geometry_type>>>& V,
X&& integrals, std::shared_ptr<const mesh::Mesh<geometry_type>> mesh,
const std::vector<
std::shared_ptr<const Function<scalar_type, geometry_type>>>&
coefficients,
const std::vector<std::shared_ptr<const Constant<scalar_type>>>&
constants,
bool needs_facet_permutations,
const std::vector<std::reference_wrapper<const mesh::EntityMap>>&
entity_maps)
: _function_spaces(V), _integrals(std::forward<X>(integrals)),
_mesh(mesh), _coefficients(coefficients), _constants(constants),
_needs_facet_permutations(needs_facet_permutations)
{
if (!_mesh)
throw std::runtime_error("Form Mesh is null.");
// A helper function to find the correct entity map for a given mesh
auto get_entity_map
= [mesh, &entity_maps](auto& mesh0) -> const mesh::EntityMap&
{
auto it = std::ranges::find_if(
entity_maps,
[mesh, mesh0](const mesh::EntityMap& em)
{
return ((em.topology() == mesh0->topology()
and em.sub_topology() == mesh->topology()))
or ((em.sub_topology() == mesh0->topology()
and em.topology() == mesh->topology()));
});
if (it == entity_maps.end())
{
throw std::runtime_error(
"Incompatible mesh. argument entity_maps must be provided.");
}
return *it;
};
// A helper function to compute the (cell, local_facet) pairs in the
// argument/coefficient domain from the (cell, local_facet) pairs in
// `this->mesh()`.
auto compute_facet_domains
= [&](const auto& int_ents_mesh, int codim, const auto& c_to_f,
const auto& emap, bool inverse)
{
// TODO: This function would be much neater using
// `std::views::stride(2)` from C++ 23
// Get a list of entities to map to the argument/coefficient
// domain
std::vector<std::int32_t> entities;
entities.reserve(int_ents_mesh.size() / 2);
if (codim == 0)
{
// In the codim 0 case, we need to map from cells in
// `this->mesh()` to cells in the argument/coefficient mesh, so
// here we extract the cells.
for (std::size_t i = 0; i < int_ents_mesh.size(); i += 2)
entities.push_back(int_ents_mesh[i]);
}
else if (codim == 1)
{
// In the codim 1 case, we need to map facets in `this->mesh()`
// to cells in the argument/coefficient mesh, so here we extract
// the facet index using the cell-to-facet connectivity.
for (std::size_t i = 0; i < int_ents_mesh.size(); i += 2)
{
entities.push_back(
c_to_f->links(int_ents_mesh[i])[int_ents_mesh[i + 1]]);
}
}
else
throw std::runtime_error("Codimension > 1 not supported.");
// Map from entity indices in `this->mesh()` to the corresponding
// cell indices in the argument/coefficient mesh
std::vector<std::int32_t> cells_mesh0
= emap.sub_topology_to_topology(entities, inverse);
// Create a list of (cell, local_facet_index) pairs in the
// argument/coefficient domain. Since `create_submesh`preserves
// the local facet index (with respect to the cell), we can use
// the local facet indices from the input integration entities
std::vector<std::int32_t> e = int_ents_mesh;
for (std::size_t i = 0; i < cells_mesh0.size(); ++i)
e[2 * i] = cells_mesh0[i];
return e;
};
for (auto& space : _function_spaces)
{
// Working map: [integral type, integral_idx, kernel_idx]->entities
std::map<std::tuple<IntegralType, int, int>,
std::variant<std::vector<std::int32_t>,
std::span<const std::int32_t>>>
vdata;
if (auto mesh0 = space->mesh(); mesh0 == _mesh)
{
for (auto& [key, integral] : _integrals)
vdata.insert({key, std::span(integral.entities)});
}
else
{
// Find correct entity map
const mesh::EntityMap& emap = get_entity_map(mesh0);
// Determine direction of the map. We need to map from
// `this->mesh()` to `mesh0`, so if `emap->sub_topology()` isn't
// the source topology, we need the inverse map
bool inverse = emap.sub_topology() == mesh0->topology();
for (auto& [key, itg] : _integrals)
{
auto [type, idx, kernel_idx] = key;
std::vector<std::int32_t> e;
if (type == IntegralType::cell)
e = emap.sub_topology_to_topology(itg.entities, inverse);
else if (type == IntegralType::exterior_facet
or type == IntegralType::interior_facet)
{
const mesh::Topology topology = *_mesh->topology();
int tdim = topology.dim();
