1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
// Copyright (C) 2018-2019 Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "DofMap.h"
#include "Form.h"
#include "FunctionSpace.h"
#include "traits.h"
#include "utils.h"
#include <algorithm>
#include <dolfinx/la/utils.h>
#include <dolfinx/mesh/Geometry.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <functional>
#include <iterator>
#include <span>
#include <tuple>
#include <vector>
namespace dolfinx::fem::impl
{
/// @brief Typedef
using mdspan2_t = md::mdspan<const std::int32_t, md::dextents<std::size_t, 2>>;
/// @brief Execute kernel over cells and accumulate result in a matrix.
///
/// @tparam T Matrix/form scalar type.
/// @param mat_set Function that accumulates computed entries into a
/// matrix.
/// @param[in] x_dofmap Degree-of-freedom map for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] cells Cell indices to execute the kernel over. These are
/// the indices into the geometry dofmap `x_dofmap`.
/// @param[in] dofmap0 Test function (row) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices.
/// @param[in] P0 Function that applies transformation `P_0 A` in-place
/// to the computed tensor `A` to transform its test degrees-of-freedom.
/// @param[in] dofmap1 Trial function (column) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices.
/// @param[in] P1T Function that applies transformation `A P_1^T`
/// in-place to to the computed tensor `A` to transform trial
/// degrees-of-freedom.
/// @param bc0 Marker for rows with Dirichlet boundary conditions
/// applied.
/// @param bc1 Marker for columns with Dirichlet boundary conditions
/// applied.
/// @param kernel Kernel function to execute over each cell.
/// @param[in] coeffs Coefficient data in the kernel. It has shape
/// `(cells.size(), num_cell_coeffs)`. `coeffs(i, j)` is the `j`th
/// coefficient for cell `i`.
/// @param constants Constant data.
/// @param cell_info0 Cell permutation information for the test
/// function mesh.
/// @param cell_info1 Cell permutation information for the trial
/// function mesh.
template <dolfinx::scalar T>
void assemble_cells_matrix(
la::MatSet<T> auto mat_set, mdspan2_t x_dofmap,
md::mdspan<const scalar_value_t<T>,
md::extents<std::size_t, md::dynamic_extent, 3>>
x,
std::span<const std::int32_t> cells,
std::tuple<mdspan2_t, int, std::span<const std::int32_t>> dofmap0,
fem::DofTransformKernel<T> auto P0,
std::tuple<mdspan2_t, int, std::span<const std::int32_t>> dofmap1,
fem::DofTransformKernel<T> auto P1T, std::span<const std::int8_t> bc0,
std::span<const std::int8_t> bc1, FEkernel<T> auto kernel,
md::mdspan<const T, md::dextents<std::size_t, 2>> coeffs,
std::span<const T> constants, std::span<const std::uint32_t> cell_info0,
std::span<const std::uint32_t> cell_info1)
{
if (cells.empty())
return;
const auto [dmap0, bs0, cells0] = dofmap0;
const auto [dmap1, bs1, cells1] = dofmap1;
// Iterate over active cells
const int num_dofs0 = dmap0.extent(1);
const int num_dofs1 = dmap1.extent(1);
const int ndim0 = bs0 * num_dofs0;
const int ndim1 = bs1 * num_dofs1;
std::vector<T> Ae(ndim0 * ndim1);
std::vector<scalar_value_t<T>> cdofs(3 * x_dofmap.extent(1));
// Iterate over active cells
assert(cells0.size() == cells.size());
assert(cells1.size() == cells.size());
for (std::size_t c = 0; c < cells.size(); ++c)
{
// Cell index in integration domain mesh (c), test function mesh
