1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
// Copyright (C) 2008-2023 Anders Logg and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "CoordinateElement.h"
#include "DofMap.h"
#include "FiniteElement.h"
#include <boost/uuid/uuid.hpp>
#include <boost/uuid/uuid_generators.hpp>
#include <concepts>
#include <cstddef>
#include <cstdint>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/mesh/Geometry.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <map>
#include <memory>
#include <vector>
namespace dolfinx::fem
{
/// @brief This class represents a finite element function space defined
/// by a mesh, a finite element, and a local-to-global map of the
/// degrees-of-freedom.
/// @tparam T The floating point (real) type of the mesh geometry and
/// the finite element basis.
template <std::floating_point T>
class FunctionSpace
{
public:
/// Geometry type of the Mesh that the FunctionSpace is defined on.
using geometry_type = T;
/// @brief Create function space for given mesh, element and
/// degree-of-freedom map.
/// @param[in] mesh Mesh that the space is defined on.
/// @param[in] element Finite element for the space.
/// @param[in] dofmap Degree-of-freedom map for the space.
FunctionSpace(std::shared_ptr<const mesh::Mesh<geometry_type>> mesh,
std::shared_ptr<const FiniteElement<geometry_type>> element,
std::shared_ptr<const DofMap> dofmap)
: _mesh(mesh), _elements{element}, _dofmaps{std::move(dofmap)},
_id(boost::uuids::random_generator()()), _root_space_id(_id)
{
// Do nothing
}
/// @brief Create function space for given mesh, elements and
/// degree-of-freedom maps.
/// @param[in] mesh Mesh that the space is defined on.
/// @param[in] elements Finite elements for the space, one for each cell type.
/// The elements must be ordered to be consistent with
/// mesh::topology::cell_types.
/// @param[in] dofmaps Degree-of-freedom maps for the space, one for each
/// element. The dofmaps must be ordered in the same way as the elements.
FunctionSpace(
std::shared_ptr<const mesh::Mesh<geometry_type>> mesh,
std::vector<std::shared_ptr<const FiniteElement<geometry_type>>> elements,
std::vector<std::shared_ptr<const DofMap>> dofmaps)
: _mesh(mesh), _elements(elements), _dofmaps(std::move(dofmaps)),
_id(boost::uuids::random_generator()()), _root_space_id(_id)
{
std::vector<mesh::CellType> cell_types = mesh->topology()->cell_types();
std::size_t num_cell_types = cell_types.size();
if (elements.size() != num_cell_types)
{
throw std::runtime_error(
"Number of elements must match number of cell types");
}
if (_dofmaps.size() != num_cell_types)
{
throw std::runtime_error(
"Number of dofmaps must match number of cell types");
}
for (std::size_t i = 0; i < num_cell_types; ++i)
{
if (elements.at(i)->cell_type() != cell_types.at(i))
throw std::runtime_error(
"Element cell types must match mesh cell types");
}
}
// Copy constructor (deleted)
FunctionSpace(const FunctionSpace& V) = delete;
/// Move constructor
FunctionSpace(FunctionSpace&& V) = default;
/// Destructor
virtual ~FunctionSpace() = default;
// Assignment operator (delete)
FunctionSpace& operator=(const FunctionSpace& V) = delete;
/// Move assignment operator
FunctionSpace& operator=(FunctionSpace&& V) = default;
/// @brief Create a subspace (view) for a specific component.
///
/// @note If the subspace is re-used, for performance reasons the
/// returned subspace should be stored by the caller to avoid repeated
/// re-computation of the subspace.
///
/// @param[in] component Subspace component.
/// @return A subspace.
FunctionSpace sub(const std::vector<int>& component) const
{
assert(_mesh);
assert(_elements.front());
assert(_dofmaps.front());
// Check that component is valid
if (component.empty())
throw std::runtime_error("Component must be non-empty");
// Extract sub-element
auto element = this->_elements.front()->extract_sub_element(component);
// Extract sub dofmap
auto dofmap = std::make_shared<DofMap>(
_dofmaps.front()->extract_sub_dofmap(component));
// Create new sub space
FunctionSpace sub_space(_mesh, element, dofmap);
// Set root space id and component w.r.t. root
sub_space._root_space_id = _root_space_id;
sub_space._component = _component;
sub_space._component.insert(sub_space._component.end(), component.begin(),
component.end());
return sub_space;
}
/// @brief Check whether V is subspace of this, or this itself
/// @param[in] V The space to be tested for inclusion
/// @return True if V is contained in or is equal to this
/// FunctionSpace
bool contains(const FunctionSpace& V) const
{
if (this == std::addressof(V)) // Spaces are the same (same memory address)
return true;
else if (_root_space_id != V._root_space_id) // Different root spaces
return false;
else if (_component.size()
> V._component.size()) // V is a superspace of *this
{
return false;
}
else if (!std::equal(_component.begin(), _component.end(),
V._component.begin())) // Components of 'this' are not
// the same as the leading
// components of V
{
return false;
}
else // Ok, V is really our subspace
return true;
}
/// Collapse a subspace and return a new function space and a map from
/// new to old dofs
/// @return The new function space and a map from new to old dofs
std::pair<FunctionSpace, std::vector<std::int32_t>> collapse() const
{
if (_component.empty())
throw std::runtime_error("Function space is not a subspace");
// Create collapsed DofMap
auto [_collapsed_dofmap, collapsed_dofs]
= _dofmaps.front()->collapse(_mesh->comm(), *_mesh->topology());
auto collapsed_dofmap
= std::make_shared<DofMap>(std::move(_collapsed_dofmap));
return {FunctionSpace(_mesh, _elements.front(), collapsed_dofmap),
std::move(collapsed_dofs)};
}
/// @brief Get the component with respect to the root superspace.
