File: Function.h

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (733 lines) | stat: -rw-r--r-- 27,237 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// Copyright (C) 2003-2024 Anders Logg, Garth N. Wells and Massimiliano Leoni
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#pragma once

#include "DofMap.h"
#include "FiniteElement.h"
#include "FunctionSpace.h"
#include "assembler.h"
#include "interpolate.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <concepts>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/types.h>
#include <dolfinx/la/Vector.h>
#include <dolfinx/mesh/Geometry.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <functional>
#include <memory>
#include <numeric>
#include <span>
#include <string>
#include <utility>
#include <vector>

namespace dolfinx::fem
{
template <dolfinx::scalar T, std::floating_point U>
class Expression;

/// This class represents a function \f$ u_h \f$ in a finite
/// element function space \f$ V_h \f$, given by
///
/// \f[ u_h = \sum_{i=1}^{n} U_i \phi_i, \f]
/// where \f$ \{\phi_i\}_{i=1}^{n} \f$ is a basis for \f$ V_h \f$,
/// and \f$ U \f$ is a vector of expansion coefficients for \f$ u_h \f$.
///
/// @tparam T The function scalar type.
/// @tparam U The mesh geometry scalar type.
template <dolfinx::scalar T, std::floating_point U = dolfinx::scalar_value_t<T>>
class Function
{
public:
  /// Field type for the Function, e.g. `double`, `std::complex<float>`,
  /// etc.
  using value_type = T;
  /// Geometry type of the Mesh that the Function is defined on.
  using geometry_type = U;

  /// @brief Create function on given function space.
  /// @param[in] V The function space
  explicit Function(std::shared_ptr<const FunctionSpace<geometry_type>> V)
      : _function_space(V),
        _x(std::make_shared<la::Vector<value_type>>(
            V->dofmaps(0)->index_map, V->dofmaps(0)->index_map_bs()))
  {
    if (!V->component().empty())
    {
      throw std::runtime_error("Cannot create Function from subspace. Consider "
                               "collapsing the function space");
    }
  }

  /// @brief Create function on given function space with a given
  /// vector.
  ///
  /// @warning This constructor is intended for internal library use
  /// only.
  ///
  /// @param[in] V The function space.
  /// @param[in] x The vector.
  Function(std::shared_ptr<const FunctionSpace<geometry_type>> V,
           std::shared_ptr<la::Vector<value_type>> x)
      : _function_space(V), _x(x)
  {
    // NOTE: We do not check for a subspace since this constructor is
    // used for creating subfunctions

    // Assertion uses '<=' to deal with sub-functions
    assert(V->dofmap());
    assert(V->dofmap()->index_map->size_global() * V->dofmap()->index_map_bs()
           <= _x->bs() * _x->index_map()->size_global());
  }

  // Copy constructor
  Function(const Function& v) = delete;

  /// Move constructor
  Function(Function&& v) = default;

  /// Destructor
  ~Function() = default;

  /// Move assignment
  Function& operator=(Function&& v) = default;

  // Assignment
  Function& operator=(const Function& v) = delete;

  /// @brief Extract a sub-function (a view into the Function).
  /// @param[in] i Index of subfunction
  /// @return The sub-function
  Function sub(int i) const
  {
    auto sub_space = std::make_shared<FunctionSpace<geometry_type>>(
        _function_space->sub({i}));
    assert(sub_space);
    return Function(sub_space, _x);
  }

  /// @brief Collapse a subfunction (view into a Function) to a
  /// stand-alone Function.
  /// @return New collapsed Function.
  Function collapse() const
  {
    // Create new collapsed FunctionSpace
    auto [V, map] = _function_space->collapse();

    // Create new vector
    auto x = std::make_shared<la::Vector<value_type>>(
        V.dofmap()->index_map, V.dofmap()->index_map_bs());