// (c0) and trial function mesh (c1)
std::int32_t cell = cells[c];
std::int32_t cell0 = cells0[c];
std::int32_t cell1 = cells1[c];
// Get cell coordinates/geometry
auto x_dofs = md::submdspan(x_dofmap, cell, md::full_extent);
for (std::size_t i = 0; i < x_dofs.size(); ++i)
std::copy_n(&x(x_dofs[i], 0), 3, std::next(cdofs.begin(), 3 * i));
// Tabulate tensor
std::ranges::fill(Ae, 0);
kernel(Ae.data(), &coeffs(c, 0), constants.data(), cdofs.data(), nullptr,
nullptr, nullptr);
// Compute A = P_0 \tilde{A} P_1^T (dof transformation)
P0(Ae, cell_info0, cell0, ndim1); // B = P0 \tilde{A}
P1T(Ae, cell_info1, cell1, ndim0); // A = B P1_T
// Zero rows/columns for essential bcs
std::span dofs0(dmap0.data_handle() + cell0 * num_dofs0, num_dofs0);
std::span dofs1(dmap1.data_handle() + cell1 * num_dofs1, num_dofs1);
if (!bc0.empty())
{
for (int i = 0; i < num_dofs0; ++i)
{
for (int k = 0; k < bs0; ++k)
{
if (bc0[bs0 * dofs0[i] + k])
{
// Zero row bs0 * i + k
const int row = bs0 * i + k;
std::fill_n(std::next(Ae.begin(), ndim1 * row), ndim1, 0);
}
}
}
}
if (!bc1.empty())
{
for (int j = 0; j < num_dofs1; ++j)
{
for (int k = 0; k < bs1; ++k)
{
if (bc1[bs1 * dofs1[j] + k])
{
// Zero column bs1 * j + k
const int col = bs1 * j + k;
for (int row = 0; row < ndim0; ++row)
Ae[row * ndim1 + col] = 0;
}
}
}
}
mat_set(dofs0, dofs1, Ae);
}
}
/// @brief Execute kernel over entities of codimension ≥ 1 and accumulate result
/// in a matrix.
///
/// Each entity is represented by (i) a cell that the entity is attached to
/// and (ii) the local index of the entity with respect to the cell. The
/// kernel is executed for each entity. The kernel can access data
/// (e.g., coefficients, basis functions) associated with the attached cell.
/// However, entities may be attached to more than one cell. This function
/// therefore computes 'one-sided' integrals, i.e. evaluates integrals as seen
/// from cell used to define the entity.
///
/// @tparam T Matrix/form scalar type.
/// @param[in] mat_set Function that accumulates computed entries into a
/// matrix.
/// @param[in] x_dofmap Dofmap for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] entities Integration entities (in the integration domain mesh) to
/// execute the kernel over. These are pairs (cell, local entity index)
/// @param[in] dofmap0 Test function (row) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices.
/// @param[in] P0 Function that applies transformation P0.A in-place to
/// transform test degrees-of-freedom.
/// @param[in] dofmap1 Trial function (column) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices.
/// @param[in] P1T Function that applies transformation A.P1^T in-place
/// to transform trial degrees-of-freedom.
/// @param[in] bc0 Marker for rows with Dirichlet boundary conditions
/// applied.
/// @param[in] bc1 Marker for columns with Dirichlet boundary conditions
/// applied.
/// @param[in] kernel Kernel function to execute over each cell.
/// @param[in] coeffs Coefficient data array of shape `(cells.size(),
/// cstride)`.
/// @param[in] constants Constant data.
/// @param[in] cell_info0 Cell permutation information for the test
/// function mesh.
/// @param[in] cell_info1 Cell permutation information for the trial
/// function mesh.
/// @param[in] perms Entity permutation integer. Empty if entity
/// permutations are not required.