assert(mesh0);
int codim = tdim - mesh0->topology()->dim();
assert(codim >= 0);
auto c_to_f = topology.connectivity(tdim, tdim - 1);
assert(c_to_f);
e = compute_facet_domains(itg.entities, codim, c_to_f, emap,
inverse);
}
else
throw std::runtime_error("Integral type not supported.");
vdata.insert({key, std::move(e)});
}
}
_edata.push_back(vdata);
}
for (auto& [key, integral] : _integrals)
{
auto [type, idx, kernel_idx] = key;
for (int c : integral.coeffs)
{
if (auto mesh0 = coefficients.at(c)->function_space()->mesh();
mesh0 == _mesh)
{
_cdata.insert({{type, idx, c}, std::span(integral.entities)});
}
else
{
// Find correct entity map and determine direction of the map
const mesh::EntityMap& emap = get_entity_map(mesh0);
bool inverse = emap.sub_topology() == mesh0->topology();
std::vector<std::int32_t> e;
if (type == IntegralType::cell)
e = emap.sub_topology_to_topology(integral.entities, inverse);
else if (type == IntegralType::exterior_facet
or type == IntegralType::interior_facet)
{
const mesh::Topology topology = *_mesh->topology();
int tdim = topology.dim();
assert(mesh0);
int codim = tdim - mesh0->topology()->dim();
auto c_to_f = topology.connectivity(tdim, tdim - 1);
assert(c_to_f);
e = compute_facet_domains(integral.entities, codim, c_to_f, emap,
inverse);
}
else
throw std::runtime_error("Integral type not supported.");
_cdata.insert({{type, idx, c}, std::move(e)});
}
}
}
}
/// Copy constructor
Form(const Form& form) = delete;
/// Move constructor
Form(Form&& form) = default;
/// Destructor
virtual ~Form() = default;
/// @brief Rank of the form.
///
/// bilinear form = 2, linear form = 1, functional = 0, etc.
///
/// @return The rank of the form.
int rank() const { return _function_spaces.size(); }
/// @brief Common mesh for the form (the 'integration domain').
/// @return The integration domain mesh.
std::shared_ptr<const mesh::Mesh<geometry_type>> mesh() const
{
return _mesh;
}
/// @brief Function spaces for all arguments.
/// @return Function spaces.
const std::vector<std::shared_ptr<const FunctionSpace<geometry_type>>>&
function_spaces() const
{
return _function_spaces;
}
/// @brief Get the kernel function for an integral.
///
///
///
/// @param[in] type Integral type.
/// @param[in] id Integral subdomain ID.
/// @param[in] kernel_idx Index of the kernel (we may have multiple
/// kernels for a given ID in mixed-topology meshes).
/// @return Function to call for `tabulate_tensor`.
std::function<void(scalar_type*, const scalar_type*, const scalar_type*,
const geometry_type*, const int*, const uint8_t*, void*)>
kernel(IntegralType type, int id, int kernel_idx) const
{
auto it = _integrals.find({type, id, kernel_idx});
if (it == _integrals.end())
throw std::runtime_error("Requested integral kernel not found.");
return it->second.kernel;
}
/// @brief Get types of integrals in the form.
/// @return Integrals types.
std::set<IntegralType> integral_types() const
{
std::vector<IntegralType> set_data;
std::ranges::transform(_integrals, std::back_inserter(set_data),
[](auto& x) { return std::get<0>(x.first); });
return std::set<IntegralType>(set_data.begin(), set_data.end());
}
/// @brief Indices of coefficients that are active for a given
/// integral (kernel).
///
/// A form is split into multiple integrals (kernels) and each
/// integral might container only a subset of all coefficients in the
/// form. This function returns an indicator array for a given
/// integral kernel that signifies which coefficients are present.
///
/// @param[in] type Integral type.
/// @param[in] id Domain index (identifier) of the integral.
std::vector<int> active_coeffs(IntegralType type, int id) const
{
auto it = std::ranges::find_if(_integrals,
[type, id](auto& x)
{
auto [t, id_, kernel_idx] = x.first;
return t == type and id_ == id;
});
if (it == _integrals.end())
throw std::runtime_error("Could not find active coefficient list.");
return it->second.coeffs;
}
/// @brief Get number of integrals (kernels) for a given integral type and
/// kernel index.