    // Copy values into new vector
    std::span<const value_type> x_old = _x->array();
    std::span<value_type> x_new = x->array();
    for (std::size_t i = 0; i < map.size(); ++i)
    {
      assert((int)i < x_new.size());
      assert(map[i] < x_old.size());
      x_new[i] = x_old[map[i]];
    }

    return Function(
        std::make_shared<FunctionSpace<geometry_type>>(std::move(V)), x);
  }

  /// @brief Access the function space.
  /// @return The function space.
  std::shared_ptr<const FunctionSpace<geometry_type>> function_space() const
  {
    return _function_space;
  }

  /// @brief Underlying vector (const version).
  std::shared_ptr<const la::Vector<value_type>> x() const { return _x; }

  /// @brief Underlying vector.
  std::shared_ptr<la::Vector<value_type>> x() { return _x; }

  /// @brief Interpolate an expression f(x) on the whole domain.
  /// @param[in] f Expression to be interpolated.
  void interpolate(
      const std::function<
          std::pair<std::vector<value_type>, std::vector<std::size_t>>(
              md::mdspan<const geometry_type,
                         md::extents<std::size_t, 3, md::dynamic_extent>>)>& f)
  {
    assert(_function_space);
    assert(_function_space->mesh());
    int tdim = _function_space->mesh()->topology()->dim();
    auto cmap = _function_space->mesh()->topology()->index_map(tdim);
    assert(cmap);
    std::vector<std::int32_t> cells(cmap->size_local() + cmap->num_ghosts(), 0);
    std::iota(cells.begin(), cells.end(), 0);
    interpolate(f, cells);
  }

  /// @brief Interpolate an expression f(x) over a set of cells.
  /// @param[in] f Expression function to be interpolated.
  /// @param[in] cells Cells to interpolate on.
  void interpolate(
      const std::function<
          std::pair<std::vector<value_type>, std::vector<std::size_t>>(
              md::mdspan<const geometry_type,
                         md::extents<std::size_t, 3, md::dynamic_extent>>)>& f,
      std::span<const std::int32_t> cells)
  {
    assert(_function_space);
    assert(_function_space->element());
    assert(_function_space->mesh());
    const std::vector<geometry_type> x
        = fem::interpolation_coords<geometry_type>(
            *_function_space->element(), _function_space->mesh()->geometry(),
            cells);
    md::mdspan<const geometry_type,
               md::extents<std::size_t, 3, md::dynamic_extent>>
        _x(x.data(), 3, x.size() / 3);

    const auto [fx, fshape] = f(_x);
    assert(fshape.size() <= 2);
    if (int vs = _function_space->element()->value_size();
        vs == 1 and fshape.size() == 1)
    {
      // Check for scalar-valued functions
      if (fshape.front() != x.size() / 3)
        throw std::runtime_error("Data returned by callable has wrong length");
    }
    else
    {
      // Check for vector/tensor value
      if (fshape.size() != 2)
        throw std::runtime_error("Expected 2D array of data");

      if (fshape[0] != vs)
      {
        throw std::runtime_error(
            "Data returned by callable has wrong shape(0) size");
      }

      if (fshape[1] != x.size() / 3)
      {
        throw std::runtime_error(
            "Data returned by callable has wrong shape(1) size");
      }
    }

    std::array<std::size_t, 2> _fshape;
    if (fshape.size() == 1)
      _fshape = {1, fshape[0]};
    else
      _fshape = {fshape[0], fshape[1]};

    fem::interpolate(*this, std::span<const value_type>(fx.data(), fx.size()),
                     _fshape, cells);
  }

  /// @brief Interpolate a Function over all cells.
  ///
  /// @param[in] u Function to be interpolated.
  /// @pre The mesh associated with `this` and the mesh associated with
  /// `u` must be the same mesh::Mesh.
  void interpolate(const Function<value_type, geometry_type>& u)
  {
    assert(_function_space);
    assert(_function_space->mesh());
    int tdim = _function_space->mesh()->topology()->dim();
    auto cmap = _function_space->mesh()->topology()->index_map(tdim);
    assert(cmap);
    std::vector<std::int32_t> cells(cmap->size_local() + cmap->num_ghosts(), 0);
    std::iota(cells.begin(), cells.end(), 0);
    interpolate(u, cells, cells);
  }