template <dolfinx::scalar T>
void assemble_entities(
la::MatSet<T> auto mat_set, mdspan2_t x_dofmap,
md::mdspan<const scalar_value_t<T>,
md::extents<std::size_t, md::dynamic_extent, 3>>
x,
md::mdspan<const std::int32_t,
std::extents<std::size_t, md::dynamic_extent, 2>>
entities,
std::tuple<mdspan2_t, int,
md::mdspan<const std::int32_t,
std::extents<std::size_t, md::dynamic_extent, 2>>>
dofmap0,
fem::DofTransformKernel<T> auto P0,
std::tuple<mdspan2_t, int,
md::mdspan<const std::int32_t,
std::extents<std::size_t, md::dynamic_extent, 2>>>
dofmap1,
fem::DofTransformKernel<T> auto P1T, std::span<const std::int8_t> bc0,
std::span<const std::int8_t> bc1, FEkernel<T> auto kernel,
md::mdspan<const T, md::dextents<std::size_t, 2>> coeffs,
std::span<const T> constants, std::span<const std::uint32_t> cell_info0,
std::span<const std::uint32_t> cell_info1,
md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms)
{
if (entities.empty())
return;
const auto [dmap0, bs0, entities0] = dofmap0;
const auto [dmap1, bs1, entities1] = dofmap1;
// Data structures used in assembly
std::vector<scalar_value_t<T>> cdofs(3 * x_dofmap.extent(1));
const int num_dofs0 = dmap0.extent(1);
const int num_dofs1 = dmap1.extent(1);
const int ndim0 = bs0 * num_dofs0;
const int ndim1 = bs1 * num_dofs1;
std::vector<T> Ae(ndim0 * ndim1);
assert(entities0.size() == entities.size());
assert(entities1.size() == entities.size());
for (std::size_t f = 0; f < entities.extent(0); ++f)
{
// Cell in the integration domain, local entity index relative to the
// integration domain cell, and cells in the test and trial function
// meshes
std::int32_t cell = entities(f, 0);
std::int32_t local_entity = entities(f, 1);
std::int32_t cell0 = entities0(f, 0);
std::int32_t cell1 = entities1(f, 0);
// Get cell coordinates/geometry
auto x_dofs = md::submdspan(x_dofmap, cell, md::full_extent);
for (std::size_t i = 0; i < x_dofs.size(); ++i)
std::copy_n(&x(x_dofs[i], 0), 3, std::next(cdofs.begin(), 3 * i));
// Permutations
std::uint8_t perm = perms.empty() ? 0 : perms(cell, local_entity);
// Tabulate tensor
std::ranges::fill(Ae, 0);
kernel(Ae.data(), &coeffs(f, 0), constants.data(), cdofs.data(),
&local_entity, &perm, nullptr);
P0(Ae, cell_info0, cell0, ndim1);
P1T(Ae, cell_info1, cell1, ndim0);
// Zero rows/columns for essential bcs
std::span dofs0(dmap0.data_handle() + cell0 * num_dofs0, num_dofs0);
std::span dofs1(dmap1.data_handle() + cell1 * num_dofs1, num_dofs1);
if (!bc0.empty())
{
for (int i = 0; i < num_dofs0; ++i)
{
for (int k = 0; k < bs0; ++k)
{
if (bc0[bs0 * dofs0[i] + k])
{
// Zero row bs0 * i + k
const int row = bs0 * i + k;
std::fill_n(std::next(Ae.begin(), ndim1 * row), ndim1, 0);
}
}
}
}
if (!bc1.empty())
{
for (int j = 0; j < num_dofs1; ++j)
{
for (int k = 0; k < bs1; ++k)
{
if (bc1[bs1 * dofs1[j] + k])
{
// Zero column bs1 * j + k
const int col = bs1 * j + k;
for (int row = 0; row < ndim0; ++row)
Ae[row * ndim1 + col] = 0;
}
}
}
}
mat_set(dofs0, dofs1, Ae);
}
}
/// @brief Execute kernel over interior facets and accumulate result in
/// a matrix.
///
/// @tparam T Matrix/form scalar type.
/// @param mat_set Function that accumulates computed entries into a
/// matrix.
/// @param[in] x_dofmap Dofmap for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] facets Facet indices (in the integration domain mesh) to
/// execute the kernel over.
/// @param[in] dofmap0 Test function (row) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices. Cells that don't exist in the test function domain should be
/// marked with -1 in the cell indices list.
/// @param[in] P0 Function that applies transformation P0.A in-place to
/// transform test degrees-of-freedom.
/// @param[in] dofmap1 Trial function (column) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices. Cells that don't exist in the trial function domain should be
/// marked with -1 in the cell indices list.
