1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
// Copyright (C) 2018-2025 Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "Function.h"
#include "FunctionSpace.h"
#include "assemble_expression_impl.h"
#include "assemble_matrix_impl.h"
#include "assemble_scalar_impl.h"
#include "assemble_vector_impl.h"
#include "pack.h"
#include "traits.h"
#include "utils.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <cstdint>
#include <dolfinx/common/types.h>
#include <memory>
#include <optional>
#include <span>
#include <vector>
/// @file assembler.h
/// @brief Functions supporting assembly of finite element fem::Form and
/// fem::Expression.
namespace dolfinx::fem
{
template <dolfinx::scalar T, std::floating_point U>
class DirichletBC;
template <dolfinx::scalar T, std::floating_point U>
class Expression;
template <dolfinx::scalar T, std::floating_point U>
class Form;
template <std::floating_point T>
class FunctionSpace;
/// @brief Evaluate an Expression on cells or facets.
///
/// This function accepts packed coefficient data, which allows it be
/// called without re-packing all coefficient data at each evaluation.
///
/// @tparam T Scalar type.
/// @tparam U Geometry type
/// @param[in,out] values Array to fill with computed values. Shape is
/// `(num_entities, num_points, value_size, num_argument_dofs)` and
/// storage is row-major.
/// @param[in] e Expression to evaluate.
/// @param[in] coeffs Packed coefficients for the Expressions. Typically
/// computed using fem::pack_coefficients.
/// @param[in] constants Packed constant data. Typically computed using
/// fem::pack_constants.
/// @param[in] entities Mesh entities to evaluate the expression over.
/// For cells it is a list of cell indices. For facets is is a list of
/// (cell index, local facet index) index pairs, i.e. `entities=[cell0,
/// facet_local0, cell1, facet_local1, ...]`.
/// @param[in] mesh Mesh that the Expression is evaluated on.
/// @param[in] element Argument element and argument space dimension.
template <dolfinx::scalar T, std::floating_point U>
void tabulate_expression(
std::span<T> values, const fem::Expression<T, U>& e,
md::mdspan<const T, md::dextents<std::size_t, 2>> coeffs,
std::span<const T> constants, const mesh::Mesh<U>& mesh,
fem::MDSpan2 auto entities,
std::optional<
std::pair<std::reference_wrapper<const FiniteElement<U>>, std::size_t>>
element)
{
auto [X, Xshape] = e.X();
impl::tabulate_expression(values, e.kernel(), Xshape, e.value_size(), coeffs,
constants, mesh, entities, element);
}
/// @brief Evaluate an Expression on cells or facets.
///
/// @tparam T Scalar type.
/// @tparam U Geometry type
/// @param[in,out] values Array to fill with computed values. Row major
/// storage. Sizing should be `(num_cells, num_points * value_size *
/// num_all_argument_dofs columns)`. facet index) tuples. Array is
/// flattened per entity.
/// @param[in] e Expression to evaluate.
/// @param[in] mesh Mesh to compute `e` on.
/// @param[in] entities Mesh entities to evaluate the expression over.
/// For expressions executed on cells, rank is 1 and size is the number
/// of cells. For expressions executed on facets rank is 2, and shape is
/// `(num_facets, 2)`, where `entities[i, 0]` is the cell index and
/// `entities[i, 1]` is the local index of the facet relative to the
/// cell.