/// @return The component with respect to the root superspace, i.e.
/// `W.sub(1).sub(0) == [1, 0]`.
std::vector<int> component() const { return _component; }
/// @brief Indicate whether this function space represents a symmetric
/// 2-tensor.
bool symmetric() const
{
if (_elements.front())
return _elements.front()->symmetric();
return false;
}
/// @brief Tabulate the physical coordinates of all dofs on this
/// process.
///
/// @todo Remove - see function in interpolate.h
///
/// @param[in] transpose If false the returned data has shape
/// `(num_points, 3)`, otherwise it is transposed and has shape `(3,
/// num_points)`.
/// @return The dof coordinates `[([x0, y0, z0], [x1, y1, z1], ...)`
/// if `transpose` is false, and otherwise the returned data is
/// transposed. Storage is row-major.
std::vector<geometry_type> tabulate_dof_coordinates(bool transpose) const
{
if (!_component.empty())
{
throw std::runtime_error("Cannot tabulate coordinates for a "
"FunctionSpace that is a subspace.");
}
assert(_elements.front());
if (_elements.front()->is_mixed())
{
throw std::runtime_error(
"Cannot tabulate coordinates for a mixed FunctionSpace.");
}
// Geometric dimension
assert(_mesh);
assert(_elements.front());
const std::size_t gdim = _mesh->geometry().dim();
const int tdim = _mesh->topology()->dim();
// Get dofmap local size
assert(_dofmaps.front());
std::shared_ptr<const common::IndexMap> index_map
= _dofmaps.front()->index_map;
assert(index_map);
const int index_map_bs = _dofmaps.front()->index_map_bs();
const int dofmap_bs = _dofmaps.front()->bs();
const int element_block_size = _elements.front()->block_size();
const std::size_t scalar_dofs
= _elements.front()->space_dimension() / element_block_size;
const std::int32_t num_dofs
= index_map_bs * (index_map->size_local() + index_map->num_ghosts())
/ dofmap_bs;
// Get the dof coordinates on the reference element
if (!_elements.front()->interpolation_ident())
{
throw std::runtime_error("Cannot evaluate dof coordinates - this element "
"does not have pointwise evaluation.");
}
const auto [X, Xshape] = _elements.front()->interpolation_points();
// Get coordinate map
const CoordinateElement<geometry_type>& cmap = _mesh->geometry().cmap();
// Prepare cell geometry
auto x_dofmap = _mesh->geometry().dofmap();
const std::size_t num_dofs_g = cmap.dim();
std::span<const geometry_type> x_g = _mesh->geometry().x();
// Array to hold coordinates to return
const std::size_t shape_c0 = transpose ? 3 : num_dofs;
const std::size_t shape_c1 = transpose ? num_dofs : 3;
std::vector<geometry_type> coords(shape_c0 * shape_c1, 0);
using mdspan2_t = md::mdspan<geometry_type, md::dextents<std::size_t, 2>>;
using cmdspan4_t
= md::mdspan<const geometry_type, md::dextents<std::size_t, 4>>;
// Loop over cells and tabulate dofs
std::vector<geometry_type> x_b(scalar_dofs * gdim);
mdspan2_t x(x_b.data(), scalar_dofs, gdim);
std::vector<geometry_type> coordinate_dofs_b(num_dofs_g * gdim);
mdspan2_t coordinate_dofs(coordinate_dofs_b.data(), num_dofs_g, gdim);
auto map = _mesh->topology()->index_map(tdim);
assert(map);
const int num_cells = map->size_local() + map->num_ghosts();
std::span<const std::uint32_t> cell_info;
if (_elements.front()->needs_dof_transformations())
{
_mesh->topology_mutable()->create_entity_permutations();
cell_info = std::span(_mesh->topology()->get_cell_permutation_info());
}
const std::array<std::size_t, 4> phi_shape
= cmap.tabulate_shape(0, Xshape[0]);
std::vector<geometry_type> phi_b(
std::reduce(phi_shape.begin(), phi_shape.end(), 1, std::multiplies{}));
cmdspan4_t phi_full(phi_b.data(), phi_shape);
cmap.tabulate(0, X, Xshape, phi_b);
auto phi = md::submdspan(phi_full, 0, md::full_extent, md::full_extent, 0);
// TODO: Check transform
// Basis function reference-to-conforming transformation function
auto apply_dof_transformation
= _elements.front()->template dof_transformation_fn<geometry_type>(
doftransform::standard);
for (int c = 0; c < num_cells; ++c)
{
