1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
// Copyright (C) 2003-2024 Anders Logg, Garth N. Wells and Massimiliano Leoni
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "DofMap.h"
#include "FiniteElement.h"
#include "FunctionSpace.h"
#include "assembler.h"
#include "interpolate.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <concepts>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/types.h>
#include <dolfinx/la/Vector.h>
#include <dolfinx/mesh/Geometry.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <functional>
#include <memory>
#include <numeric>
#include <span>
#include <string>
#include <utility>
#include <vector>
namespace dolfinx::fem
{
template <dolfinx::scalar T, std::floating_point U>
class Expression;
/// This class represents a function \f$ u_h \f$ in a finite
/// element function space \f$ V_h \f$, given by
///
/// \f[ u_h = \sum_{i=1}^{n} U_i \phi_i, \f]
/// where \f$ \{\phi_i\}_{i=1}^{n} \f$ is a basis for \f$ V_h \f$,
/// and \f$ U \f$ is a vector of expansion coefficients for \f$ u_h \f$.
///
/// @tparam T The function scalar type.
/// @tparam U The mesh geometry scalar type.
template <dolfinx::scalar T, std::floating_point U = dolfinx::scalar_value_t<T>>
class Function
{
public:
/// Field type for the Function, e.g. `double`, `std::complex<float>`,
/// etc.
using value_type = T;
/// Geometry type of the Mesh that the Function is defined on.
using geometry_type = U;
/// @brief Create function on given function space.
/// @param[in] V The function space
explicit Function(std::shared_ptr<const FunctionSpace<geometry_type>> V)
: _function_space(V),
_x(std::make_shared<la::Vector<value_type>>(
V->dofmaps(0)->index_map, V->dofmaps(0)->index_map_bs()))
{
if (!V->component().empty())
{
throw std::runtime_error("Cannot create Function from subspace. Consider "
"collapsing the function space");
}
}
/// @brief Create function on given function space with a given
/// vector.
///
/// @warning This constructor is intended for internal library use
/// only.
///
/// @param[in] V The function space.
/// @param[in] x The vector.
Function(std::shared_ptr<const FunctionSpace<geometry_type>> V,
std::shared_ptr<la::Vector<value_type>> x)
: _function_space(V), _x(x)
{
// NOTE: We do not check for a subspace since this constructor is
// used for creating subfunctions
// Assertion uses '<=' to deal with sub-functions
assert(V->dofmap());
assert(V->dofmap()->index_map->size_global() * V->dofmap()->index_map_bs()
<= _x->bs() * _x->index_map()->size_global());
}
// Copy constructor
Function(const Function& v) = delete;
/// Move constructor
Function(Function&& v) = default;
/// Destructor
~Function() = default;
/// Move assignment
Function& operator=(Function&& v) = default;
// Assignment
Function& operator=(const Function& v) = delete;
/// @brief Extract a sub-function (a view into the Function).
/// @param[in] i Index of subfunction
/// @return The sub-function
Function sub(int i) const
{
auto sub_space = std::make_shared<FunctionSpace<geometry_type>>(
_function_space->sub({i}));
assert(sub_space);
return Function(sub_space, _x);
}
/// @brief Collapse a subfunction (view into a Function) to a
/// stand-alone Function.
/// @return New collapsed Function.
Function collapse() const
{
// Create new collapsed FunctionSpace
auto [V, map] = _function_space->collapse();
// Create new vector
auto x = std::make_shared<la::Vector<value_type>>(
V.dofmap()->index_map, V.dofmap()->index_map_bs());
// Copy values into new vector
std::span<const value_type> x_old = _x->array();
std::span<value_type> x_new = x->array();
for (std::size_t i = 0; i < map.size(); ++i)
{
assert((int)i < x_new.size());
assert(map[i] < x_old.size());
x_new[i] = x_old[map[i]];
}
return Function(
std::make_shared<FunctionSpace<geometry_type>>(std::move(V)), x);
}
/// @brief Access the function space.
/// @return The function space.
std::shared_ptr<const FunctionSpace<geometry_type>> function_space() const
{
return _function_space;
}
/// @brief Underlying vector (const version).
std::shared_ptr<const la::Vector<value_type>> x() const { return _x; }
/// @brief Underlying vector.
std::shared_ptr<la::Vector<value_type>> x() { return _x; }
/// @brief Interpolate an expression f(x) on the whole domain.
