File: assemble_vector_impl.h

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (1447 lines) | stat: -rw-r--r-- 56,693 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
// Copyright (C) 2018-2025 Garth N. Wells and Paul T. Kühner
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#pragma once

#include "Constant.h"
#include "DirichletBC.h"
#include "DofMap.h"
#include "Form.h"
#include "traits.h"
#include "utils.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <cstdint>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/mesh/Geometry.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <functional>
#include <memory>
#include <optional>
#include <span>
#include <vector>

namespace dolfinx::fem
{
template <dolfinx::scalar T, std::floating_point U>
class DirichletBC;

}
namespace dolfinx::fem::impl
{
/// @cond
using mdspan2_t = md::mdspan<const std::int32_t, md::dextents<std::size_t, 2>>;
/// @endcond

/// @brief Apply boundary condition lifting for cell integrals.
///
/// @tparam T The scalar type.
/// @tparam _bs0 The block size of the form test function dof map. If
/// less than zero the block size is determined at runtime. If `_bs0` is
/// positive the block size is used as a compile-time constant, which
/// has performance benefits.
/// @tparam _bs1 The block size of the trial function dof map.
/// @param[in,out] b Vector to modify.
/// @param x_dofmap Dofmap for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] kernel Kernel function to execute over each cell.
/// @param[in] cells Cell indices to execute the kernel over. These are
/// the indices into the geometry dofmap `x_dofmap`.
/// @param[in] dofmap0 Test function (row) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices.
/// @param[in] P0 Function that applies transformation `P_0 A` in-place
/// to the computed tensor `A` to transform its test degrees-of-freedom.
/// @param[in] dofmap1 Trial function (column) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices.
/// @param[in] P1T Function that applies transformation `A P_1^T`
/// in-place to to the computed tensor `A` to transform trial
/// degrees-of-freedom.
/// @param[in] constants Constant data in the kernel.
/// @param[in] coeffs Coefficient data in the kernel. It has shape
/// `(cells.size(), num_cell_coeffs)`. `coeffs(i, j)` is the `j`th
/// coefficient for cell `i`.
/// @param[in] cell_info0 Cell permutation information for the test
/// function mesh.
/// @param[in] cell_info1 Cell permutation information for the trial
/// function mesh.
/// @param[in] bc_values1 Value for entries with an applied boundary
/// condition.
/// @param[in] bc_markers1 Marker to identify which DOFs have boundary
/// conditions applied.
/// @param[in] x0 Vector used in the lifting.
/// @param[in] alpha Scaling to apply.
template <int _bs0 = -1, int _bs1 = -1, typename V,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void _lift_bc_cells(
    V&& b, mdspan2_t x_dofmap,
    md::mdspan<const scalar_value_t<T>,
               md::extents<std::size_t, md::dynamic_extent, 3>>
        x,
    FEkernel<T> auto kernel, std::span<const std::int32_t> cells,
    std::tuple<mdspan2_t, int, std::span<const std::int32_t>> dofmap0,
    fem::DofTransformKernel<T> auto P0,
    std::tuple<mdspan2_t, int, std::span<const std::int32_t>> dofmap1,
    fem::DofTransformKernel<T> auto P1T, std::span<const T> constants,
    md::mdspan<const T, md::dextents<std::size_t, 2>> coeffs,
    std::span<const std::uint32_t> cell_info0,
    std::span<const std::uint32_t> cell_info1, std::span<const T> bc_values1,
    std::span<const std::int8_t> bc_markers1, std::span<const T> x0, T alpha)
{
  if (cells.empty())
    return;

  const auto [dmap0, bs0, cells0] = dofmap0;
  const auto [dmap1, bs1, cells1] = dofmap1;
  assert(_bs0 < 0 or _bs0 == bs0);
  assert(_bs1 < 0 or _bs1 == bs1);

  const int num_rows = bs0 * dmap0.extent(1);
  const int num_cols = bs1 * dmap1.extent(1);

  // Data structures used in bc application
  std::vector<scalar_value_t<T>> cdofs(3 * x_dofmap.extent(1));
  std::vector<T> Ae(num_rows * num_cols), be(num_rows);
  assert(cells0.size() == cells.size());
  assert(cells1.size() == cells.size());
  for (std::size_t index = 0; index < cells.size(); ++index)
  {
    // Cell index in integration domain mesh, test function mesh, and trial
    // function mesh
    std::int32_t c = cells[index];
    std::int32_t c0 = cells0[index];
    std::int32_t c1 = cells1[index];

    // Get dof maps for cell
    auto dofs1 = md::submdspan(dmap1, c1, md::full_extent);

    // Check if bc is applied to cell
    bool has_bc = false;
    for (std::size_t j = 0; j < dofs1.size(); ++j)
    {
      if constexpr (_bs1 > 0)
      {
        for (int k = 0; k < _bs1; ++k)
        {
          assert(_bs1 * dofs1[j] + k < (int)bc_markers1.size());
          if (bc_markers1[_bs1 * dofs1[j] + k])
          {
            has_bc = true;
            break;
          }
        }
      }
      else
      {
        for (int k = 0; k < bs1; ++k)
        {
          assert(bs1 * dofs1[j] + k < (int)bc_markers1.size());
          if (bc_markers1[bs1 * dofs1[j] + k])
          {
            has_bc = true;
            break;
          }
        }
      }
    }

    if (!has_bc)
      continue;

    // Get cell coordinates/geometry
    auto x_dofs = md::submdspan(x_dofmap, c, md::full_extent);
    for (std::size_t i = 0; i < x_dofs.size(); ++i)
      std::copy_n(&x(x_dofs[i], 0), 3, std::next(cdofs.begin(), 3 * i));

    // Size data structure for assembly
    auto dofs0 = md::submdspan(dmap0, c0, md::full_extent);

    std::ranges::fill(Ae, 0);
    kernel(Ae.data(), &coeffs(index, 0), constants.data(), cdofs.data(),
           nullptr, nullptr, nullptr);
    P0(Ae, cell_info0, c0, num_cols);
    P1T(Ae, cell_info1, c1, num_rows);

    // Size data structure for assembly
    std::ranges::fill(be, 0);
    for (std::size_t j = 0; j < dofs1.size(); ++j)
    {
      if constexpr (_bs1 > 0)
      {
        for (int k = 0; k < _bs1; ++k)
        {
          const std::int32_t jj = _bs1 * dofs1[j] + k;
          assert(jj < (int)bc_markers1.size());
          if (bc_markers1[jj])
          {
            const T bc = bc_values1[jj];
            const T _x0 = x0.empty() ? 0 : x0[jj];
            // const T _x0 = 0;
            // be -= Ae.col(bs1 * j + k) * alpha * (bc - _x0);
            for (int m = 0; m < num_rows; ++m)
              be[m] -= Ae[m * num_cols + _bs1 * j + k] * alpha * (bc - _x0);
          }
        }
      }
      else
      {
        for (int k = 0; k < bs1; ++k)
        {
          const std::int32_t jj = bs1 * dofs1[j] + k;
          assert(jj < (int)bc_markers1.size());
          if (bc_markers1[jj])
          {
            const T bc = bc_values1[jj];
            const T _x0 = x0.empty() ? 0 : x0[jj];
            // be -= Ae.col(bs1 * j + k) * alpha * (bc - _x0);
            for (int m = 0; m < num_rows; ++m)
              be[m] -= Ae[m * num_cols + bs1 * j + k] * alpha * (bc - _x0);
          }
        }
      }
    }

    for (std::size_t i = 0; i < dofs0.size(); ++i)
    {
      if constexpr (_bs0 > 0)
      {
        for (int k = 0; k < _bs0; ++k)
          b[_bs0 * dofs0[i] + k] += be[_bs0 * i + k];
      }
      else
      {
        for (int k = 0; k < bs0; ++k)
          b[bs0 * dofs0[i] + k] += be[bs0 * i + k];
      }
    }
  }
}