// Extract cell geometry 'dofs'
auto x_dofs = md::submdspan(x_dofmap, c, md::full_extent);
for (std::size_t i = 0; i < x_dofs.size(); ++i)
for (std::size_t j = 0; j < gdim; ++j)
coordinate_dofs(i, j) = x_g[3 * x_dofs[i] + j];
// Tabulate dof coordinates on cell
cmap.push_forward(x, coordinate_dofs, phi);
apply_dof_transformation(
x_b, std::span(cell_info.data(), cell_info.size()), c, x.extent(1));
// Get cell dofmap
auto dofs = _dofmaps.front()->cell_dofs(c);
// Copy dof coordinates into vector
if (!transpose)
{
for (std::size_t i = 0; i < dofs.size(); ++i)
for (std::size_t j = 0; j < gdim; ++j)
coords[dofs[i] * 3 + j] = x(i, j);
}
else
{
for (std::size_t i = 0; i < dofs.size(); ++i)
for (std::size_t j = 0; j < gdim; ++j)
coords[j * num_dofs + dofs[i]] = x(i, j);
}
}
return coords;
}
/// The mesh
std::shared_ptr<const mesh::Mesh<geometry_type>> mesh() const
{
return _mesh;
}
/// The finite element
std::shared_ptr<const FiniteElement<geometry_type>> element() const
{
if (_elements.size() > 1)
{
throw std::runtime_error(
"FunctionSpace has multiple elements, call `elements` instead.");
}
return elements(0);
}
/// The finite elements
std::shared_ptr<const FiniteElement<geometry_type>>
elements(int cell_type_idx) const
{
return _elements.at(cell_type_idx);
}
/// The dofmap
std::shared_ptr<const DofMap> dofmap() const
{
if (_dofmaps.size() > 1)
{
throw std::runtime_error(
"FunctionSpace has multiple dofmaps, call `dofmaps` instead.");
}
return dofmaps(0);
}
/// The dofmaps
std::shared_ptr<const DofMap> dofmaps(int cell_type_idx) const
{
return _dofmaps.at(cell_type_idx);
}
private:
// The mesh
std::shared_ptr<const mesh::Mesh<geometry_type>> _mesh;
// The finite element
std::vector<std::shared_ptr<const FiniteElement<geometry_type>>> _elements;
// The dofmap
std::vector<std::shared_ptr<const DofMap>> _dofmaps;
// The component w.r.t. to root space
std::vector<int> _component;
// Unique identifier for the space and for its root space
boost::uuids::uuid _id;
boost::uuids::uuid _root_space_id;
};
/// @brief Extract FunctionSpaces for (0) rows blocks and (1) columns
/// blocks from a rectangular array of (test, trial) space pairs.
///
/// The test space must be the same for each row and the trial spaces
/// must be the same for each column. Raises an exception if there is an
/// inconsistency. e.g. if each form in row i does not have the same
/// test space then an exception is raised.
///
/// @param[in] V Vector function spaces for (0) each row block and (1)
/// each column block
template <dolfinx::scalar T>
std::array<std::vector<std::shared_ptr<const FunctionSpace<T>>>, 2>
common_function_spaces(
const std::vector<
std::vector<std::array<std::shared_ptr<const FunctionSpace<T>>, 2>>>& V)
{
assert(!V.empty());
std::vector<std::shared_ptr<const FunctionSpace<T>>> spaces0(V.size(),
nullptr);
std::vector<std::shared_ptr<const FunctionSpace<T>>> spaces1(V.front().size(),
nullptr);
// Loop over rows
for (std::size_t i = 0; i < V.size(); ++i)
{
// Loop over columns
for (std::size_t j = 0; j < V[i].size(); ++j)
{
auto& V0 = V[i][j][0];
auto& V1 = V[i][j][1];
if (V0 and V1)
{
if (!spaces0[i])
spaces0[i] = V0;
else
{
if (spaces0[i] != V0)
throw std::runtime_error("Mismatched test space for row.");
}
if (!spaces1[j])
spaces1[j] = V1;
else
{
if (spaces1[j] != V1)
throw std::runtime_error("Mismatched trial space for column.");
}
}
}
}
// Check that there are no null entries
if (std::find(spaces0.begin(), spaces0.end(), nullptr) != spaces0.end())
throw std::runtime_error("Could not deduce all block test spaces.");
if (std::find(spaces1.begin(), spaces1.end(), nullptr) != spaces1.end())
throw std::runtime_error("Could not deduce all block trial spaces.");
return {spaces0, spaces1};
}
/// Type deduction
template <typename U, typename V, typename W>
FunctionSpace(U mesh, V element, W dofmap)
-> FunctionSpace<typename std::remove_cvref<
typename U::element_type>::type::geometry_type::value_type>;
} // namespace dolfinx::fem
|