/// @param[in] f Expression to be interpolated.
void interpolate(
const std::function<
std::pair<std::vector<value_type>, std::vector<std::size_t>>(
md::mdspan<const geometry_type,
md::extents<std::size_t, 3, md::dynamic_extent>>)>& f)
{
assert(_function_space);
assert(_function_space->mesh());
int tdim = _function_space->mesh()->topology()->dim();
auto cmap = _function_space->mesh()->topology()->index_map(tdim);
assert(cmap);
std::vector<std::int32_t> cells(cmap->size_local() + cmap->num_ghosts(), 0);
std::iota(cells.begin(), cells.end(), 0);
interpolate(f, cells);
}
/// @brief Interpolate an expression f(x) over a set of cells.
/// @param[in] f Expression function to be interpolated.
/// @param[in] cells Cells to interpolate on.
void interpolate(
const std::function<
std::pair<std::vector<value_type>, std::vector<std::size_t>>(
md::mdspan<const geometry_type,
md::extents<std::size_t, 3, md::dynamic_extent>>)>& f,
std::span<const std::int32_t> cells)
{
assert(_function_space);
assert(_function_space->element());
assert(_function_space->mesh());
const std::vector<geometry_type> x
= fem::interpolation_coords<geometry_type>(
*_function_space->element(), _function_space->mesh()->geometry(),
cells);
md::mdspan<const geometry_type,
md::extents<std::size_t, 3, md::dynamic_extent>>
_x(x.data(), 3, x.size() / 3);
const auto [fx, fshape] = f(_x);
assert(fshape.size() <= 2);
if (int vs = _function_space->element()->value_size();
vs == 1 and fshape.size() == 1)
{
// Check for scalar-valued functions
if (fshape.front() != x.size() / 3)
throw std::runtime_error("Data returned by callable has wrong length");
}
else
{
// Check for vector/tensor value
if (fshape.size() != 2)
throw std::runtime_error("Expected 2D array of data");
if (fshape[0] != vs)
{
throw std::runtime_error(
"Data returned by callable has wrong shape(0) size");
}
if (fshape[1] != x.size() / 3)
{
throw std::runtime_error(
"Data returned by callable has wrong shape(1) size");
}
}
std::array<std::size_t, 2> _fshape;
if (fshape.size() == 1)
_fshape = {1, fshape[0]};
else
_fshape = {fshape[0], fshape[1]};
fem::interpolate(*this, std::span<const value_type>(fx.data(), fx.size()),
_fshape, cells);
}
/// @brief Interpolate a Function over all cells.
///
/// @param[in] u Function to be interpolated.
/// @pre The mesh associated with `this` and the mesh associated with
/// `u` must be the same mesh::Mesh.
void interpolate(const Function<value_type, geometry_type>& u)
{
assert(_function_space);
assert(_function_space->mesh());
int tdim = _function_space->mesh()->topology()->dim();
auto cmap = _function_space->mesh()->topology()->index_map(tdim);
assert(cmap);
std::vector<std::int32_t> cells(cmap->size_local() + cmap->num_ghosts(), 0);
std::iota(cells.begin(), cells.end(), 0);
interpolate(u, cells, cells);
}
/// @brief Interpolate a Function over a subset of cells.
///
/// The Function being interpolated from and the Function being
/// interpolated into can be defined on different sub-meshes, i.e.
/// views into a subset a cells.
///
/// @param[in] u0 Function to be interpolated.
/// @param[in] cells0 Cells to interpolate from. These are the indices
/// of the cells in the mesh associated with `u0`.
/// @param[in] cells1 Cell indices associated with the mesh of `this`
/// that will be interpolated to. If `cells0[i]` is the index of a
/// cell in the mesh associated with `u0`, then `cells1[i]` is the
/// index of the *same* cell but in the mesh associated with `this`.
/// This argument can be empty when `this` and `u0` share the same
/// mesh. Otherwise the length of `cells` and the length of `cells0`
/// must be the same.
void interpolate(const Function<value_type, geometry_type>& u0,
std::span<const std::int32_t> cells0,
std::span<const std::int32_t> cells1 = {})
{
if (cells1.empty())
cells1 = cells0;
fem::interpolate(*this, cells1, u0, cells0);
}
/// @brief Interpolate an Expression on all cells.