/// @brief Apply lifting for exterior facet integrals.
///
/// @tparam T Scalar type.
/// @param[in,out] b Vector to modify.
/// @param[in] x_dofmap Degree-of-freedom map for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] kernel Kernel function to execute over each entity.
/// @param[in] entities Entities to execute the kernel over, where for the
/// `i`th entity `enities(i, 0)` is the attached cell and `entities(i, 1)`
/// is the local index of the facet relative to the cell.
/// @param[in] dofmap0 Test function (row) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap
/// indices. See `facets` documentation for the dofmap indices layout.
/// @param[in] P0 Function that applies the transformation `P_0 A`
/// in-place to `A` to transform the test degrees-of-freedom.
/// @param[in] dofmap1 Trial function (column) degree-of-freedom data.
/// See `dofmap0` for a description.
/// @param[in] P1T Function that applies the transformation `A P_1^T`
/// in-place to `A` to transform the trial degrees-of-freedom.
/// @param[in] constants Constant coefficient data in the kernel.
/// @param[in] coeffs Coefficient data in the kernel. It has shape
/// `(cells.size(), num_cell_coeffs)`. `coeffs(i, j)` is the `j`th
/// coefficient for cell `i`.
/// @param[in] cell_info0 Cell permutation information for the test
/// function mesh.
/// @param[in] cell_info1 Cell permutation information for the trial
/// function mesh.
/// @param[in] bc_values1 Values for entries with an applied boundary
/// condition.
/// @param[in] bc_markers1 Marker to identify which DOFs have boundary
/// conditions applied.
/// @param[in] x0 The vector used in the lifting.
/// @param[in] alpha Scaling to apply.
/// @param[in] perms Facet permutation data, where `(cell_idx,
/// local_facet_idx)` is the permutation value for the facet attached to
/// the cell `cell_idx` with local index `local_facet_idx` relative to
/// the cell. Empty if facet permutations are not required.
template <typename V,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void _lift_bc_entities(
    V&& b, mdspan2_t x_dofmap,
    md::mdspan<const scalar_value_t<T>,
               md::extents<std::size_t, md::dynamic_extent, 3>>
        x,
    FEkernel<T> auto kernel,
    md::mdspan<const std::int32_t,
               md::extents<std::size_t, md::dynamic_extent, 2>>
        entities,
    std::tuple<mdspan2_t, int,
               md::mdspan<const std::int32_t,
                          md::extents<std::size_t, md::dynamic_extent, 2>>>
        dofmap0,
    fem::DofTransformKernel<T> auto P0,
    std::tuple<mdspan2_t, int,
               md::mdspan<const std::int32_t,
                          md::extents<std::size_t, md::dynamic_extent, 2>>>
        dofmap1,
    fem::DofTransformKernel<T> auto P1T, std::span<const T> constants,
    md::mdspan<const T, md::dextents<std::size_t, 2>> coeffs,
    std::span<const std::uint32_t> cell_info0,
    std::span<const std::uint32_t> cell_info1, std::span<const T> bc_values1,
    std::span<const std::int8_t> bc_markers1, std::span<const T> x0, T alpha,
    md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms)
{
  if (entities.empty())
    return;

  const auto [dmap0, bs0, entities0] = dofmap0;
  const auto [dmap1, bs1, entities1] = dofmap1;

  const int num_rows = bs0 * dmap0.extent(1);
  const int num_cols = bs1 * dmap1.extent(1);

  // Data structures used in bc application
  std::vector<scalar_value_t<T>> cdofs(3 * x_dofmap.extent(1));
  std::vector<T> Ae(num_rows * num_cols), be(num_rows);
  assert(entities0.size() == entities.size());
  assert(entities1.size() == entities.size());
  for (std::size_t index = 0; index < entities.extent(0); ++index)
  {
    // Cell in integration domain, test function and trial function
    // meshes
    std::int32_t cell = entities(index, 0);
    std::int32_t cell0 = entities0(index, 0);
    std::int32_t cell1 = entities1(index, 0);

    // Local entity index
    std::int32_t local_entity = entities(index, 1);

    // Get dof maps for cell
    auto dofs1 = md::submdspan(dmap1, cell1, md::full_extent);

    // Check if bc is applied to cell
    bool has_bc = false;
    for (std::size_t j = 0; j < dofs1.size(); ++j)
    {
      for (int k = 0; k < bs1; ++k)
      {
        if (bc_markers1[bs1 * dofs1[j] + k])
        {
          has_bc = true;
          break;
        }
      }
    }

    if (!has_bc)
      continue;

    // Get cell coordinates/geometry
    auto x_dofs = md::submdspan(x_dofmap, cell, md::full_extent);
    for (std::size_t i = 0; i < x_dofs.size(); ++i)
      std::copy_n(&x(x_dofs[i], 0), 3, std::next(cdofs.begin(), 3 * i));

    // Size data structure for assembly
    auto dofs0 = md::submdspan(dmap0, cell0, md::full_extent);

    // Permutations
    std::uint8_t perm = perms.empty() ? 0 : perms(cell, local_entity);
    std::ranges::fill(Ae, 0);
    kernel(Ae.data(), &coeffs(index, 0), constants.data(), cdofs.data(),
           &local_entity, &perm, nullptr);
    P0(Ae, cell_info0, cell0, num_cols);
    P1T(Ae, cell_info1, cell1, num_rows);

    // Size data structure for assembly
    std::ranges::fill(be, 0);
    for (std::size_t j = 0; j < dofs1.size(); ++j)
    {
      for (int k = 0; k < bs1; ++k)
      {
        const std::int32_t jj = bs1 * dofs1[j] + k;
        if (bc_markers1[jj])
        {
          const T bc = bc_values1[jj];
          const T _x0 = x0.empty() ? 0 : x0[jj];
          // be -= Ae.col(bs1 * j + k) * alpha * (bc - _x0);
          for (int m = 0; m < num_rows; ++m)
            be[m] -= Ae[m * num_cols + bs1 * j + k] * alpha * (bc - _x0);
        }
      }
    }

    for (std::size_t i = 0; i < dofs0.size(); ++i)
      for (int k = 0; k < bs0; ++k)
        b[bs0 * dofs0[i] + k] += be[bs0 * i + k];
  }
}