///
/// For a form containing two integrals of `integral_a` and `integral_b`
/// with subdomain-ids `(1, 4)` and `(3, 4, 5)` respectively, the integrals
/// are stored as a flattened list, sorted by sudomain-ids
/// ```cpp
/// auto form_integrals = {integral_a, integral_b, integral_a, integral_b,
/// integral_b}; auto form_integral_ids = {1, 3, 4, 4, 5}.
/// ```
/// @param[in] type Integral type.
/// @param[in] kernel_idx Index of the kernel (we may have multiple
/// kernels for a integral type in mixed-topology meshes).
int num_integrals(IntegralType type, int kernel_idx) const
{
int count = std::count_if(_integrals.begin(), _integrals.end(),
[type, kernel_idx](auto& x)
{
auto [t, id, k_idx] = x.first;
return t == type and k_idx == kernel_idx;
});
return count;
}
/// @brief Mesh entity indices to integrate over for a given integral
/// (kernel).
///
/// These are the entities in the mesh returned by ::mesh that are
/// integrated over by a given integral (kernel).
///
/// - For IntegralType::cell, returns a list of cell indices.
/// - For IntegralType::exterior_facet, returns a list with shape
/// `(num_facets, 2)`, where `[cell_index, 0]` is the cell index and
/// `[cell_index, 1]` is the local facet index relative to the cell.
/// - For IntegralType::interior_facet the shape is `(num_facets, 4)`,
/// where `[cell_index, 0]` is one attached cell and `[cell_index, 1]`
/// is the is the local facet index relative to the cell, and
/// `[cell_index, 2]` is the other one attached cell and `[cell_index, 1]`
/// is the is the local facet index relative to this cell. Storage
/// is row-major.
///
/// @param[in] type Integral type.
/// @param[in] idx Integral index in flattened list of integral kernels.
/// For a form containing two integrals of `integral_a` and `integral_b`
/// with subdomain-ids `(1, 4)` and `(3, 4, 5)` respectively, the integrals
/// are stored as a flattened list, sorted by sudomain-ids
/// ```cpp
/// auto form_integrals = {integral_a, integral_b, integral_a, integral_b,
/// integral_b}; auto form_integral_ids = {1, 3, 4, 4, 5}.
/// ```
/// @param[in] kernel_idx Index of the kernel with in the domain (we
/// may have multiple kernels for a given ID in mixed-topology
/// meshes).
/// @return Entity indices in the mesh::Mesh returned by mesh() to
/// integrate over.
std::span<const std::int32_t> domain(IntegralType type, int idx,
int kernel_idx) const
{
auto it = _integrals.find({type, idx, kernel_idx});
if (it == _integrals.end())
throw std::runtime_error("Requested domain not found.");
return it->second.entities;
}
/// @brief Argument function mesh integration entity indices.
///
/// Integration can be performed over cells/facets involving functions
/// that are defined on different meshes but which share common cells,
/// i.e. meshes can be 'views' into a common mesh. Meshes can share
/// some cells but a common cell will have a different index in each
/// mesh::Mesh. Consider:
/// ```cpp
/// auto mesh = this->mesh();
/// auto entities = this->domain(type, id, kernel_idx);
/// auto entities0 = this->domain_arg(type, rank, id, kernel_idx);
/// ```
///
/// Assembly is performed over `entities`, where `entities[i]` is an
/// entity index (e.g., cell index) in `mesh`. `entities0` holds the
/// corresponding entity indices but in the mesh associated with the
/// argument function (test/trial function) space. `entities[i]` and
/// `entities0[i]` point to the same mesh entity, but with respect to
/// different mesh views. In some cases, such as when integrating over
/// the interface between two domains that do not overlap, an entity
/// may exist in one domain but not another. In this case, the entity
/// is marked with -1.
///
/// @param[in] type Integral type.
/// @param[in] rank Argument index, e.g. `0` for the test function space, `1`
/// for the trial function space.
/// @param[in] idx Integral identifier.
/// @param[in] kernel_idx Kernel index (cell type).
/// @return Entity indices in the argument function space mesh that is
/// integrated over.
/// - For cell integrals it has shape `(num_cells,)`.