template <dolfinx::scalar T, std::floating_point U>
void tabulate_expression(std::span<T> values, const fem::Expression<T, U>& e,
const mesh::Mesh<U>& mesh, fem::MDSpan2 auto entities)
{
std::optional<
std::pair<std::reference_wrapper<const FiniteElement<U>>, std::size_t>>
element = std::nullopt;
if (auto V = e.argument_space(); V)
{
std::size_t num_argument_dofs
= V->dofmap()->element_dof_layout().num_dofs() * V->dofmap()->bs();
assert(V->element());
element = {std::cref(*V->element()), num_argument_dofs};
}
std::vector<int> coffsets = e.coefficient_offsets();
const std::vector<std::shared_ptr<const Function<T, U>>>& coefficients
= e.coefficients();
std::vector<T> coeffs(entities.extent(0) * coffsets.back());
int cstride = coffsets.back();
{
std::vector<std::reference_wrapper<const Function<T, U>>> c;
std::ranges::transform(coefficients, std::back_inserter(c),
[](auto c) -> const Function<T, U>& { return *c; });
fem::pack_coefficients(c, coffsets, entities, std::span(coeffs));
}
std::vector<T> constants = fem::pack_constants(e);
tabulate_expression<T, U>(
values, e, md::mdspan(coeffs.data(), entities.size(), cstride),
std::span<const T>(constants), mesh, entities, element);
}
// -- Helper functions -----------------------------------------------------
/// @brief Create a map of `std::span`s from a map of `std::vector`s
template <dolfinx::scalar T>
std::map<std::pair<IntegralType, int>, std::pair<std::span<const T>, int>>
make_coefficients_span(const std::map<std::pair<IntegralType, int>,
std::pair<std::vector<T>, int>>& coeffs)
{
using Key = typename std::remove_reference_t<decltype(coeffs)>::key_type;
std::map<Key, std::pair<std::span<const T>, int>> c;
std::ranges::transform(
coeffs, std::inserter(c, c.end()),
[](auto& e) -> typename decltype(c)::value_type
{ return {e.first, {e.second.first, e.second.second}}; });
return c;
}
// -- Scalar ----------------------------------------------------------------
/// @brief Assemble functional into scalar.
///
/// The caller supplies the form constants and coefficients for this
/// version, which has efficiency benefits if the data can be re-used
/// for multiple calls.
/// @note Caller is responsible for accumulation across processes.
/// @param[in] M The form (functional) to assemble
/// @param[in] constants The constants that appear in `M`
/// @param[in] coefficients The coefficients that appear in `M`
/// @return The contribution to the form (functional) from the local
/// process
template <dolfinx::scalar T, std::floating_point U>
T assemble_scalar(
const Form<T, U>& M, std::span<const T> constants,
const std::map<std::pair<IntegralType, int>,
std::pair<std::span<const T>, int>>& coefficients)
{
using mdspanx3_t
= md::mdspan<const scalar_value_t<T>,
md::extents<std::size_t, md::dynamic_extent, 3>>;
std::shared_ptr<const mesh::Mesh<U>> mesh = M.mesh();
assert(mesh);
std::span x = mesh->geometry().x();
if constexpr (std::is_same_v<U, scalar_value_t<T>>)
{
return impl::assemble_scalar(M, mesh->geometry().dofmap(),
mdspanx3_t(x.data(), x.size() / 3, 3),
constants, coefficients);
}
else
{
std::vector<scalar_value_t<T>> _x(x.begin(), x.end());
return impl::assemble_scalar(M, mesh->geometry().dofmap(),
mdspanx3_t(_x.data(), _x.size() / 3, 3),
constants, coefficients);
}
}
/// @brief Assemble functional into scalar.
///
/// @note Caller is responsible for accumulation across processes.
///
/// @param[in] M The form (functional) to assemble.
/// @return The contribution to the form (functional) from the local
/// process.
template <dolfinx::scalar T, std::floating_point U>
T assemble_scalar(const Form<T, U>& M)
{
const std::vector<T> constants = pack_constants(M);
auto coefficients = allocate_coefficient_storage(M);
pack_coefficients(M, coefficients);
return assemble_scalar(M, std::span(constants),
make_coefficients_span(coefficients));
}
// -- Vectors ----------------------------------------------------------------
/// @brief Assemble linear form into a vector.
///
/// The caller supplies the form constants and coefficients for this
/// version, which has efficiency benefits if the data can be re-used
/// for multiple calls.
/// @param[in,out] b The vector to be assembled. It will not be zeroed
/// before assembly.
/// @param[in] L The linear forms to assemble into b.
/// @param[in] constants The constants that appear in `L`.
/// @param[in] coefficients The coefficients that appear in `L`.
// template <dolfinx::scalar T, std::floating_point U>
template <typename V, std::floating_point U,
dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void assemble_vector(
V&& b, const Form<T, U>& L, std::span<const T> constants,
const std::map<std::pair<IntegralType, int>,
std::pair<std::span<const T>, int>>& coefficients)
{
impl::assemble_vector(b, L, constants, coefficients);
}
/// @brief Assemble linear form into a vector.