/// @brief Apply lifting for interior facet integrals.
///
/// @tparam T Scalar type.
/// @param[in,out] b Vector to modify
/// @param[in] x_dofmap Degree-of-freedom map for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] kernel Kernel function to execute over each facet.
/// @param[in] facets Facets to execute the kernel over, where for the
/// `i`th facet `facets(i, 0, 0)` is the first attached cell and
/// `facets(i, 0, 1)` is the local index of the facet relative to the
/// first cell, and `facets(i, 1, 0)` is the second first attached cell
/// and `facets(i, 1, 1)` is the local index of the facet relative to
/// the second cell.
/// @param[in] dofmap0 Test function (row) degree-of-freedom data
/// holding the (0) dofmap, (1) dofmap block size and (2) dofmap cell
/// indices. See `facets` documentation for the dofmap indices layout.
/// Cells that don't exist in the test function domain should be
/// marked with -1 in the cell indices list.
/// @param[in] P0 Function that applies the transformation `P_0 A`
/// in-place to `A` to transform the test degrees-of-freedom.
/// @param[in] dofmap1 Trial function (column) degree-of-freedom data.
/// See `dofmap0` for a description.
/// @param[in] P1T Function that applies the transformation `A P_1^T`
/// in-place to `A` to transform the trial degrees-of-freedom.
/// @param[in] constants Constant coefficient data in the kernel.
/// @param[in] coeffs Coefficient data in the kernel. It has shape
/// `(cells.size(), num_cell_coeffs)`. `coeffs(i, j)` is the `j`th
/// coefficient for cell `i`.
/// @param[in] cell_info0 Cell permutation information for the test
/// function mesh.
/// @param[in] cell_info1 Cell permutation information for the trial
/// function mesh.
/// @param[in] bc_values1 Values for entries with an applied boundary
/// condition.
/// @param[in] bc_markers1 Marker to identify which DOFs have boundary
/// conditions applied.
/// @param[in] x0 Vector used in the lifting.
/// @param[in] alpha Scaling to apply
/// @param[in] perms Facet permutation data, where `(cell_idx,
/// local_facet_idx)` is the permutation value for the facet attached to
/// the cell `cell_idx` with local index `local_facet_idx` relative to
/// the cell. Empty if facet permutations are not required.
template <typename V,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void _lift_bc_interior_facets(
    V&& b, mdspan2_t x_dofmap,
    md::mdspan<const scalar_value_t<T>,
               md::extents<std::size_t, md::dynamic_extent, 3>>
        x,
    FEkernel<T> auto kernel,
    md::mdspan<const std::int32_t,
               md::extents<std::size_t, md::dynamic_extent, 2, 2>>
        facets,
    std::tuple<mdspan2_t, int,
               md::mdspan<const std::int32_t,
                          md::extents<std::size_t, md::dynamic_extent, 2, 2>>>
        dofmap0,
    fem::DofTransformKernel<T> auto P0,
    std::tuple<mdspan2_t, int,
               md::mdspan<const std::int32_t,
                          md::extents<std::size_t, md::dynamic_extent, 2, 2>>>
        dofmap1,
    fem::DofTransformKernel<T> auto P1T, std::span<const T> constants,
    md::mdspan<const T, md::extents<std::size_t, md::dynamic_extent, 2,
                                    md::dynamic_extent>>
        coeffs,
    std::span<const std::uint32_t> cell_info0,
    std::span<const std::uint32_t> cell_info1, std::span<const T> bc_values1,
    std::span<const std::int8_t> bc_markers1, std::span<const T> x0, T alpha,
    md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms)
{
  if (facets.empty())
    return;

  const auto [dmap0, bs0, facets0] = dofmap0;
  const auto [dmap1, bs1, facets1] = dofmap1;

  const int num_dofs0 = dmap0.extent(1);
  const int num_dofs1 = dmap1.extent(1);
  const int num_rows = bs0 * 2 * num_dofs0;
  const int num_cols = bs1 * 2 * num_dofs1;

  // Data structures used in assembly
  using X = scalar_value_t<T>;
  std::vector<X> cdofs(2 * x_dofmap.extent(1) * 3);
  std::span<X> cdofs0(cdofs.data(), x_dofmap.extent(1) * 3);
  std::span<X> cdofs1(cdofs.data() + x_dofmap.extent(1) * 3,
                      x_dofmap.extent(1) * 3);
  std::vector<T> Ae(num_rows * num_cols), be(num_rows);

  // Temporaries for joint dofmaps
  std::vector<std::int32_t> dmapjoint0(2 * num_dofs0);
  std::vector<std::int32_t> dmapjoint1(2 * num_dofs1);

  assert(facets0.size() == facets.size());
  assert(facets1.size() == facets.size());
  for (std::size_t f = 0; f < facets.extent(0); ++f)
  {
    // Cells in integration domain, test function domain and trial
    // function domain meshes
    std::array cells{facets(f, 0, 0), facets(f, 1, 0)};
    std::array cells0{facets0(f, 0, 0), facets0(f, 1, 0)};
    std::array cells1{facets1(f, 0, 0), facets1(f, 1, 0)};

    // Local facet indices
    std::array local_facet = {facets(f, 0, 1), facets(f, 1, 1)};

    // Get cell geometry
    auto x_dofs0 = md::submdspan(x_dofmap, cells[0], md::full_extent);
    for (std::size_t i = 0; i < x_dofs0.size(); ++i)
      std::copy_n(&x(x_dofs0[i], 0), 3, std::next(cdofs0.begin(), 3 * i));
    auto x_dofs1 = md::submdspan(x_dofmap, cells[1], md::full_extent);
    for (std::size_t i = 0; i < x_dofs1.size(); ++i)
      std::copy_n(&x(x_dofs1[i], 0), 3, std::next(cdofs1.begin(), 3 * i));

    // Get dof maps for cells and pack
    // When integrating over interfaces between two domains, the test function
    // might only be defined on one side, so we check which cells exist in the
    // test function domain
    std::span dmap0_cell0
        = cells0[0] >= 0
              ? std::span(dmap0.data_handle() + cells0[0] * num_dofs0,
                          num_dofs0)
              : std::span<const std::int32_t>();
    std::span dmap0_cell1
        = cells0[1] >= 0
              ? std::span(dmap0.data_handle() + cells0[1] * num_dofs0,
                          num_dofs0)
              : std::span<const std::int32_t>();

    std::ranges::copy(dmap0_cell0, dmapjoint0.begin());
    std::ranges::copy(dmap0_cell1, std::next(dmapjoint0.begin(), num_dofs0));

    // Check which cells exist in the trial function domain
    std::span<const std::int32_t> dmap1_cell0
        = cells1[0] >= 0
              ? std::span(dmap1.data_handle() + cells1[0] * num_dofs1,
                          num_dofs1)
              : std::span<const std::int32_t>();
    std::span<const std::int32_t> dmap1_cell1
        = cells1[1] >= 0
              ? std::span(dmap1.data_handle() + cells1[1] * num_dofs1,
                          num_dofs1)
              : std::span<const std::int32_t>();

    std::ranges::copy(dmap1_cell0, dmapjoint1.begin());
    std::ranges::copy(dmap1_cell1, std::next(dmapjoint1.begin(), num_dofs1));

    // Check if bc is applied to cell0
    bool has_bc = false;
    for (std::size_t j = 0; j < dmap1_cell0.size(); ++j)
    {
      for (int k = 0; k < bs1; ++k)
      {
        if (bc_markers1[bs1 * dmap1_cell0[j] + k])
        {
          has_bc = true;
          break;
        }
      }
    }

    // Check if bc is applied to cell1
    for (std::size_t j = 0; j < dmap1_cell1.size(); ++j)
    {
      for (int k = 0; k < bs1; ++k)
      {
        if (bc_markers1[bs1 * dmap1_cell1[j] + k])
        {
          has_bc = true;
          break;
        }
      }
    }

    if (!has_bc)
      continue;