///
/// @param[in] e Expression to be interpolated.
/// @pre If a mesh is associated with Function coefficients of `e`, it
/// must be the same as the mesh::Mesh associated with `this`.
void interpolate(const Expression<value_type, geometry_type>& e)
{
assert(_function_space);
assert(_function_space->mesh());
int tdim = _function_space->mesh()->topology()->dim();
auto cmap = _function_space->mesh()->topology()->index_map(tdim);
assert(cmap);
std::vector<std::int32_t> cells(cmap->size_local() + cmap->num_ghosts(), 0);
std::iota(cells.begin(), cells.end(), 0);
interpolate(e, cells);
}
/// @brief Interpolate an Expression over a subset of cells.
///
/// @param[in] e0 Expression to be interpolated. The Expression must
/// have been created using the reference coordinates created by
/// FiniteElement::interpolation_points for the element associated
/// with `this`.
/// @param[in] cells0 Cells in the mesh associated with `e0` to
/// interpolate from if `e0` has Function coefficients. If no mesh can
/// be associated with `e0` then the mesh associated with `this` is used.
/// @param[in] cells1 Cell indices associated with the mesh of `this`
/// that will be interpolated to. If `cells0[i]` is the index of a
/// cell in the mesh associated with `u0`, then `cells1[i]` is the
/// index of the *same* cell but in the mesh associated with `this`.
/// This argument can be empty when `this` and `u0` share the same
/// mesh. Otherwise the length of `cells` and the length of
/// `cells0` must be the same.
void interpolate(const Expression<value_type, geometry_type>& e0,
std::span<const std::int32_t> cells0,
std::span<const std::int32_t> cells1 = {})
{
// Extract mesh
const mesh::Mesh<geometry_type>* mesh0 = nullptr;
for (auto& c : e0.coefficients())
{
assert(c);
assert(c->function_space());
assert(c->function_space()->mesh());
if (const mesh::Mesh<geometry_type>* mesh
= c->function_space()->mesh().get();
!mesh0)
{
mesh0 = mesh;
}
else if (mesh != mesh0)
{
throw std::runtime_error(
"Expression coefficient Functions have different meshes.");
}
}
// If Expression has no Function coefficients take mesh from `this`.
assert(_function_space);
assert(_function_space->mesh());
if (!mesh0)
mesh0 = _function_space->mesh().get();
// If cells1 is empty and Function and Expression meshes are the
// same, make cells1 the same as cells0. Otherwise check that
// lengths of cells0 and cells1 are the same.
if (cells1.empty() and mesh0 == _function_space->mesh().get())
cells1 = cells0;
else if (cells0.size() != cells1.size())
throw std::runtime_error("Cells lists have different lengths.");
// Check that Function and Expression spaces are compatible
assert(_function_space->element());
std::size_t value_size = e0.value_size();
if (e0.argument_space())
throw std::runtime_error("Cannot interpolate Expression with Argument.");
if (value_size != (std::size_t)_function_space->element()->value_size())
{
throw std::runtime_error(
"Function value size not equal to Expression value size.");
}
// Compatibility check
{
auto [X0, shape0] = e0.X();
auto [X1, shape1] = _function_space->element()->interpolation_points();
if (shape0 != shape1)
{
throw std::runtime_error(
"Function element interpolation points has different shape to "
"Expression interpolation points");
}
for (std::size_t i = 0; i < X0.size(); ++i)
{
if (std::abs(X0[i] - X1[i]) > 1.0e-10)
{
throw std::runtime_error("Function element interpolation points not "
"equal to Expression interpolation points");
}
}
}
// Array to hold evaluated Expression
std::size_t num_cells = cells0.size();
std::size_t num_points = e0.X().second[0];
std::vector<value_type> fdata(num_cells * num_points * value_size);
md::mdspan<const value_type, md::dextents<std::size_t, 3>> f(
fdata.data(), num_cells, num_points, value_size);
// Evaluate Expression at points
tabulate_expression(std::span(fdata), e0, *mesh0,
md::mdspan(cells0.data(), cells0.size()));
// Reshape evaluated data to fit interpolate.