  /// @brief Interpolate a Function over a subset of cells.
  ///
  /// The Function being interpolated from and the Function being
  /// interpolated into can be defined on different sub-meshes, i.e.
  /// views into a subset a cells.
  ///
  /// @param[in] u0 Function to be interpolated.
  /// @param[in] cells0 Cells to interpolate from. These are the indices
  /// of the cells in the mesh associated with `u0`.
  /// @param[in] cells1 Cell indices associated with the mesh of `this`
  /// that will be interpolated to. If `cells0[i]` is the index of a
  /// cell in the mesh associated with `u0`, then `cells1[i]` is the
  /// index of the *same* cell but in the mesh associated with `this`.
  /// This argument can be empty when `this` and `u0` share the same
  /// mesh. Otherwise the length of `cells` and the length of `cells0`
  /// must be the same.
  void interpolate(const Function<value_type, geometry_type>& u0,
                   std::span<const std::int32_t> cells0,
                   std::span<const std::int32_t> cells1 = {})
  {
    if (cells1.empty())
      cells1 = cells0;
    fem::interpolate(*this, cells1, u0, cells0);
  }

  /// @brief Interpolate an Expression on all cells.
  ///
  /// @param[in] e Expression to be interpolated.
  /// @pre If a mesh is associated with Function coefficients of `e`, it
  /// must be the same as the mesh::Mesh associated with `this`.
  void interpolate(const Expression<value_type, geometry_type>& e)
  {
    assert(_function_space);
    assert(_function_space->mesh());
    int tdim = _function_space->mesh()->topology()->dim();
    auto cmap = _function_space->mesh()->topology()->index_map(tdim);
    assert(cmap);
    std::vector<std::int32_t> cells(cmap->size_local() + cmap->num_ghosts(), 0);
    std::iota(cells.begin(), cells.end(), 0);
    interpolate(e, cells);
  }

  /// @brief Interpolate an Expression over a subset of cells.
  ///
  /// @param[in] e0 Expression to be interpolated. The Expression must
  /// have been created using the reference coordinates created by
  /// FiniteElement::interpolation_points for the element associated
  /// with `this`.
  /// @param[in] cells0 Cells in the mesh associated with `e0` to
  /// interpolate from if `e0` has Function coefficients. If no mesh can
  /// be associated with `e0` then the mesh associated with `this` is used.
  /// @param[in] cells1 Cell indices associated with the mesh of `this`
  /// that will be interpolated to. If `cells0[i]` is the index of a
  /// cell in the mesh associated with `u0`, then `cells1[i]` is the
  /// index of the *same* cell but in the mesh associated with `this`.
  /// This argument can be empty when `this` and `u0` share the same
  /// mesh. Otherwise the length of `cells` and the length of
  /// `cells0` must be the same.
  void interpolate(const Expression<value_type, geometry_type>& e0,
                   std::span<const std::int32_t> cells0,
                   std::span<const std::int32_t> cells1 = {})
  {
    // Extract mesh
    const mesh::Mesh<geometry_type>* mesh0 = nullptr;
    for (auto& c : e0.coefficients())
    {
      assert(c);
      assert(c->function_space());
      assert(c->function_space()->mesh());
      if (const mesh::Mesh<geometry_type>* mesh
          = c->function_space()->mesh().get();
          !mesh0)
      {
        mesh0 = mesh;
      }
      else if (mesh != mesh0)
      {
        throw std::runtime_error(
            "Expression coefficient Functions have different meshes.");
      }
    }

    // If Expression has no Function coefficients take mesh from `this`.
    assert(_function_space);
    assert(_function_space->mesh());
    if (!mesh0)
      mesh0 = _function_space->mesh().get();