    // Tabulate tensor
    std::ranges::fill(Ae, 0);
    std::array perm = perms.empty()
                          ? std::array<std::uint8_t, 2>{0, 0}
                          : std::array{perms(cells[0], local_facet[0]),
                                       perms(cells[1], local_facet[1])};
    kernel(Ae.data(), &coeffs(f, 0, 0), constants.data(), cdofs.data(),
           local_facet.data(), perm.data(), nullptr);

    if (cells0[0] >= 0)
      P0(Ae, cell_info0, cells0[0], num_cols);
    if (cells0[1] >= 0)
    {
      std::span sub_Ae0(Ae.data() + bs0 * num_dofs0 * num_cols,
                        bs0 * num_dofs1 * num_cols);
      P0(sub_Ae0, cell_info0, cells0[1], num_cols);
    }
    if (cells1[0] >= 0)
      P1T(Ae, cell_info1, cells1[0], num_rows);

    if (cells1[1] >= 0)
    {
      for (int row = 0; row < num_rows; ++row)
      {
        // DOFs for dmap1 and cell1 are not stored contiguously in
        // the block matrix, so each row needs a separate span access
        std::span sub_Ae1(Ae.data() + row * num_cols + bs1 * num_dofs1,
                          bs1 * num_dofs1);
        P1T(sub_Ae1, cell_info1, cells1[1], 1);
      }
    }

    std::ranges::fill(be, 0);

    // Compute b = b - A*b for cell0
    for (std::size_t j = 0; j < dmap1_cell0.size(); ++j)
    {
      for (int k = 0; k < bs1; ++k)
      {
        const std::int32_t jj = bs1 * dmap1_cell0[j] + k;
        if (bc_markers1[jj])
        {
          const T bc = bc_values1[jj];
          const T _x0 = x0.empty() ? 0 : x0[jj];
          // be -= Ae.col(bs1 * j + k) * alpha * (bc - _x0);
          for (int m = 0; m < num_rows; ++m)
            be[m] -= Ae[m * num_cols + bs1 * j + k] * alpha * (bc - _x0);
        }
      }
    }

    // Compute b = b - A*b for cell1
    const int offset = bs1 * num_dofs1;
    for (std::size_t j = 0; j < dmap1_cell1.size(); ++j)
    {
      for (int k = 0; k < bs1; ++k)
      {
        const std::int32_t jj = bs1 * dmap1_cell1[j] + k;
        if (bc_markers1[jj])
        {
          const T bc = bc_values1[jj];
          const T _x0 = x0.empty() ? 0 : x0[jj];
          // be -= Ae.col(offset + bs1 * j + k) * alpha * (bc - x0[jj]);
          for (int m = 0; m < num_rows; ++m)
          {
            be[m]
                -= Ae[m * num_cols + offset + bs1 * j + k] * alpha * (bc - _x0);
          }
        }
      }
    }

    for (std::size_t i = 0; i < dmap0_cell0.size(); ++i)
      for (int k = 0; k < bs0; ++k)
        b[bs0 * dmap0_cell0[i] + k] += be[bs0 * i + k];

    const int offset_be = bs0 * num_dofs0;
    for (std::size_t i = 0; i < dmap0_cell1.size(); ++i)
      for (int k = 0; k < bs0; ++k)
        b[bs0 * dmap0_cell1[i] + k] += be[offset_be + bs0 * i + k];
  }
}

/// @brief Execute kernel over cells and accumulate result in vector.
///
/// @tparam T  Scalar type
/// @tparam _bs Block size of the form test function dof map. If less
/// than zero the block size is determined at runtime. If `_bs` is
/// positive the block size is used as a compile-time constant, which
/// has performance benefits.
/// @param[in] P0 Function that applies transformation `P0.b` in-place
/// to `b` to transform test degrees-of-freedom.
/// @param[in,out] b Aray to accumulate into.
/// @param[in] x_dofmap Dofmap for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] cells Cell indices to execute the kernel over. These are
/// the indices into the geometry dofmap.
/// @param[in] dofmap Test function (row) degree-of-freedom data holding
/// the (0) dofmap, (1) dofmap block size and (2) dofmap cell indices.
/// @param[in] kernel Kernel function to execute over each cell.
/// @param[in] constants Constant coefficient data in the kernel.
/// @param[in] coeffs Coefficient data in the kernel. It has shape
/// `(cells.size(), num_cell_coeffs)`. `coeffs(i, j)` is the `j`th
/// coefficient for cell `i`.
/// @param[in] cell_info0 Cell permutation information for the test
/// function mesh.
template <int _bs = -1, typename V,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>

void assemble_cells(
    fem::DofTransformKernel<T> auto P0, V&& b, mdspan2_t x_dofmap,
    md::mdspan<const scalar_value_t<T>,
               md::extents<std::size_t, md::dynamic_extent, 3>>
        x,
    std::span<const std::int32_t> cells,
    std::tuple<mdspan2_t, int, std::span<const std::int32_t>> dofmap,
    FEkernel<T> auto kernel, std::span<const T> constants,
    md::mdspan<const T, md::dextents<std::size_t, 2>> coeffs,
    std::span<const std::uint32_t> cell_info0)
{
  if (cells.empty())
    return;

  const auto [dmap, bs, cells0] = dofmap;
  assert(_bs < 0 or _bs == bs);

  // Create data structures used in assembly
  std::vector<scalar_value_t<T>> cdofs(3 * x_dofmap.extent(1));
  std::vector<T> be(bs * dmap.extent(1));

  // Iterate over active cells
  for (std::size_t index = 0; index < cells.size(); ++index)
  {
    // Integration domain celland test function cell
    std::int32_t c = cells[index];
    std::int32_t c0 = cells0[index];

    // Get cell coordinates/geometry
    auto x_dofs = md::submdspan(x_dofmap, c, md::full_extent);
    for (std::size_t i = 0; i < x_dofs.size(); ++i)
      std::copy_n(&x(x_dofs[i], 0), 3, std::next(cdofs.begin(), 3 * i));

    // Tabulate vector for cell
    std::ranges::fill(be, 0);
    kernel(be.data(), &coeffs(index, 0), constants.data(), cdofs.data(),
           nullptr, nullptr, nullptr);
    P0(be, cell_info0, c0, 1);

    // Scatter cell vector to 'global' vector array
    auto dofs = md::submdspan(dmap, c0, md::full_extent);
    if constexpr (_bs > 0)
    {
      for (std::size_t i = 0; i < dofs.size(); ++i)
        for (int k = 0; k < _bs; ++k)
          b[_bs * dofs[i] + k] += be[_bs * i + k];
    }
    else
    {
      for (std::size_t i = 0; i < dofs.size(); ++i)
        for (int k = 0; k < bs; ++k)
          b[bs * dofs[i] + k] += be[bs * i + k];
    }
  }
}

/// @brief Execute kernel over entities of codimension ≥ 1 and accumulate result
/// in a matrix.
///
/// Each entity is represented by (i) a cell that the entity is attached to
/// and (ii) the local index of the entity  with respect to the cell. The
/// kernel is executed for each entity. The kernel can access data
/// (e.g., coefficients, basis functions) associated with the attached cell.
/// However, entities may be attached to more than one cell. This function
/// therefore computes 'one-sided' integrals, i.e. evaluates integrals as seen
/// from cell used to define the entity.
///
/// @tparam T Scalar type.
/// @tparam _bs The block size of the form test function dof map. If
/// less than zero the block size is determined at runtime. If `_bs` is
/// positive the block size is used as a compile-time constant, which
/// has performance benefits.
/// @param P0 Function that applies transformation `P0.b` in-place to
/// transform test degrees-of-freedom.
/// @param[in,out] b The vector to accumulate into.
/// @param[in] x_dofmap Dofmap for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] entities Entities (in the integration domain mesh) to execute
/// the kernel over.
/// @param[in] dofmap Test function (row) degree-of-freedom data holding
/// the (0) dofmap, (1) dofmap block size and (2) dofmap cell indices.
/// @param[in] kernel Kernel function to execute over each cell.
/// @param[in] constants The constant data.
/// @param[in] coeffs The coefficient data array of shape
/// `(cells.size(), coeffs_per_cell)`.
/// @param[in] cell_info0 The cell permutation information for the test
/// function mesh.
/// @param[in] perms Entity permutation integer. Empty if entity
/// permutations are not required.
template <int _bs = -1, typename V,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void assemble_entities(
    fem::DofTransformKernel<T> auto P0, V&& b, mdspan2_t x_dofmap,
    md::mdspan<const scalar_value_t<T>,
               md::extents<std::size_t, md::dynamic_extent, 3>>
        x,
    md::mdspan<const std::int32_t,
               std::extents<std::size_t, md::dynamic_extent, 2>>
        entities,
    std::tuple<mdspan2_t, int,
               md::mdspan<const std::int32_t,
                          std::extents<std::size_t, md::dynamic_extent, 2>>>
        dofmap,
    FEkernel<T> auto kernel, std::span<const T> constants,
    md::mdspan<const T, md::dextents<std::size_t, 2>> coeffs,
    std::span<const std::uint32_t> cell_info0,
    md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms)
{
  if (entities.empty())
    return;