// Expression returns matrix of shape (num_cells, num_points *
// value_size), i.e. xyzxyz ordering of dof values per cell per
// point. The interpolation uses xxyyzz input, ordered for all
// points of each cell, i.e. (value_size, num_cells*num_points).
std::vector<value_type> fdata1(num_cells * num_points * value_size);
md::mdspan<value_type, md::dextents<std::size_t, 3>> f1(
fdata1.data(), value_size, num_cells, num_points);
for (std::size_t i = 0; i < f.extent(0); ++i)
for (std::size_t j = 0; j < f.extent(1); ++j)
for (std::size_t k = 0; k < f.extent(2); ++k)
f1(k, i, j) = f(i, j, k);
// Interpolate values into appropriate space
fem::interpolate(*this,
std::span<const value_type>(fdata1.data(), fdata1.size()),
{value_size, num_cells * num_points}, cells1);
}
/// @brief Interpolate a Function defined on a different mesh.
///
/// @param[in] v Function to be interpolated.
/// @param[in] cells Cells in the mesh associated with `this` to
/// interpolate into.
/// @param[in] interpolation_data Data required for associating the
/// interpolation points of `this` with cells in `v`. Can be computed
/// with `fem::create_interpolation_data`.
void interpolate(const Function<value_type, geometry_type>& v,
std::span<const std::int32_t> cells,
const geometry::PointOwnershipData<U>& interpolation_data)
{
fem::interpolate(*this, v, cells, interpolation_data);
}
/// @brief Evaluate the Function at points.
///
/// @param[in] x The coordinates of the points. It has shape
/// (num_points, 3) and storage is row-major.
/// @param[in] xshape Shape of `x`.
/// @param[in] cells Cell indices such that `cells[i]` is the index of
/// the cell that contains the point x(i). Negative cell indices can
/// be passed, in which case the corresponding point is ignored.
/// @param[out] u Values at the points. Values are not computed for
/// points with a negative cell index. This argument must be passed
/// with the correct size. Storage is row-major.
/// @param[in] ushape Shape of `u`.
void eval(std::span<const geometry_type> x, std::array<std::size_t, 2> xshape,
std::span<const std::int32_t> cells, std::span<value_type> u,
std::array<std::size_t, 2> ushape) const
{
if (cells.empty())
return;
assert(x.size() == xshape[0] * xshape[1]);
assert(u.size() == ushape[0] * ushape[1]);
// TODO: This could be easily made more efficient by exploiting
// points being ordered by the cell to which they belong.
if (xshape[0] != cells.size())
{
throw std::runtime_error(
"Number of points and number of cells must be equal.");
}
if (xshape[0] != ushape[0])
{
throw std::runtime_error(
"Length of array for Function values must be the "
"same as the number of points.");
}
// Get mesh
assert(_function_space);
auto mesh = _function_space->mesh();
assert(mesh);
const std::size_t gdim = mesh->geometry().dim();
const std::size_t tdim = mesh->topology()->dim();
auto map = mesh->topology()->index_map(tdim);
// Get coordinate map
const CoordinateElement<geometry_type>& cmap = mesh->geometry().cmap();
// Get geometry data
auto x_dofmap = mesh->geometry().dofmap();
const std::size_t num_dofs_g = cmap.dim();
auto x_g = mesh->geometry().x();
// Get element
auto element = _function_space->element();
assert(element);
const int bs_element = element->block_size();
const std::size_t reference_value_size = element->reference_value_size();
const std::size_t value_size
= _function_space->element()->reference_value_size();
const std::size_t space_dimension = element->space_dimension() / bs_element;
// If the space has sub elements, concatenate the evaluations on the
// sub elements
const int num_sub_elements = element->num_sub_elements();
if (num_sub_elements > 1 and num_sub_elements != bs_element)
{
throw std::runtime_error("Function::eval is not supported for mixed "
"elements. Extract subspaces.");
}
// Create work vector for expansion coefficients
std::vector<value_type> coefficients(space_dimension * bs_element);
// Get dofmap
std::shared_ptr<const DofMap> dofmap = _function_space->dofmap();
assert(dofmap);
const int bs_dof = dofmap->bs();
std::span<const std::uint32_t> cell_info;
if (element->needs_dof_transformations())
{
mesh->topology_mutable()->create_entity_permutations();
cell_info = std::span(mesh->topology()->get_cell_permutation_info());
}
std::vector<geometry_type> coord_dofs_b(num_dofs_g * gdim);
impl::mdspan_t<geometry_type, 2> coord_dofs(coord_dofs_b.data(), num_dofs_g,
gdim);
std::vector<geometry_type> xp_b(1 * gdim);
impl::mdspan_t<geometry_type, 2> xp(xp_b.data(), 1, gdim);
// Loop over points
std::ranges::fill(u, 0.0);
std::span<const value_type> _v = _x->array();
// Evaluate geometry basis at point (0, 0, 0) on the reference cell.