    // If cells1 is empty and Function and Expression meshes are the
    // same, make cells1 the same as cells0. Otherwise check that
    // lengths of cells0 and cells1 are the same.
    if (cells1.empty() and mesh0 == _function_space->mesh().get())
      cells1 = cells0;
    else if (cells0.size() != cells1.size())
      throw std::runtime_error("Cells lists have different lengths.");

    // Check that Function and Expression spaces are compatible
    assert(_function_space->element());
    std::size_t value_size = e0.value_size();
    if (e0.argument_space())
      throw std::runtime_error("Cannot interpolate Expression with Argument.");
    if (value_size != (std::size_t)_function_space->element()->value_size())
    {
      throw std::runtime_error(
          "Function value size not equal to Expression value size.");
    }

    // Compatibility check
    {
      auto [X0, shape0] = e0.X();
      auto [X1, shape1] = _function_space->element()->interpolation_points();
      if (shape0 != shape1)
      {
        throw std::runtime_error(
            "Function element interpolation points has different shape to "
            "Expression interpolation points");
      }

      for (std::size_t i = 0; i < X0.size(); ++i)
      {
        if (std::abs(X0[i] - X1[i]) > 1.0e-10)
        {
          throw std::runtime_error("Function element interpolation points not "
                                   "equal to Expression interpolation points");
        }
      }
    }

    // Array to hold evaluated Expression
    std::size_t num_cells = cells0.size();
    std::size_t num_points = e0.X().second[0];
    std::vector<value_type> fdata(num_cells * num_points * value_size);
    md::mdspan<const value_type, md::dextents<std::size_t, 3>> f(
        fdata.data(), num_cells, num_points, value_size);

    // Evaluate Expression at points
    tabulate_expression(std::span(fdata), e0, *mesh0,
                        md::mdspan(cells0.data(), cells0.size()));

    // Reshape evaluated data to fit interpolate.
    // Expression returns matrix of shape (num_cells, num_points *
    // value_size), i.e. xyzxyz ordering of dof values per cell per
    // point. The interpolation uses xxyyzz input, ordered for all
    // points of each cell, i.e. (value_size, num_cells*num_points).
    std::vector<value_type> fdata1(num_cells * num_points * value_size);
    md::mdspan<value_type, md::dextents<std::size_t, 3>> f1(
        fdata1.data(), value_size, num_cells, num_points);
    for (std::size_t i = 0; i < f.extent(0); ++i)
      for (std::size_t j = 0; j < f.extent(1); ++j)
        for (std::size_t k = 0; k < f.extent(2); ++k)
          f1(k, i, j) = f(i, j, k);

    // Interpolate values into appropriate space
    fem::interpolate(*this,
                     std::span<const value_type>(fdata1.data(), fdata1.size()),
                     {value_size, num_cells * num_points}, cells1);
  }

  /// @brief Interpolate a Function defined on a different mesh.
  ///
  /// @param[in] v Function to be interpolated.
  /// @param[in] cells Cells in the mesh associated with `this` to
  /// interpolate into.
  /// @param[in] interpolation_data Data required for associating the
  /// interpolation points of `this` with cells in `v`. Can be computed
  /// with `fem::create_interpolation_data`.
  void interpolate(const Function<value_type, geometry_type>& v,
                   std::span<const std::int32_t> cells,
                   const geometry::PointOwnershipData<U>& interpolation_data)
  {
    fem::interpolate(*this, v, cells, interpolation_data);
  }

  /// @brief Evaluate the Function at points.
  ///
  /// @param[in] x The coordinates of the points. It has shape
  /// (num_points, 3) and storage is row-major.
  /// @param[in] xshape Shape of `x`.
  /// @param[in] cells Cell indices such that `cells[i]` is the index of
  /// the cell that contains the point x(i). Negative cell indices can
  /// be passed, in which case the corresponding point is ignored.
  /// @param[out] u Values at the points. Values are not computed for
  /// points with a negative cell index. This argument must be passed
  /// with the correct size. Storage is row-major.
  /// @param[in] ushape Shape of `u`.
  void eval(std::span<const geometry_type> x, std::array<std::size_t, 2> xshape,
            std::span<const std::int32_t> cells, std::span<value_type> u,
            std::array<std::size_t, 2> ushape) const
  {
    if (cells.empty())
      return;

    assert(x.size() == xshape[0] * xshape[1]);
    assert(u.size() == ushape[0] * ushape[1]);