  const auto [dmap, bs, entities0] = dofmap;
  assert(_bs < 0 or _bs == bs);

  // Create data structures used in assembly
  const int num_dofs = dmap.extent(1);
  std::vector<scalar_value_t<T>> cdofs(3 * x_dofmap.extent(1));
  std::vector<T> be(bs * num_dofs);
  assert(entities0.size() == entities.size());
  for (std::size_t f = 0; f < entities.extent(0); ++f)
  {
    // Cell in the integration domain, local facet index relative to the
    // integration domain cell, and cell in the test function mesh
    std::int32_t cell = entities(f, 0);
    std::int32_t local_entity = entities(f, 1);
    std::int32_t cell0 = entities0(f, 0);

    // Get cell coordinates/geometry
    auto x_dofs = md::submdspan(x_dofmap, cell, md::full_extent);
    for (std::size_t i = 0; i < x_dofs.size(); ++i)
      std::copy_n(&x(x_dofs[i], 0), 3, std::next(cdofs.begin(), 3 * i));

    // Permutations
    std::uint8_t perm = perms.empty() ? 0 : perms(cell, local_entity);

    // Tabulate element vector
    std::ranges::fill(be, 0);
    kernel(be.data(), &coeffs(f, 0), constants.data(), cdofs.data(),
           &local_entity, &perm, nullptr);
    P0(be, cell_info0, cell0, 1);

    // Add element vector to global vector
    auto dofs = md::submdspan(dmap, cell0, md::full_extent);
    if constexpr (_bs > 0)
    {
      for (std::size_t i = 0; i < dofs.size(); ++i)
        for (int k = 0; k < _bs; ++k)
          b[_bs * dofs[i] + k] += be[_bs * i + k];
    }
    else
    {
      for (std::size_t i = 0; i < dofs.size(); ++i)
        for (int k = 0; k < bs; ++k)
          b[bs * dofs[i] + k] += be[bs * i + k];
    }
  }
}

/// @brief Assemble linear form interior facet integrals into an vector.
/// @tparam T Scalar type.
/// @tparam _bs Block size of the form test function dof map. If less
/// than zero the block size is determined at runtime. If `_bs` is
/// positive the block size is used as a compile-time constant, which
/// has performance benefits.
/// @param P0 Function that applies transformation P0.A in-place to
/// transform trial degrees-of-freedom.
/// @param[in,out] b The vector to accumulate into.
/// @param[in] x_dofmap Dofmap for the mesh geometry.
/// @param[in] x Mesh geometry (coordinates).
/// @param[in] facets Facets (in the integration domain mesh) to execute
/// the kernel over.
/// @param[in] dofmap Test function (row) degree-of-freedom data holding
/// the (0) dofmap, (1) dofmap block size and (2) dofmap cell indices.
/// Cells that don't exist in the test function domain should be marked
/// with -1 in the cell indices list.
/// @param[in] kernel Kernel function to execute over each cell.
/// @param[in] constants The constant data
/// @param[in] coeffs Coefficient data array, withshape (cells.size(),
/// cstride).
/// @param[in] cell_info0 The cell permutation information for the test
/// function mesh.
/// @param[in] perms Facet permutation integer. Empty if facet
/// permutations are not required.
template <int _bs = -1, typename V,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void assemble_interior_facets(
    fem::DofTransformKernel<T> auto P0, V&& b, mdspan2_t x_dofmap,
    md::mdspan<const scalar_value_t<T>,
               md::extents<std::size_t, md::dynamic_extent, 3>>
        x,
    md::mdspan<const std::int32_t,
               std::extents<std::size_t, md::dynamic_extent, 2, 2>>
        facets,
    std::tuple<const DofMap&, int,
               md::mdspan<const std::int32_t,
                          std::extents<std::size_t, md::dynamic_extent, 2, 2>>>
        dofmap,
    FEkernel<T> auto kernel, std::span<const T> constants,
    md::mdspan<const T, md::extents<std::size_t, md::dynamic_extent, 2,
                                    md::dynamic_extent>>
        coeffs,
    std::span<const std::uint32_t> cell_info0,
    md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms)
{
  using X = scalar_value_t<T>;

  if (facets.empty())
    return;

  const auto [dmap, bs, facets0] = dofmap;
  assert(_bs < 0 or _bs == bs);

  // Create data structures used in assembly
  std::vector<X> cdofs(2 * x_dofmap.extent(1) * 3);
  std::span<X> cdofs0(cdofs.data(), x_dofmap.extent(1) * 3);
  std::span<X> cdofs1(cdofs.data() + x_dofmap.extent(1) * 3,
                      x_dofmap.extent(1) * 3);

  const std::size_t dmap_size = dmap.map().extent(1);
  std::vector<T> be(bs * 2 * dmap_size);

  assert(facets0.size() == facets.size());
  for (std::size_t f = 0; f < facets.extent(0); ++f)
  {
    // Cells in integration domain and test function domain meshes
    std::array<std::int32_t, 2> cells{facets(f, 0, 0), facets(f, 1, 0)};
    std::array<std::int32_t, 2> cells0{facets0(f, 0, 0), facets0(f, 1, 0)};

    // Local facet indices
    std::array<std::int32_t, 2> local_facet{facets(f, 0, 1), facets(f, 1, 1)};

    // Get cell geometry
    auto x_dofs0 = md::submdspan(x_dofmap, cells[0], md::full_extent);
    for (std::size_t i = 0; i < x_dofs0.size(); ++i)
      std::copy_n(&x(x_dofs0[i], 0), 3, std::next(cdofs0.begin(), 3 * i));
    auto x_dofs1 = md::submdspan(x_dofmap, cells[1], md::full_extent);
    for (std::size_t i = 0; i < x_dofs1.size(); ++i)
      std::copy_n(&x(x_dofs1[i], 0), 3, std::next(cdofs1.begin(), 3 * i));

    // Get dofmaps for cells. When integrating over interfaces between
    // two domains, the test function might only be defined on one side,
    // so we check which cells exist in the test function domain.
    std::span dmap0 = cells0[0] >= 0 ? dmap.cell_dofs(cells0[0])
                                     : std::span<const std::int32_t>();
    std::span dmap1 = cells0[1] >= 0 ? dmap.cell_dofs(cells0[1])
                                     : std::span<const std::int32_t>();