// Used in affine case.
std::array<std::size_t, 4> phi0_shape = cmap.tabulate_shape(1, 1);
std::vector<geometry_type> phi0_b(std::reduce(
phi0_shape.begin(), phi0_shape.end(), 1, std::multiplies{}));
impl::mdspan_t<const geometry_type, 4> phi0(phi0_b.data(), phi0_shape);
cmap.tabulate(1, std::vector<geometry_type>(tdim), {1, tdim}, phi0_b);
auto dphi0
= md::submdspan(phi0, std::pair(1, tdim + 1), 0, md::full_extent, 0);
// Data structure for evaluating geometry basis at specific points.
// Used in non-affine case.
std::array<std::size_t, 4> phi_shape = cmap.tabulate_shape(1, 1);
std::vector<geometry_type> phi_b(
std::reduce(phi_shape.begin(), phi_shape.end(), 1, std::multiplies{}));
impl::mdspan_t<const geometry_type, 4> phi(phi_b.data(), phi_shape);
auto dphi
= md::submdspan(phi, std::pair(1, tdim + 1), 0, md::full_extent, 0);
// Reference coordinates for each point
std::vector<geometry_type> Xb(xshape[0] * tdim);
impl::mdspan_t<geometry_type, 2> X(Xb.data(), xshape[0], tdim);
// Geometry data at each point
std::vector<geometry_type> J_b(xshape[0] * gdim * tdim);
impl::mdspan_t<geometry_type, 3> J(J_b.data(), xshape[0], gdim, tdim);
std::vector<geometry_type> K_b(xshape[0] * tdim * gdim);
impl::mdspan_t<geometry_type, 3> K(K_b.data(), xshape[0], tdim, gdim);
std::vector<geometry_type> detJ(xshape[0]);
std::vector<geometry_type> det_scratch(2 * gdim * tdim);
// Prepare geometry data in each cell
for (std::size_t p = 0; p < cells.size(); ++p)
{
const int cell_index = cells[p];
// Skip negative cell indices
if (cell_index < 0)
continue;
// Get cell geometry (coordinate dofs)
auto x_dofs = md::submdspan(x_dofmap, cell_index, md::full_extent);
assert(x_dofs.size() == num_dofs_g);
for (std::size_t i = 0; i < num_dofs_g; ++i)
{
const int pos = 3 * x_dofs[i];
for (std::size_t j = 0; j < gdim; ++j)
coord_dofs(i, j) = x_g[pos + j];
}
for (std::size_t j = 0; j < gdim; ++j)
xp(0, j) = x[p * xshape[1] + j];
auto _J = md::submdspan(J, p, md::full_extent, md::full_extent);
auto _K = md::submdspan(K, p, md::full_extent, md::full_extent);
std::array<geometry_type, 3> Xpb{0, 0, 0};
md::mdspan<geometry_type, md::extents<std::size_t, 1, md::dynamic_extent>>
Xp(Xpb.data(), 1, tdim);
// Compute reference coordinates X, and J, detJ and K
if (cmap.is_affine())
{
CoordinateElement<geometry_type>::compute_jacobian(dphi0, coord_dofs,
_J);
CoordinateElement<geometry_type>::compute_jacobian_inverse(_J, _K);
std::array<geometry_type, 3> x0{0, 0, 0};
for (std::size_t i = 0; i < coord_dofs.extent(1); ++i)
x0[i] += coord_dofs(0, i);
CoordinateElement<geometry_type>::pull_back_affine(Xp, _K, x0, xp);
detJ[p]
= CoordinateElement<geometry_type>::compute_jacobian_determinant(
_J, det_scratch);
}
else
{
// Pull-back physical point xp to reference coordinate Xp
cmap.pull_back_nonaffine(Xp, xp, coord_dofs);
cmap.tabulate(1, std::span(Xpb.data(), tdim), {1, tdim}, phi_b);
CoordinateElement<geometry_type>::compute_jacobian(dphi, coord_dofs,
_J);
CoordinateElement<geometry_type>::compute_jacobian_inverse(_J, _K);
detJ[p]
= CoordinateElement<geometry_type>::compute_jacobian_determinant(
_J, det_scratch);
}
for (std::size_t j = 0; j < X.extent(1); ++j)
X(p, j) = Xpb[j];
}
// Prepare basis function data structures
std::vector<geometry_type> basis_derivatives_reference_values_b(