/// @param[in] P1T Function that applies transformation A.P1^T in-place
/// to transform trial degrees-of-freedom.
/// @param[in] bc0 Marker for rows with Dirichlet boundary conditions
/// applied.
/// @param[in] bc1 Marker for columns with Dirichlet boundary conditions
/// applied.
/// @param[in] kernel Kernel function to execute over each cell.
/// @param[in] coeffs The coefficient data array of shape (cells.size(),
/// cstride).
/// @param[in] constants Constant data.
/// @param[in] cell_info0 Cell permutation information for the test
/// function mesh.
/// @param[in] cell_info1 Cell permutation information for the trial
/// function mesh.
/// @param[in] perms Facet permutation integer. Empty if facet
/// permutations are not required.
template <dolfinx::scalar T>
void assemble_interior_facets(
la::MatSet<T> auto mat_set, mdspan2_t x_dofmap,
md::mdspan<const scalar_value_t<T>,
md::extents<std::size_t, md::dynamic_extent, 3>>
x,
md::mdspan<const std::int32_t,
std::extents<std::size_t, md::dynamic_extent, 2, 2>>
facets,
std::tuple<const DofMap&, int,
md::mdspan<const std::int32_t,
std::extents<std::size_t, md::dynamic_extent, 2, 2>>>
dofmap0,
fem::DofTransformKernel<T> auto P0,
std::tuple<const DofMap&, int,
md::mdspan<const std::int32_t,
std::extents<std::size_t, md::dynamic_extent, 2, 2>>>
dofmap1,
fem::DofTransformKernel<T> auto P1T, std::span<const std::int8_t> bc0,
std::span<const std::int8_t> bc1, FEkernel<T> auto kernel,
md::mdspan<const T, md::extents<std::size_t, md::dynamic_extent, 2,
md::dynamic_extent>>
coeffs,
std::span<const T> constants, std::span<const std::uint32_t> cell_info0,
std::span<const std::uint32_t> cell_info1,
md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms)
{
if (facets.empty())
return;
const auto [dmap0, bs0, facets0] = dofmap0;
const auto [dmap1, bs1, facets1] = dofmap1;
// Data structures used in assembly
using X = scalar_value_t<T>;
std::vector<X> cdofs(2 * x_dofmap.extent(1) * 3);
std::span<X> cdofs0(cdofs.data(), x_dofmap.extent(1) * 3);
std::span<X> cdofs1(cdofs.data() + x_dofmap.extent(1) * 3,
x_dofmap.extent(1) * 3);
const std::size_t dmap0_size = dmap0.map().extent(1);
const std::size_t dmap1_size = dmap1.map().extent(1);
const int num_rows = bs0 * 2 * dmap0_size;
const int num_cols = bs1 * 2 * dmap1_size;
// Temporaries for joint dofmaps
std::vector<T> Ae(num_rows * num_cols), be(num_rows);
std::vector<std::int32_t> dmapjoint0(2 * dmap0_size);
std::vector<std::int32_t> dmapjoint1(2 * dmap1_size);
assert(facets0.size() == facets.size());
assert(facets1.size() == facets.size());
for (std::size_t f = 0; f < facets.extent(0); ++f)
{
// Cells in integration domain, test function domain and trial
// function domain
std::array cells{facets(f, 0, 0), facets(f, 1, 0)};
std::array cells0{facets0(f, 0, 0), facets0(f, 1, 0)};
std::array cells1{facets1(f, 0, 0), facets1(f, 1, 0)};
// Local facets indices
std::array local_facet{facets(f, 0, 1), facets(f, 1, 1)};
// Get cell geometry
auto x_dofs0 = md::submdspan(x_dofmap, cells[0], md::full_extent);
for (std::size_t i = 0; i < x_dofs0.size(); ++i)
std::copy_n(&x(x_dofs0[i], 0), 3, std::next(cdofs0.begin(), 3 * i));