    // Tabulate element vector
    std::ranges::fill(be, 0);
    std::array perm = perms.empty()
                          ? std::array<std::uint8_t, 2>{0, 0}
                          : std::array{perms(cells[0], local_facet[0]),
                                       perms(cells[1], local_facet[1])};
    kernel(be.data(), &coeffs(f, 0, 0), constants.data(), cdofs.data(),
           local_facet.data(), perm.data(), nullptr);

    if (cells0[0] >= 0)
      P0(be, cell_info0, cells0[0], 1);
    if (cells0[1] >= 0)
    {
      std::span sub_be(be.data() + bs * dmap_size, bs * dmap_size);
      P0(sub_be, cell_info0, cells0[1], 1);
    }

    // Add element vector to global vector
    if constexpr (_bs > 0)
    {
      for (std::size_t i = 0; i < dmap0.size(); ++i)
        for (int k = 0; k < _bs; ++k)
          b[_bs * dmap0[i] + k] += be[_bs * i + k];
      for (std::size_t i = 0; i < dmap1.size(); ++i)
        for (int k = 0; k < _bs; ++k)
          b[_bs * dmap1[i] + k] += be[_bs * (i + dmap_size) + k];
    }
    else
    {
      for (std::size_t i = 0; i < dmap0.size(); ++i)
        for (int k = 0; k < bs; ++k)
          b[bs * dmap0[i] + k] += be[bs * i + k];
      for (std::size_t i = 0; i < dmap1.size(); ++i)
        for (int k = 0; k < bs; ++k)
          b[bs * dmap1[i] + k] += be[bs * (i + dmap_size) + k];
    }
  }
}

/// Modify RHS vector to account for boundary condition such that:
///
/// b <- b - alpha * A.(x_bc - x0)
///
/// @param[in,out] b The vector to be modified
/// @param[in] a The bilinear form that generates A
/// @param[in] x_dofmap Mesh geometry dofmap
/// @param[in] x Mesh coordinates
/// @param[in] constants Constants that appear in `a`
/// @param[in] coefficients Coefficients that appear in `a`
/// @param[in] bc_values1 The boundary condition 'values'
/// @param[in] bc_markers1 The indices (columns of A, rows of x) to
/// which bcs belong
/// @param[in] x0 The array used in the lifting, typically a 'current
/// solution' in a Newton method
/// @param[in] alpha Scaling to apply
template <typename V, std::floating_point U,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void lift_bc(V&& b, const Form<T, U>& a, mdspan2_t x_dofmap,
             md::mdspan<const scalar_value_t<T>,
                        md::extents<std::size_t, md::dynamic_extent, 3>>
                 x,
             std::span<const T> constants,
             const std::map<std::pair<IntegralType, int>,
                            std::pair<std::span<const T>, int>>& coefficients,
             std::span<const T> bc_values1,
             std::span<const std::int8_t> bc_markers1, std::span<const T> x0,
             T alpha)
{
  // Integration domain mesh
  std::shared_ptr<const mesh::Mesh<U>> mesh = a.mesh();
  assert(mesh);

  // Test function mesh
  auto mesh0 = a.function_spaces().at(0)->mesh();
  assert(mesh0);

  // Trial function mesh
  auto mesh1 = a.function_spaces().at(1)->mesh();
  assert(mesh1);

  // Get dofmap for columns and rows of a
  assert(a.function_spaces().at(0));
  assert(a.function_spaces().at(1));
  auto dofmap0 = a.function_spaces()[0]->dofmap()->map();
  const int bs0 = a.function_spaces()[0]->dofmap()->bs();
  auto element0 = a.function_spaces()[0]->element();
  auto dofmap1 = a.function_spaces()[1]->dofmap()->map();
  const int bs1 = a.function_spaces()[1]->dofmap()->bs();
  auto element1 = a.function_spaces()[1]->element();
  assert(element0);

  std::span<const std::uint32_t> cell_info0;
  std::span<const std::uint32_t> cell_info1;
  // TODO: Check for each element instead
  if (element0->needs_dof_transformations()
      or element1->needs_dof_transformations() or a.needs_facet_permutations())
  {
    mesh0->topology_mutable()->create_entity_permutations();
    mesh1->topology_mutable()->create_entity_permutations();
    cell_info0 = std::span(mesh0->topology()->get_cell_permutation_info());
    cell_info1 = std::span(mesh1->topology()->get_cell_permutation_info());
  }

  fem::DofTransformKernel<T> auto P0
      = element0->template dof_transformation_fn<T>(doftransform::standard);
  fem::DofTransformKernel<T> auto P1T
      = element1->template dof_transformation_right_fn<T>(
          doftransform::transpose);

  for (int i = 0; i < a.num_integrals(IntegralType::cell, 0); ++i)
  {
    auto kernel = a.kernel(IntegralType::cell, i, 0);
    assert(kernel);
    auto& [_coeffs, cstride] = coefficients.at({IntegralType::cell, i});
    std::span cells = a.domain(IntegralType::cell, i, 0);
    std::span cells0 = a.domain_arg(IntegralType::cell, 0, i, 0);
    std::span cells1 = a.domain_arg(IntegralType::cell, 1, i, 0);
    assert(_coeffs.size() == cells.size() * cstride);
    auto coeffs = md::mdspan(_coeffs.data(), cells.size(), cstride);
    if (bs0 == 1 and bs1 == 1)
    {
      _lift_bc_cells<1, 1>(b, x_dofmap, x, kernel, cells,
                           {dofmap0, bs0, cells0}, P0, {dofmap1, bs1, cells1},
                           P1T, constants, coeffs, cell_info0, cell_info1,
                           bc_values1, bc_markers1, x0, alpha);
    }
    else if (bs0 == 3 and bs1 == 3)
    {
      _lift_bc_cells<3, 3>(b, x_dofmap, x, kernel, cells,
                           {dofmap0, bs0, cells0}, P0, {dofmap1, bs1, cells1},
                           P1T, constants, coeffs, cell_info0, cell_info1,
                           bc_values1, bc_markers1, x0, alpha);
    }
    else
    {
      _lift_bc_cells(b, x_dofmap, x, kernel, cells, {dofmap0, bs0, cells0}, P0,
                     {dofmap1, bs1, cells1}, P1T, constants, coeffs, cell_info0,
                     cell_info1, bc_values1, bc_markers1, x0, alpha);
    }
  }

  md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> facet_perms;
  if (a.needs_facet_permutations())
  {
    mesh::CellType cell_type = mesh->topology()->cell_type();
    int num_facets_per_cell
        = mesh::cell_num_entities(cell_type, mesh->topology()->dim() - 1);
    mesh->topology_mutable()->create_entity_permutations();
    const std::vector<std::uint8_t>& p
        = mesh->topology()->get_facet_permutations();
    facet_perms = md::mdspan(p.data(), p.size() / num_facets_per_cell,
                             num_facets_per_cell);
  }

  for (int i = 0; i < a.num_integrals(IntegralType::interior_facet, 0); ++i)
  {
    auto kernel = a.kernel(IntegralType::interior_facet, i, 0);
    assert(kernel);
    auto& [coeffs, cstride]
        = coefficients.at({IntegralType::interior_facet, i});

    using mdspanx22_t
        = md::mdspan<const std::int32_t,
                     md::extents<std::size_t, md::dynamic_extent, 2, 2>>;
    using mdspanx2x_t
        = md::mdspan<const T, md::extents<std::size_t, md::dynamic_extent, 2,
                                          md::dynamic_extent>>;
    std::span f = a.domain(IntegralType::interior_facet, i, 0);
    mdspanx22_t facets(f.data(), f.size() / 4, 2, 2);
    std::span f0 = a.domain_arg(IntegralType::interior_facet, 0, i, 0);
    mdspanx22_t facets0(f0.data(), f0.size() / 4, 2, 2);
    std::span f1 = a.domain_arg(IntegralType::interior_facet, 1, i, 0);
    mdspanx22_t facets1(f1.data(), f1.size() / 4, 2, 2);
    _lift_bc_interior_facets(
        b, x_dofmap, x, kernel, facets, {dofmap0, bs0, facets0}, P0,
        {dofmap1, bs1, facets1}, P1T, constants,
        mdspanx2x_t(coeffs.data(), facets.extent(0), 2, cstride), cell_info0,
        cell_info1, bc_values1, bc_markers1, x0, alpha, facet_perms);
  }