/// @param[in,out] b Vector to be assembled. It will not be zeroed
/// before assembly.
/// @param[in] L Linear forms to assemble into b.
// template <dolfinx::scalar T, std::floating_point U>
// void assemble_vector(std::span<T> b, const Form<T, U>& L)
template <typename V, std::floating_point U,
dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void assemble_vector(V&& b, const Form<T, U>& L)
{
auto coefficients = allocate_coefficient_storage(L);
pack_coefficients(L, coefficients);
const std::vector<T> constants = pack_constants(L);
assemble_vector(b, L, std::span(constants),
make_coefficients_span(coefficients));
}
/// @brief Modify the right-hand side vector to account for constraints
/// (Dirichlet boundary condition constraints). This modification is
/// known as 'lifting'.
///
/// Consider the discrete algebraic system
/// \f[
/// \begin{bmatrix}
/// A_{0} & A_{1}
/// \end{bmatrix}
/// \begin{bmatrix}
/// u_{0} \\ u_{1}
/// \end{bmatrix}
/// = b,
/// \f]
/// where \f$A_{i}\f$ is a matrix. Partitioning each vector \f$u_{i}\f$
/// into 'unknown' (\f$u_{i}^{(0)}\f$) and prescribed
/// (\f$u_{i}^{(1)}\f$) groups,
/// \f[
/// \begin{bmatrix}
/// A_{0}^{(0)} & A_{0}^{(1)} & A_{1}^{(0)} & A_{1}^{(1)}
/// \end{bmatrix}
/// \begin{bmatrix}
/// u_{0}^{(0)} \\ u_{0}^{(1)} \\ u_{1}^{(0)} \\ u_{1}^{(1)}
/// \end{bmatrix}
/// = b.
/// \f]
/// If \f$u_{i}^{(1)} = \alpha(g_{i} - x_{i})\f$, where \f$g_{i}\f$ is
/// the Dirichlet boundary condition value, \f$x_{i}\f$ is provided and
/// \f$\alpha\f$ is a constant, then
/// \f[
/// \begin{bmatrix}
/// A_{0}^{(0)} & A_{0}^{(1)} & A_{1}^{(0)} & A_{1}^{(1)}
/// \end{bmatrix}
/// \begin{bmatrix}
/// u_{0}^{(0)} \\ \alpha(g_{0} - x_{0}) \\ u_{1}^{(0)} \\ \alpha(g_{1} - x_{1})
/// \end{bmatrix}
/// = b.
/// \f]
/// Rearranging,
/// \f[
/// \begin{bmatrix}
/// A_{0}^{(0)} & A_{1}^{(0)}
/// \end{bmatrix}
/// \begin{bmatrix}
/// u_{0}^{(0)} \\ u_{1}^{(0)}
/// \end{bmatrix}
/// = b - \alpha A_{0}^{(1)} (g_{0} - x_{0}) - \alpha A_{1}^{(1)} (g_{1} -
/// x_{1}).
/// \f]
///
/// The modified \f$b\f$ vector is
/// \f[
/// b \leftarrow b - \alpha A_{0}^{(1)} (g_{0} - x_{0}) - \alpha A_{1}^{(1)}
/// (g_{1} - x_{1})
/// \f]
/// More generally,
/// \f[
/// b \leftarrow b - \alpha A_{i}^{(1)} (g_{i} - x_{i}).
/// \f]
///
/// @note Ghost contributions are not accumulated (not sent to owner).
/// Caller is responsible for reverse-scatter to update the ghosts.
///
/// @note Boundary condition values are *not* set in `b` by this
/// function. Use DirichletBC::set to set values in `b`.
///
/// @param[in,out] b The vector to modify inplace.
/// @param[in] a List of bilinear forms, where `a[i]` is the form that
/// generates the matrix \f$A_{i}\f$. All forms in `a` must share the
/// same test function space. The trial function spaces can differ.
/// @param[in] constants Constant data appearing in the forms `a`.
/// @param[in] coeffs Coefficient data appearing in the forms `a`.
/// @param[in] x0 The vector \f$x_{i}\f$ above. If empty it is set to
/// zero.
/// @param[in] bcs1 Boundary conditions that provide the \f$g_{i}\f$
/// values. `bcs1[i]` is the list of boundary conditions on \f$u_{i}\f$.