auto x_dofs1 = md::submdspan(x_dofmap, cells[1], md::full_extent);
for (std::size_t i = 0; i < x_dofs1.size(); ++i)
std::copy_n(&x(x_dofs1[i], 0), 3, std::next(cdofs1.begin(), 3 * i));
// Get dof maps for cells and pack
// When integrating over interfaces between two domains, the test function
// might only be defined on one side, so we check which cells exist in the
// test function domain
std::span<const std::int32_t> dmap0_cell0
= cells0[0] >= 0 ? dmap0.cell_dofs(cells0[0])
: std::span<const std::int32_t>();
std::span<const std::int32_t> dmap0_cell1
= cells0[1] >= 0 ? dmap0.cell_dofs(cells0[1])
: std::span<const std::int32_t>();
std::ranges::copy(dmap0_cell0, dmapjoint0.begin());
std::ranges::copy(dmap0_cell1, std::next(dmapjoint0.begin(), dmap0_size));
// Check which cells exist in the trial function domain
std::span<const std::int32_t> dmap1_cell0
= cells1[0] >= 0 ? dmap1.cell_dofs(cells1[0])
: std::span<const std::int32_t>();
std::span<const std::int32_t> dmap1_cell1
= cells1[1] >= 0 ? dmap1.cell_dofs(cells1[1])
: std::span<const std::int32_t>();
std::ranges::copy(dmap1_cell0, dmapjoint1.begin());
std::ranges::copy(dmap1_cell1, std::next(dmapjoint1.begin(), dmap1_size));
// Tabulate tensor
std::ranges::fill(Ae, 0);
std::array perm = perms.empty()
? std::array<std::uint8_t, 2>{0, 0}
: std::array{perms(cells[0], local_facet[0]),
perms(cells[1], local_facet[1])};
kernel(Ae.data(), &coeffs(f, 0, 0), constants.data(), cdofs.data(),
local_facet.data(), perm.data(), nullptr);
// Local element layout is a 2x2 block matrix with structure
//
// cell0cell0 | cell0cell1
// cell1cell0 | cell1cell1
//
// where each block is element tensor of size (dmap0, dmap1).
// Only apply transformation when cells exist
if (cells0[0] >= 0)
P0(Ae, cell_info0, cells0[0], num_cols);
if (cells0[1] >= 0)
{
std::span sub_Ae0(Ae.data() + bs0 * dmap0_size * num_cols,
bs0 * dmap0_size * num_cols);
P0(sub_Ae0, cell_info0, cells0[1], num_cols);
}
if (cells1[0] >= 0)
P1T(Ae, cell_info1, cells1[0], num_rows);
if (cells1[1] >= 0)
{
for (int row = 0; row < num_rows; ++row)
{
// DOFs for dmap1 and cell1 are not stored contiguously in the
// block matrix, so each row needs a separate span access
std::span sub_Ae1(Ae.data() + row * num_cols + bs1 * dmap1_size,
bs1 * dmap1_size);
P1T(sub_Ae1, cell_info1, cells1[1], 1);
}
}
// Zero rows/columns for essential bcs
if (!bc0.empty())
{
for (std::size_t i = 0; i < dmapjoint0.size(); ++i)
{
for (int k = 0; k < bs0; ++k)
{
if (bc0[bs0 * dmapjoint0[i] + k])
{
// Zero row bs0 * i + k
std::fill_n(std::next(Ae.begin(), num_cols * (bs0 * i + k)),
num_cols, 0);
}
}
}
}
if (!bc1.empty())
{
for (std::size_t j = 0; j < dmapjoint1.size(); ++j)
{
for (int k = 0; k < bs1; ++k)
{
if (bc1[bs1 * dmapjoint1[j] + k])
{
// Zero column bs1 * j + k
for (int m = 0; m < num_rows; ++m)
Ae[m * num_cols + bs1 * j + k] = 0;
}
}
}
}
mat_set(dmapjoint0, dmapjoint1, Ae);
}
}
/// @brief Assemble (accumulate) into a matrix.
///
/// Rows (bc0) and columns (bc1) with Dirichlet conditions are zeroed.
/// Markers (bc0 and bc1) can be empty if no Dirichlet conditions are
/// applied.
///
/// @tparam T Scalar type.