1 * xshape[0] * space_dimension * reference_value_size);
impl::mdspan_t<const geometry_type, 4> basis_derivatives_reference_values(
basis_derivatives_reference_values_b.data(), 1, xshape[0],
space_dimension, reference_value_size);
std::vector<geometry_type> basis_values_b(space_dimension * value_size);
impl::mdspan_t<geometry_type, 2> basis_values(basis_values_b.data(),
space_dimension, value_size);
// Compute basis on reference element
element->tabulate(basis_derivatives_reference_values_b, Xb,
{X.extent(0), X.extent(1)}, 0);
using xu_t = impl::mdspan_t<geometry_type, 2>;
using xU_t = impl::mdspan_t<const geometry_type, 2>;
using xJ_t = impl::mdspan_t<const geometry_type, 2>;
using xK_t = impl::mdspan_t<const geometry_type, 2>;
auto push_forward_fn
= element->basix_element().template map_fn<xu_t, xU_t, xJ_t, xK_t>();
// Transformation function for basis function values
auto apply_dof_transformation
= element->template dof_transformation_fn<geometry_type>(
doftransform::standard);
// Size of tensor for symmetric elements, unused in non-symmetric case, but
// placed outside the loop for pre-computation.
int matrix_size;
if (element->symmetric())
{
matrix_size = 0;
while (matrix_size * matrix_size < (int)ushape[1])
++matrix_size;
}
const std::size_t num_basis_values = space_dimension * reference_value_size;
for (std::size_t p = 0; p < cells.size(); ++p)
{
const int cell_index = cells[p];
if (cell_index < 0) // Skip negative cell indices
continue;
// Permute the reference basis function values to account for the
// cell's orientation
apply_dof_transformation(
std::span(basis_derivatives_reference_values_b.data()
+ p * num_basis_values,
num_basis_values),
cell_info, cell_index, reference_value_size);
{
auto _U = md::submdspan(basis_derivatives_reference_values, 0, p,
md::full_extent, md::full_extent);
auto _J = md::submdspan(J, p, md::full_extent, md::full_extent);
auto _K = md::submdspan(K, p, md::full_extent, md::full_extent);
push_forward_fn(basis_values, _U, _J, detJ[p], _K);
}
// Get degrees of freedom for current cell
std::span<const std::int32_t> dofs = dofmap->cell_dofs(cell_index);
for (std::size_t i = 0; i < dofs.size(); ++i)
for (int k = 0; k < bs_dof; ++k)
coefficients[bs_dof * i + k] = _v[bs_dof * dofs[i] + k];
if (element->symmetric())
{
int row = 0;
int rowstart = 0;
// Compute expansion
for (int k = 0; k < bs_element; ++k)
{
if (k - rowstart > row)
{
row++;
rowstart = k;
}
for (std::size_t i = 0; i < space_dimension; ++i)
{
for (std::size_t j = 0; j < value_size; ++j)
{
u[p * ushape[1]
+ (j * bs_element + row * matrix_size + k - rowstart)]
+= coefficients[bs_element * i + k] * basis_values(i, j);
if (k - rowstart != row)
{
u[p * ushape[1]
+ (j * bs_element + row + matrix_size * (k - rowstart))]
+= coefficients[bs_element * i + k] * basis_values(i, j);
}
}
}
}
}
else
{
// Compute expansion
for (int k = 0; k < bs_element; ++k)
{
for (std::size_t i = 0; i < space_dimension; ++i)
{
for (std::size_t j = 0; j < value_size; ++j)
{
u[p * ushape[1] + (j * bs_element + k)]
+= coefficients[bs_element * i + k] * basis_values(i, j);
}
}
}
}
}
}
/// Name
std::string name = "u";
private:
// Function space
std::shared_ptr<const FunctionSpace<geometry_type>> _function_space;
// Vector of expansion coefficients (local)
std::shared_ptr<la::Vector<value_type>> _x;
};
} // namespace dolfinx::fem
|