    // TODO: This could be easily made more efficient by exploiting
    // points being ordered by the cell to which they belong.

    if (xshape[0] != cells.size())
    {
      throw std::runtime_error(
          "Number of points and number of cells must be equal.");
    }

    if (xshape[0] != ushape[0])
    {
      throw std::runtime_error(
          "Length of array for Function values must be the "
          "same as the number of points.");
    }

    // Get mesh
    assert(_function_space);
    auto mesh = _function_space->mesh();
    assert(mesh);
    const std::size_t gdim = mesh->geometry().dim();
    const std::size_t tdim = mesh->topology()->dim();
    auto map = mesh->topology()->index_map(tdim);

    // Get coordinate map
    const CoordinateElement<geometry_type>& cmap = mesh->geometry().cmap();

    // Get geometry data
    auto x_dofmap = mesh->geometry().dofmap();
    const std::size_t num_dofs_g = cmap.dim();
    auto x_g = mesh->geometry().x();

    // Get element
    auto element = _function_space->element();
    assert(element);
    const int bs_element = element->block_size();
    const std::size_t reference_value_size = element->reference_value_size();
    const std::size_t value_size
        = _function_space->element()->reference_value_size();
    const std::size_t space_dimension = element->space_dimension() / bs_element;

    // If the space has sub elements, concatenate the evaluations on the
    // sub elements
    const int num_sub_elements = element->num_sub_elements();
    if (num_sub_elements > 1 and num_sub_elements != bs_element)
    {
      throw std::runtime_error("Function::eval is not supported for mixed "
                               "elements. Extract subspaces.");
    }

    // Create work vector for expansion coefficients
    std::vector<value_type> coefficients(space_dimension * bs_element);

    // Get dofmap
    std::shared_ptr<const DofMap> dofmap = _function_space->dofmap();
    assert(dofmap);
    const int bs_dof = dofmap->bs();

    std::span<const std::uint32_t> cell_info;
    if (element->needs_dof_transformations())
    {
      mesh->topology_mutable()->create_entity_permutations();
      cell_info = std::span(mesh->topology()->get_cell_permutation_info());
    }

    std::vector<geometry_type> coord_dofs_b(num_dofs_g * gdim);
    impl::mdspan_t<geometry_type, 2> coord_dofs(coord_dofs_b.data(), num_dofs_g,
                                                gdim);
    std::vector<geometry_type> xp_b(1 * gdim);
    impl::mdspan_t<geometry_type, 2> xp(xp_b.data(), 1, gdim);

    // Loop over points
    std::ranges::fill(u, 0.0);
    std::span<const value_type> _v = _x->array();

    // Evaluate geometry basis at point (0, 0, 0) on the reference cell.
    // Used in affine case.
    std::array<std::size_t, 4> phi0_shape = cmap.tabulate_shape(1, 1);
    std::vector<geometry_type> phi0_b(std::reduce(
        phi0_shape.begin(), phi0_shape.end(), 1, std::multiplies{}));
    impl::mdspan_t<const geometry_type, 4> phi0(phi0_b.data(), phi0_shape);
    cmap.tabulate(1, std::vector<geometry_type>(tdim), {1, tdim}, phi0_b);
    auto dphi0
        = md::submdspan(phi0, std::pair(1, tdim + 1), 0, md::full_extent, 0);

    // Data structure for evaluating geometry basis at specific points.
    // Used in non-affine case.
    std::array<std::size_t, 4> phi_shape = cmap.tabulate_shape(1, 1);
    std::vector<geometry_type> phi_b(
        std::reduce(phi_shape.begin(), phi_shape.end(), 1, std::multiplies{}));
    impl::mdspan_t<const geometry_type, 4> phi(phi_b.data(), phi_shape);
    auto dphi
        = md::submdspan(phi, std::pair(1, tdim + 1), 0, md::full_extent, 0);