/// @tparam U Geometry type.
/// @param[in] mat_set Function that accumulates computed entries into a
/// matrix.
/// @param[in] a Bilinear form to assemble.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] constants Constants that appear in `a`.
/// @param[in] coefficients Coefficients that appear in `a`.
/// @param bc0 Marker for rows with Dirichlet boundary conditions
/// applied.
/// @param bc1 Marker for columns with Dirichlet boundary conditions
/// applied.
template <dolfinx::scalar T, std::floating_point U>
void assemble_matrix(
la::MatSet<T> auto mat_set, const Form<T, U>& a,
md::mdspan<const scalar_value_t<T>,
md::extents<std::size_t, md::dynamic_extent, 3>>
x,
std::span<const T> constants,
const std::map<std::pair<IntegralType, int>,
std::pair<std::span<const T>, int>>& coefficients,
std::span<const std::int8_t> bc0, std::span<const std::int8_t> bc1)
{
// Integration domain mesh
std::shared_ptr<const mesh::Mesh<U>> mesh = a.mesh();
assert(mesh);
// Test function mesh
auto mesh0 = a.function_spaces().at(0)->mesh();
assert(mesh0);
// Trial function mesh
auto mesh1 = a.function_spaces().at(1)->mesh();
assert(mesh1);
// TODO: Mixed topology with exterior and interior facet integrals.
//
// NOTE: Can't just loop over cell types for interior facet integrals
// because we have a kernel per combination of comparable cell types,
// rather than one per cell type. Also, we need the dofmaps for two
// different cell types at the same time.
const int num_cell_types = mesh->topology()->cell_types().size();
for (int cell_type_idx = 0; cell_type_idx < num_cell_types; ++cell_type_idx)
{
// Geometry dofmap and data
mdspan2_t x_dofmap = mesh->geometry().dofmap(cell_type_idx);
// Get dofmap data
std::shared_ptr<const fem::DofMap> dofmap0
= a.function_spaces().at(0)->dofmaps(cell_type_idx);
std::shared_ptr<const fem::DofMap> dofmap1
= a.function_spaces().at(1)->dofmaps(cell_type_idx);
assert(dofmap0);
assert(dofmap1);
auto dofs0 = dofmap0->map();
const int bs0 = dofmap0->bs();
auto dofs1 = dofmap1->map();
const int bs1 = dofmap1->bs();
auto element0 = a.function_spaces().at(0)->elements(cell_type_idx);
assert(element0);
auto element1 = a.function_spaces().at(1)->elements(cell_type_idx);
assert(element1);
fem::DofTransformKernel<T> auto P0
= element0->template dof_transformation_fn<T>(doftransform::standard);
fem::DofTransformKernel<T> auto P1T
= element1->template dof_transformation_right_fn<T>(
doftransform::transpose);
std::span<const std::uint32_t> cell_info0;
std::span<const std::uint32_t> cell_info1;
if (element0->needs_dof_transformations()
or element1->needs_dof_transformations()
or a.needs_facet_permutations())
{
mesh0->topology_mutable()->create_entity_permutations();
mesh1->topology_mutable()->create_entity_permutations();
cell_info0 = std::span(mesh0->topology()->get_cell_permutation_info());
cell_info1 = std::span(mesh1->topology()->get_cell_permutation_info());
}
for (int i = 0; i < a.num_integrals(IntegralType::cell, cell_type_idx); ++i)
{
auto fn = a.kernel(IntegralType::cell, i, cell_type_idx);
assert(fn);
std::span cells = a.domain(IntegralType::cell, i, cell_type_idx);
std::span cells0 = a.domain_arg(IntegralType::cell, 0, i, cell_type_idx);
std::span cells1 = a.domain_arg(IntegralType::cell, 1, i, cell_type_idx);
auto& [coeffs, cstride] = coefficients.at({IntegralType::cell, i});