  for (auto itg_type : {fem::IntegralType::exterior_facet,
                        fem::IntegralType::vertex, fem::IntegralType::ridge})
  {
    md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms
        = (itg_type == fem::IntegralType::exterior_facet)
              ? facet_perms
              : md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>>{};

    for (int i = 0; i < a.num_integrals(itg_type, 0); ++i)
    {
      auto kernel = a.kernel(itg_type, i, 0);
      assert(kernel);
      auto& [coeffs, cstride] = coefficients.at({itg_type, i});

      using mdspanx2_t
          = md::mdspan<const std::int32_t,
                       md::extents<std::size_t, md::dynamic_extent, 2>>;
      std::span e = a.domain(itg_type, i, 0);
      mdspanx2_t entities(e.data(), e.size() / 2, 2);
      std::span e0 = a.domain_arg(itg_type, 0, i, 0);
      mdspanx2_t entities0(e0.data(), e0.size() / 2, 2);
      std::span e1 = a.domain_arg(itg_type, 1, i, 0);
      mdspanx2_t entities1(e1.data(), e1.size() / 2, 2);
      assert(coeffs.size() == entities.extent(0) * cstride);
      _lift_bc_entities(
          b, x_dofmap, x, kernel, entities, {dofmap0, bs0, entities0}, P0,
          {dofmap1, bs1, entities1}, P1T, constants,
          md::mdspan(coeffs.data(), entities.extent(0), cstride), cell_info0,
          cell_info1, bc_values1, bc_markers1, x0, alpha, perms);
    }
  }
}

/// Modify b such that:
///
///   b <- b - alpha * A_j.(g_j - x0_j)
///
/// where j is a block (nest) row index. For a non-blocked problem j =
/// 0. The boundary conditions bc1 are on the trial spaces V_j. The
/// forms in [a] must have the same test space as L (from which b was
/// built), but the trial space may differ. If x0 is not supplied, then
/// it is treated as zero.
///
/// @param[in,out] b Array to be modified.
/// @param[in] a Bilinear forms, where `a[j]` is the form that generates
/// `A_j`.
/// @param[in] constants Constants that appear in `a`.
/// @param[in] coeffs Coefficients that appear in `a`.
/// @param[in] bcs1 List of boundary conditions for each block, i.e.
/// `bcs1[2]` are the boundary conditions applied to the columns of
/// `a[2]`/ `x0[2]` block.
/// @param[in] x0 Arrays used in the lifting.
/// @param[in] alpha Scaling to apply.
template <typename V, std::floating_point U,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void apply_lifting(
    V&& b,
    std::vector<std::optional<std::reference_wrapper<const Form<T, U>>>> a,
    const std::vector<std::span<const T>>& constants,
    const std::vector<std::map<std::pair<IntegralType, int>,
                               std::pair<std::span<const T>, int>>>& coeffs,
    const std::vector<
        std::vector<std::reference_wrapper<const DirichletBC<T, U>>>>& bcs1,
    const std::vector<std::span<const T>>& x0, T alpha)
{
  if (!x0.empty() and x0.size() != a.size())
  {
    throw std::runtime_error(
        "Mismatch in size between x0 and bilinear form in assembler.");
  }

  if (a.size() != bcs1.size())
  {
    throw std::runtime_error(
        "Mismatch in size between a and bcs in assembler.");
  }

  for (std::size_t j = 0; j < a.size(); ++j)
  {
    std::vector<std::int8_t> bc_markers1;
    std::vector<T> bc_values1;
    if (a[j] and !bcs1[j].empty())
    {
      // Extract data from mesh
      std::shared_ptr<const mesh::Mesh<U>> mesh = a[j]->get().mesh();
      if (!mesh)
        throw std::runtime_error("Unable to extract a mesh.");
      mdspan2_t x_dofmap = mesh->geometry().dofmap();
      std::span _x = mesh->geometry().x();
      md::mdspan<const scalar_value_t<T>,
                 md::extents<std::size_t, md::dynamic_extent, 3>>
          x(_x.data(), _x.size() / 3, 3);

      assert(a[j]->get().function_spaces().at(0));
      auto V1 = a[j]->get().function_spaces()[1];
      assert(V1);
      auto map1 = V1->dofmap()->index_map;
      const int bs1 = V1->dofmap()->index_map_bs();
      assert(map1);
      const int crange = bs1 * (map1->size_local() + map1->num_ghosts());
      bc_markers1.assign(crange, false);
      bc_values1.assign(crange, 0);
      for (auto& bc : bcs1[j])
      {
        bc.get().mark_dofs(bc_markers1);
        bc.get().set(bc_values1, std::nullopt, 1);
      }

      if (!x0.empty())
      {
        lift_bc(b, a[j]->get(), x_dofmap, x, constants[j], coeffs[j],
                std::span<const T>(bc_values1), bc_markers1, x0[j], alpha);
      }
      else
      {
        lift_bc(b, a[j]->get(), x_dofmap, x, constants[j], coeffs[j],
                std::span<const T>(bc_values1), bc_markers1,
                std::span<const T>(), alpha);
      }
    }
  }
}

/// @brief Assemble linear form into a vector.
/// @param[in,out] b Array to be accumulated into. It will not be zeroed
/// before assembly.
/// @param[in] L Linear forms to assemble into b.
/// @param[in] x Mesh coordinates.
/// @param[in] constants Packed constants that appear in `L`.
/// @param[in] coefficients Packed coefficients that appear in `L`.
template <typename V, std::floating_point U,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void assemble_vector(
    V&& b, const Form<T, U>& L,
    md::mdspan<const scalar_value_t<T>,
               md::extents<std::size_t, md::dynamic_extent, 3>>
        x,
    std::span<const T> constants,
    const std::map<std::pair<IntegralType, int>,
                   std::pair<std::span<const T>, int>>& coefficients)
{
  // Integration domain mesh
  std::shared_ptr<const mesh::Mesh<U>> mesh = L.mesh();
  assert(mesh);

  // Test function mesh
  auto mesh0 = L.function_spaces().at(0)->mesh();
  assert(mesh0);

  const int num_cell_types = mesh->topology()->cell_types().size();
  for (int cell_type_idx = 0; cell_type_idx < num_cell_types; ++cell_type_idx)
  {
    // Geometry dofmap and data
    mdspan2_t x_dofmap = mesh->geometry().dofmap(cell_type_idx);