/// @param[in] alpha Scalar used in the modification of `b`.
template <typename V,
std::floating_point U
= scalar_value_t<typename std::remove_cvref_t<V>::value_type>,
dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void apply_lifting(
V&& b,
std::vector<std::optional<std::reference_wrapper<const Form<T, U>>>> a,
const std::vector<std::span<const T>>& constants,
const std::vector<std::map<std::pair<IntegralType, int>,
std::pair<std::span<const T>, int>>>& coeffs,
const std::vector<
std::vector<std::reference_wrapper<const DirichletBC<T, U>>>>& bcs1,
const std::vector<std::span<const T>>& x0, T alpha)
{
// If all forms are null, there is nothing to do
if (std::ranges::all_of(a, [](auto ai) { return !ai; }))
return;
impl::apply_lifting(b, a, constants, coeffs, bcs1, x0, alpha);
}
/// @brief Modify the right-hand side vector to account for constraints
/// (Dirichlet boundary conditions constraints). This modification is
/// known as 'lifting'.
///
/// See apply_lifting() for a detailed explanation of the lifting. The
/// difference between this function and apply_lifting() is that
/// apply_lifting() requires packed form constant and coefficient data
/// to be passed to the function, whereas this function packs the
/// constant and coefficient form data and then calls apply_lifting().
///
/// @note Ghost contributions are not accumulated (not sent to owner).
/// Caller is responsible for reverse-scatter to update the ghosts.
///
/// @note Boundary condition values are *not* set in `b` by this
/// function. Use DirichletBC::set to set values in `b`.
///
/// @param[in,out] b The vector to modify inplace.
/// @param[in] a List of bilinear forms, where `a[i]` is the form that
/// generates the matrix \f$A_{i}\f$ (see apply_lifting()). All forms in
/// `a` must share the same test function space. The trial function
/// spaces can differ.
/// @param[in] x0 The vector \f$x_{i}\f$ described in apply_lifting().
/// If empty it is set to zero.
/// @param[in] bcs1 Boundary conditions that provide the \f$g_{i}\f$
/// values described in apply_lifting(). `bcs1[i]` is the list of
/// boundary conditions on \f$u_{i}\f$.
/// @param[in] alpha Scalar used in the modification of `b` (see
/// described in apply_lifting()).
template <typename V,
std::floating_point U
= scalar_value_t<typename std::remove_cvref_t<V>::value_type>,
dolfinx::scalar T = typename std::remove_cvref_t<V>::value_type>
requires std::is_same_v<typename std::remove_cvref_t<V>::value_type, T>
void apply_lifting(
V&& b,
std::vector<std::optional<std::reference_wrapper<const Form<T, U>>>> a,
const std::vector<
std::vector<std::reference_wrapper<const DirichletBC<T, U>>>>& bcs1,
const std::vector<std::span<const T>>& x0, T alpha)
{
std::vector<
std::map<std::pair<IntegralType, int>, std::pair<std::vector<T>, int>>>
coeffs;
std::vector<std::vector<T>> constants;
for (auto _a : a)
{
if (_a)
{
auto coefficients = allocate_coefficient_storage(_a->get());
pack_coefficients(_a->get(), coefficients);
coeffs.push_back(coefficients);
constants.push_back(pack_constants(_a->get()));
}
else
{
coeffs.emplace_back();
constants.emplace_back();
}
}
std::vector<std::span<const T>> _constants(constants.begin(),
constants.end());
std::vector<std::map<std::pair<IntegralType, int>,
std::pair<std::span<const T>, int>>>
_coeffs;
std::ranges::transform(coeffs, std::back_inserter(_coeffs),
[](auto& c) { return make_coefficients_span(c); });
apply_lifting(b, a, _constants, _coeffs, bcs1, x0, alpha);
}
// -- Matrices ---------------------------------------------------------------
/// @brief Assemble bilinear form into a matrix. Matrix must already be
/// initialised. Does not zero or finalise the matrix.
/// @param[in] mat_add The function for adding values into the matrix.
/// @param[in] a The bilinear form to assemble.
/// @param[in] constants Constants that appear in `a`.
/// @param[in] coefficients Coefficients that appear in `a`.