assert(cells.size() * cstride == coeffs.size());
impl::assemble_cells_matrix(
mat_set, x_dofmap, x, cells, {dofs0, bs0, cells0}, P0,
{dofs1, bs1, cells1}, P1T, bc0, bc1, fn,
md::mdspan(coeffs.data(), cells.size(), cstride), constants,
cell_info0, cell_info1);
}
md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> facet_perms;
if (a.needs_facet_permutations())
{
mesh::CellType cell_type = mesh->topology()->cell_types()[cell_type_idx];
int num_facets_per_cell
= mesh::cell_num_entities(cell_type, mesh->topology()->dim() - 1);
mesh->topology_mutable()->create_entity_permutations();
const std::vector<std::uint8_t>& p
= mesh->topology()->get_facet_permutations();
facet_perms = md::mdspan(p.data(), p.size() / num_facets_per_cell,
num_facets_per_cell);
}
for (int i = 0;
i < a.num_integrals(IntegralType::interior_facet, cell_type_idx); ++i)
{
if (num_cell_types > 1)
{
throw std::runtime_error("Interior facet integrals with mixed "
"topology aren't supported yet");
}
using mdspanx22_t
= md::mdspan<const std::int32_t,
md::extents<std::size_t, md::dynamic_extent, 2, 2>>;
using mdspanx2x_t
= md::mdspan<const T, md::extents<std::size_t, md::dynamic_extent, 2,
md::dynamic_extent>>;
auto fn = a.kernel(IntegralType::interior_facet, i, 0);
assert(fn);
auto& [coeffs, cstride]
= coefficients.at({IntegralType::interior_facet, i});
std::span facets = a.domain(IntegralType::interior_facet, i, 0);
std::span facets0 = a.domain_arg(IntegralType::interior_facet, 0, i, 0);
std::span facets1 = a.domain_arg(IntegralType::interior_facet, 1, i, 0);
assert((facets.size() / 4) * 2 * cstride == coeffs.size());
impl::assemble_interior_facets(
mat_set, x_dofmap, x,
mdspanx22_t(facets.data(), facets.size() / 4, 2, 2),
{*dofmap0, bs0,
mdspanx22_t(facets0.data(), facets0.size() / 4, 2, 2)},
P0,
{*dofmap1, bs1,
mdspanx22_t(facets1.data(), facets1.size() / 4, 2, 2)},
P1T, bc0, bc1, fn,
mdspanx2x_t(coeffs.data(), facets.size() / 4, 2, cstride), constants,
cell_info0, cell_info1, facet_perms);
}
for (auto itg_type : {fem::IntegralType::exterior_facet,
fem::IntegralType::vertex, fem::IntegralType::ridge})
{
md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms
= itg_type == fem::IntegralType::exterior_facet
? facet_perms
: md::mdspan<const std::uint8_t,
md::dextents<std::size_t, 2>>{};
for (int i = 0; i < a.num_integrals(itg_type, cell_type_idx); ++i)
{
if (num_cell_types > 1)
{
throw std::runtime_error("Exterior facet integrals with mixed "
"topology aren't supported yet");
}
using mdspanx2_t
= md::mdspan<const std::int32_t,
md::extents<std::size_t, md::dynamic_extent, 2>>;
auto fn = a.kernel(itg_type, i, 0);
assert(fn);
auto& [coeffs, cstride] = coefficients.at({itg_type, i});
std::span e = a.domain(itg_type, i, 0);
mdspanx2_t entities(e.data(), e.size() / 2, 2);
std::span e0 = a.domain_arg(itg_type, 0, i, 0);
mdspanx2_t entities0(e0.data(), e0.size() / 2, 2);
std::span e1 = a.domain_arg(itg_type, 1, i, 0);
mdspanx2_t entities1(e1.data(), e1.size() / 2, 2);
assert((entities.size() / 2) * cstride == coeffs.size());
impl::assemble_entities(
mat_set, x_dofmap, x, entities, {dofs0, bs0, entities0}, P0,
{dofs1, bs1, entities1}, P1T, bc0, bc1, fn,
md::mdspan(coeffs.data(), entities.extent(0), cstride), constants,
cell_info0, cell_info1, perms);
}
}
}
}
} // namespace dolfinx::fem::impl
|