    // Get dofmap data
    assert(L.function_spaces().at(0));
    auto element = L.function_spaces().at(0)->elements(cell_type_idx);
    assert(element);
    std::shared_ptr<const fem::DofMap> dofmap
        = L.function_spaces().at(0)->dofmaps(cell_type_idx);
    assert(dofmap);
    auto dofs = dofmap->map();
    const int bs = dofmap->bs();

    fem::DofTransformKernel<T> auto P0
        = element->template dof_transformation_fn<T>(doftransform::standard);

    std::span<const std::uint32_t> cell_info0;
    if (element->needs_dof_transformations() or L.needs_facet_permutations())
    {
      mesh0->topology_mutable()->create_entity_permutations();
      cell_info0 = std::span(mesh0->topology()->get_cell_permutation_info());
    }

    for (int i = 0; i < L.num_integrals(IntegralType::cell, 0); ++i)
    {
      auto fn = L.kernel(IntegralType::cell, i, cell_type_idx);
      assert(fn);
      std::span cells = L.domain(IntegralType::cell, i, cell_type_idx);
      std::span cells0 = L.domain_arg(IntegralType::cell, 0, i, cell_type_idx);
      auto& [coeffs, cstride] = coefficients.at({IntegralType::cell, i});
      assert(cells.size() * cstride == coeffs.size());
      if (bs == 1)
      {
        impl::assemble_cells<1>(
            P0, b, x_dofmap, x, cells, {dofs, bs, cells0}, fn, constants,
            md::mdspan(coeffs.data(), cells.size(), cstride), cell_info0);
      }
      else if (bs == 3)
      {
        impl::assemble_cells<3>(
            P0, b, x_dofmap, x, cells, {dofs, bs, cells0}, fn, constants,
            md::mdspan(coeffs.data(), cells.size(), cstride), cell_info0);
      }
      else
      {
        impl::assemble_cells(
            P0, b, x_dofmap, x, cells, {dofs, bs, cells0}, fn, constants,
            md::mdspan(coeffs.data(), cells.size(), cstride), cell_info0);
      }
    }

    md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> facet_perms;
    if (L.needs_facet_permutations())
    {
      mesh::CellType cell_type = mesh->topology()->cell_types()[cell_type_idx];
      int num_facets_per_cell
          = mesh::cell_num_entities(cell_type, mesh->topology()->dim() - 1);
      mesh->topology_mutable()->create_entity_permutations();
      const std::vector<std::uint8_t>& p
          = mesh->topology()->get_facet_permutations();
      facet_perms = md::mdspan(p.data(), p.size() / num_facets_per_cell,
                               num_facets_per_cell);
    }

    using mdspanx2_t
        = md::mdspan<const std::int32_t,
                     md::extents<std::size_t, md::dynamic_extent, 2>>;

    for (int i = 0; i < L.num_integrals(IntegralType::interior_facet, 0); ++i)
    {
      using mdspanx22_t
          = md::mdspan<const std::int32_t,
                       md::extents<std::size_t, md::dynamic_extent, 2, 2>>;
      using mdspanx2x_t
          = md::mdspan<const T, md::extents<std::size_t, md::dynamic_extent, 2,
                                            md::dynamic_extent>>;

      auto fn = L.kernel(IntegralType::interior_facet, i, 0);
      assert(fn);
      auto& [coeffs, cstride]
          = coefficients.at({IntegralType::interior_facet, i});
      std::span facets = L.domain(IntegralType::interior_facet, i, 0);
      std::span facets1 = L.domain_arg(IntegralType::interior_facet, 0, i, 0);
      assert((facets.size() / 4) * 2 * cstride == coeffs.size());
      if (bs == 1)
      {
        impl::assemble_interior_facets<1>(
            P0, b, x_dofmap, x,
            mdspanx22_t(facets.data(), facets.size() / 4, 2, 2),
            {*dofmap, bs,
             mdspanx22_t(facets1.data(), facets1.size() / 4, 2, 2)},
            fn, constants,
            mdspanx2x_t(coeffs.data(), facets.size() / 4, 2, cstride),
            cell_info0, facet_perms);
      }
      else if (bs == 3)
      {
        impl::assemble_interior_facets<3>(
            P0, b, x_dofmap, x,
            mdspanx22_t(facets.data(), facets.size() / 4, 2, 2),
            {*dofmap, bs,
             mdspanx22_t(facets1.data(), facets1.size() / 4, 2, 2)},
            fn, constants,
            mdspanx2x_t(coeffs.data(), facets.size() / 4, 2, cstride),
            cell_info0, facet_perms);
      }
      else
      {
        impl::assemble_interior_facets(
            P0, b, x_dofmap, x,
            mdspanx22_t(facets.data(), facets.size() / 4, 2, 2),
            {*dofmap, bs,
             mdspanx22_t(facets1.data(), facets1.size() / 4, 2, 2)},
            fn, constants,
            mdspanx2x_t(coeffs.data(), facets.size() / 4, 2, cstride),
            cell_info0, facet_perms);
      }
    }

    for (auto itg_type : {fem::IntegralType::exterior_facet,
                          fem::IntegralType::vertex, fem::IntegralType::ridge})
    {
      md::mdspan<const std::uint8_t, md::dextents<std::size_t, 2>> perms
          = (itg_type == fem::IntegralType::exterior_facet)
                ? facet_perms
                : md::mdspan<const std::uint8_t,
                             md::dextents<std::size_t, 2>>{};
      for (int i = 0; i < L.num_integrals(itg_type, 0); ++i)
      {
        auto fn = L.kernel(itg_type, i, 0);
        assert(fn);
        auto& [coeffs, cstride] = coefficients.at({itg_type, i});
        std::span e = L.domain(itg_type, i, 0);
        mdspanx2_t entities(e.data(), e.size() / 2, 2);
        std::span e1 = L.domain_arg(itg_type, 0, i, 0);
        mdspanx2_t entities1(e1.data(), e1.size() / 2, 2);
        assert((entities.size() / 2) * cstride == coeffs.size());
        if (bs == 1)
        {
          impl::assemble_entities<1>(
              P0, b, x_dofmap, x, entities, {dofs, bs, entities1}, fn,
              constants, md::mdspan(coeffs.data(), entities.extent(0), cstride),
              cell_info0, perms);
        }
        else if (bs == 3)
        {
          impl::assemble_entities<3>(
              P0, b, x_dofmap, x, entities, {dofs, bs, entities1}, fn,
              constants,
              md::mdspan(coeffs.data(), entities.size() / 2, cstride),
              cell_info0, perms);
        }
        else
        {
          impl::assemble_entities(
              P0, b, x_dofmap, x, entities, {dofs, bs, entities1}, fn,
              constants,
              md::mdspan(coeffs.data(), entities.size() / 2, cstride),
              cell_info0, perms);
        }
      }
    }
  }
}

/// @brief Assemble linear form into a vector.
/// @param[in,out] b Array to accumulate into. It will not be zeroed
/// before assembly.
/// @param[in] L Linear forms to assemble into b.
/// @param[in] constants Packed constants that appear in `L`.
/// @param[in] coefficients Packed coefficients that appear in `L.`
template <typename V, std::floating_point U,
          dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
  requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void assemble_vector(
    V&& b, const Form<T, U>& L, std::span<const T> constants,
    const std::map<std::pair<IntegralType, int>,
                   std::pair<std::span<const T>, int>>& coefficients)
{
  using mdspanx3_t
      = md::mdspan<const scalar_value_t<T>,
                   md::extents<std::size_t, md::dynamic_extent, 3>>;

  std::shared_ptr<const mesh::Mesh<U>> mesh = L.mesh();
  assert(mesh);
  auto x = mesh->geometry().x();
  if constexpr (std::is_same_v<U, scalar_value_t<T>>)
  {
    impl::assemble_vector(b, L, mdspanx3_t(x.data(), x.size() / 3, 3),
                          constants, coefficients);
  }
  else
  {
    std::vector<scalar_value_t<T>> _x(x.begin(), x.end());
    impl::assemble_vector(b, L, mdspanx3_t(_x.data(), _x.size() / 3, 3),
                          constants, coefficients);
  }
}
} // namespace dolfinx::fem::impl