    // Reference coordinates for each point
    std::vector<geometry_type> Xb(xshape[0] * tdim);
    impl::mdspan_t<geometry_type, 2> X(Xb.data(), xshape[0], tdim);

    // Geometry data at each point
    std::vector<geometry_type> J_b(xshape[0] * gdim * tdim);
    impl::mdspan_t<geometry_type, 3> J(J_b.data(), xshape[0], gdim, tdim);
    std::vector<geometry_type> K_b(xshape[0] * tdim * gdim);
    impl::mdspan_t<geometry_type, 3> K(K_b.data(), xshape[0], tdim, gdim);
    std::vector<geometry_type> detJ(xshape[0]);
    std::vector<geometry_type> det_scratch(2 * gdim * tdim);

    // Prepare geometry data in each cell
    for (std::size_t p = 0; p < cells.size(); ++p)
    {
      const int cell_index = cells[p];

      // Skip negative cell indices
      if (cell_index < 0)
        continue;

      // Get cell geometry (coordinate dofs)
      auto x_dofs = md::submdspan(x_dofmap, cell_index, md::full_extent);
      assert(x_dofs.size() == num_dofs_g);
      for (std::size_t i = 0; i < num_dofs_g; ++i)
      {
        const int pos = 3 * x_dofs[i];
        for (std::size_t j = 0; j < gdim; ++j)
          coord_dofs(i, j) = x_g[pos + j];
      }

      for (std::size_t j = 0; j < gdim; ++j)
        xp(0, j) = x[p * xshape[1] + j];

      auto _J = md::submdspan(J, p, md::full_extent, md::full_extent);
      auto _K = md::submdspan(K, p, md::full_extent, md::full_extent);

      std::array<geometry_type, 3> Xpb{0, 0, 0};
      md::mdspan<geometry_type, md::extents<std::size_t, 1, md::dynamic_extent>>
          Xp(Xpb.data(), 1, tdim);

      // Compute reference coordinates X, and J, detJ and K
      if (cmap.is_affine())
      {
        CoordinateElement<geometry_type>::compute_jacobian(dphi0, coord_dofs,
                                                           _J);
        CoordinateElement<geometry_type>::compute_jacobian_inverse(_J, _K);
        std::array<geometry_type, 3> x0{0, 0, 0};
        for (std::size_t i = 0; i < coord_dofs.extent(1); ++i)
          x0[i] += coord_dofs(0, i);
        CoordinateElement<geometry_type>::pull_back_affine(Xp, _K, x0, xp);
        detJ[p]
            = CoordinateElement<geometry_type>::compute_jacobian_determinant(
                _J, det_scratch);
      }
      else
      {
        // Pull-back physical point xp to reference coordinate Xp
        cmap.pull_back_nonaffine(Xp, xp, coord_dofs);
        cmap.tabulate(1, std::span(Xpb.data(), tdim), {1, tdim}, phi_b);
        CoordinateElement<geometry_type>::compute_jacobian(dphi, coord_dofs,
                                                           _J);
        CoordinateElement<geometry_type>::compute_jacobian_inverse(_J, _K);
        detJ[p]
            = CoordinateElement<geometry_type>::compute_jacobian_determinant(
                _J, det_scratch);
      }

      for (std::size_t j = 0; j < X.extent(1); ++j)
        X(p, j) = Xpb[j];
    }

    // Prepare basis function data structures
    std::vector<geometry_type> basis_derivatives_reference_values_b(
        1 * xshape[0] * space_dimension * reference_value_size);
    impl::mdspan_t<const geometry_type, 4> basis_derivatives_reference_values(
        basis_derivatives_reference_values_b.data(), 1, xshape[0],
        space_dimension, reference_value_size);
    std::vector<geometry_type> basis_values_b(space_dimension * value_size);
    impl::mdspan_t<geometry_type, 2> basis_values(basis_values_b.data(),
                                                  space_dimension, value_size);