/// - For exterior/interior facet integrals, it has shape `(num_facts, 2)`
/// (row-major storage), where `[i, 0]` is the index of a cell and
/// `[i, 1]` is the local index of the facet relative to the cell.
std::span<const std::int32_t> domain_arg(IntegralType type, int rank, int idx,
int kernel_idx) const
{
auto it = _edata.at(rank).find({type, idx, kernel_idx});
if (it == _edata.at(rank).end())
throw std::runtime_error("Requested domain for argument not found.");
try
{
return std::get<std::span<const std::int32_t>>(it->second);
}
catch (std::bad_variant_access& e)
{
return std::get<std::vector<std::int32_t>>(it->second);
}
}
/// @brief Coefficient function mesh integration entity indices.
///
/// This method is equivalent to ::domain_arg, but returns mesh entity
/// indices for coefficient \link Function Functions. \endlink
///
/// @param[in] type Integral type.
/// @param[in] idx Integral identifier.
/// @param[in] c Coefficient index.
/// @return Entity indices in the coefficient function space mesh that
/// is integrated over.
/// - For cell integrals it has shape `(num_cells,)`.
/// - For exterior/interior facet integrals, it has shape `(num_facts, 2)`
/// (row-major storage), where `[i, 0]` is the index of a cell and
/// `[i, 1]` is the local index of the facet relative to the cell.
std::span<const std::int32_t> domain_coeff(IntegralType type, int idx,
int c) const
{
auto it = _cdata.find({type, idx, c});
if (it == _cdata.end())
throw std::runtime_error("No domain for requested integral.");
try
{
return std::get<std::span<const std::int32_t>>(it->second);
}
catch (std::bad_variant_access& e)
{
return std::get<std::vector<std::int32_t>>(it->second);
}
}
/// @brief Access coefficients.
const std::vector<
std::shared_ptr<const Function<scalar_type, geometry_type>>>&
coefficients() const
{
return _coefficients;
}
/// @brief Get bool indicating whether permutation data needs to be
/// passed into these integrals.
/// @return True if cell permutation data is required
bool needs_facet_permutations() const { return _needs_facet_permutations; }
/// @brief Offset for each coefficient expansion array on a cell.
///
/// Used to pack data for multiple coefficients in a flat array. The
/// last entry is the size required to store all coefficients.
std::vector<int> coefficient_offsets() const
{
std::vector<int> n{0};
for (auto& c : _coefficients)
{
if (!c)
throw std::runtime_error("Not all form coefficients have been set.");
n.push_back(n.back() + c->function_space()->element()->space_dimension());
}
return n;
}
/// @brief Access constants.
const std::vector<std::shared_ptr<const Constant<scalar_type>>>&
constants() const
{
return _constants;
}
private:
// Function spaces (one for each argument)
std::vector<std::shared_ptr<const FunctionSpace<geometry_type>>>
_function_spaces;
// Integrals (integral type, id, celltype)
std::map<std::tuple<IntegralType, int, int>,
integral_data<scalar_type, geometry_type>>
_integrals;
// The mesh
std::shared_ptr<const mesh::Mesh<geometry_type>> _mesh;
// Form coefficients
std::vector<std::shared_ptr<const Function<scalar_type, geometry_type>>>
_coefficients;
// Constants associated with the Form
std::vector<std::shared_ptr<const Constant<scalar_type>>> _constants;
// True if permutation data needs to be passed into these integrals
bool _needs_facet_permutations;
// Mapped domain index data for argument functions.
//
// Consider:
//
// entities = this->domain(IntegralType, integral(id), kernel_idx];
// entities0 = _edata[0][IntegralType, integral(id), coefficient_index];
//
// Then `entities[i]` is a mesh entity index (e.g., cell index) in
// `_mesh`, and `entities0[i]` is the index of the same entity but in
// the mesh associated with the argument 0 (test function) space.
std::vector<std::map<
std::tuple<IntegralType, int, int>,
std::variant<std::vector<std::int32_t>, std::span<const std::int32_t>>>>
_edata;
// Mapped domain index data for coefficient functions.
//
// Consider:
//
// entities = this->domain(IntegralType, integral(id), kernel_idx];
// entities0 = _cdata[IntegralType, integral(id), coefficient_index];
//
// Then `entities[i]` is a mesh entity index (e.g., cell index) in
// `_mesh`, and `entities0[i]` is the index of the same entity but in
// the mesh associated with the coefficient Function.
std::map<
std::tuple<IntegralType, int, int>,
std::variant<std::vector<std::int32_t>, std::span<const std::int32_t>>>
_cdata;
};
} // namespace dolfinx::fem
|