    // Compute basis on reference element
    element->tabulate(basis_derivatives_reference_values_b, Xb,
                      {X.extent(0), X.extent(1)}, 0);

    using xu_t = impl::mdspan_t<geometry_type, 2>;
    using xU_t = impl::mdspan_t<const geometry_type, 2>;
    using xJ_t = impl::mdspan_t<const geometry_type, 2>;
    using xK_t = impl::mdspan_t<const geometry_type, 2>;
    auto push_forward_fn
        = element->basix_element().template map_fn<xu_t, xU_t, xJ_t, xK_t>();

    // Transformation function for basis function values
    auto apply_dof_transformation
        = element->template dof_transformation_fn<geometry_type>(
            doftransform::standard);

    // Size of tensor for symmetric elements, unused in non-symmetric case, but
    // placed outside the loop for pre-computation.
    int matrix_size;
    if (element->symmetric())
    {
      matrix_size = 0;
      while (matrix_size * matrix_size < (int)ushape[1])
        ++matrix_size;
    }

    const std::size_t num_basis_values = space_dimension * reference_value_size;
    for (std::size_t p = 0; p < cells.size(); ++p)
    {
      const int cell_index = cells[p];
      if (cell_index < 0) // Skip negative cell indices
        continue;

      // Permute the reference basis function values to account for the
      // cell's orientation
      apply_dof_transformation(
          std::span(basis_derivatives_reference_values_b.data()
                        + p * num_basis_values,
                    num_basis_values),
          cell_info, cell_index, reference_value_size);

      {
        auto _U = md::submdspan(basis_derivatives_reference_values, 0, p,
                                md::full_extent, md::full_extent);
        auto _J = md::submdspan(J, p, md::full_extent, md::full_extent);
        auto _K = md::submdspan(K, p, md::full_extent, md::full_extent);
        push_forward_fn(basis_values, _U, _J, detJ[p], _K);
      }

      // Get degrees of freedom for current cell
      std::span<const std::int32_t> dofs = dofmap->cell_dofs(cell_index);
      for (std::size_t i = 0; i < dofs.size(); ++i)
        for (int k = 0; k < bs_dof; ++k)
          coefficients[bs_dof * i + k] = _v[bs_dof * dofs[i] + k];

      if (element->symmetric())
      {
        int row = 0;
        int rowstart = 0;
        // Compute expansion
        for (int k = 0; k < bs_element; ++k)
        {
          if (k - rowstart > row)
          {
            row++;
            rowstart = k;
          }
          for (std::size_t i = 0; i < space_dimension; ++i)
          {
            for (std::size_t j = 0; j < value_size; ++j)
            {
              u[p * ushape[1]
                + (j * bs_element + row * matrix_size + k - rowstart)]
                  += coefficients[bs_element * i + k] * basis_values(i, j);
              if (k - rowstart != row)
              {
                u[p * ushape[1]
                  + (j * bs_element + row + matrix_size * (k - rowstart))]
                    += coefficients[bs_element * i + k] * basis_values(i, j);
              }
            }
          }
        }
      }
      else
      {
        // Compute expansion
        for (int k = 0; k < bs_element; ++k)
        {
          for (std::size_t i = 0; i < space_dimension; ++i)
          {
            for (std::size_t j = 0; j < value_size; ++j)
            {
              u[p * ushape[1] + (j * bs_element + k)]
                  += coefficients[bs_element * i + k] * basis_values(i, j);
            }
          }
        }
      }
    }
  }

  /// Name
  std::string name = "u";

private:
  // Function space
  std::shared_ptr<const FunctionSpace<geometry_type>> _function_space;

  // Vector of expansion coefficients (local)
  std::shared_ptr<la::Vector<value_type>> _x;
};

} // namespace dolfinx::fem