/// @param[in] dof_marker0 Boundary condition markers for the rows. If
/// bc[i] is true then rows i in A will be zeroed. The index i is a
/// local index.
/// @param[in] dof_marker1 Boundary condition markers for the columns.
/// If bc[i] is true then rows i in A will be zeroed. The index i is a
/// local index.
template <dolfinx::scalar T, std::floating_point U>
void assemble_matrix(
la::MatSet<T> auto mat_add, const Form<T, U>& a,
std::span<const T> constants,
const std::map<std::pair<IntegralType, int>,
std::pair<std::span<const T>, int>>& coefficients,
std::span<const std::int8_t> dof_marker0,
std::span<const std::int8_t> dof_marker1)
{
using mdspanx3_t
= md::mdspan<const scalar_value_t<T>,
md::extents<std::size_t, md::dynamic_extent, 3>>;
std::shared_ptr<const mesh::Mesh<U>> mesh = a.mesh();
assert(mesh);
std::span x = mesh->geometry().x();
if constexpr (std::is_same_v<U, scalar_value_t<T>>)
{
impl::assemble_matrix(mat_add, a, mdspanx3_t(x.data(), x.size() / 3, 3),
constants, coefficients, dof_marker0, dof_marker1);
}
else
{
std::vector<scalar_value_t<T>> _x(x.begin(), x.end());
impl::assemble_matrix(mat_add, a, mdspanx3_t(_x.data(), _x.size() / 3, 3),
constants, coefficients, dof_marker0, dof_marker1);
}
}
/// @brief Assemble bilinear form into a matrix
/// @param[in] mat_add The function for adding values into the matrix.
/// @param[in] a The bilinear from to assemble.
/// @param[in] constants Constants that appear in `a`.
/// @param[in] coefficients Coefficients that appear in `a`.
/// @param[in] bcs Boundary conditions to apply. For boundary condition
/// dofs the row and column are zeroed. The diagonal entry is not set.
template <dolfinx::scalar T, std::floating_point U>
void assemble_matrix(
auto mat_add, const Form<T, U>& a, std::span<const T> constants,
const std::map<std::pair<IntegralType, int>,
std::pair<std::span<const T>, int>>& coefficients,
const std::vector<std::reference_wrapper<const DirichletBC<T, U>>>& bcs)
{
// Index maps for dof ranges
// NOTE: For mixed-topology meshes, there will be multiple DOF maps,
// but the index maps are the same.
auto map0 = a.function_spaces().at(0)->dofmaps(0)->index_map;
auto map1 = a.function_spaces().at(1)->dofmaps(0)->index_map;
auto bs0 = a.function_spaces().at(0)->dofmaps(0)->index_map_bs();
auto bs1 = a.function_spaces().at(1)->dofmaps(0)->index_map_bs();
// Build dof markers
std::vector<std::int8_t> dof_marker0, dof_marker1;
assert(map0);
std::int32_t dim0 = bs0 * (map0->size_local() + map0->num_ghosts());
assert(map1);
std::int32_t dim1 = bs1 * (map1->size_local() + map1->num_ghosts());
for (std::size_t k = 0; k < bcs.size(); ++k)
{
assert(bcs[k].get().function_space());
if (a.function_spaces().at(0)->contains(*bcs[k].get().function_space()))
{
dof_marker0.resize(dim0, false);
bcs[k].get().mark_dofs(dof_marker0);
}
if (a.function_spaces().at(1)->contains(*bcs[k].get().function_space()))
{
dof_marker1.resize(dim1, false);
bcs[k].get().mark_dofs(dof_marker1);
}
}
// Assemble
assemble_matrix(mat_add, a, constants, coefficients, dof_marker0,
dof_marker1);
}
/// @brief Assemble bilinear form into a matrix.
/// @param[in] mat_add The function for adding values into the matrix.
/// @param[in] a The bilinear from to assemble.
/// @param[in] bcs Boundary conditions to apply. For boundary condition
/// dofs the row and column are zeroed. The diagonal entry is not set.
template <dolfinx::scalar T, std::floating_point U>
void assemble_matrix(
auto mat_add, const Form<T, U>& a,
const std::vector<std::reference_wrapper<const DirichletBC<T, U>>>& bcs)
{
// Prepare constants and coefficients
const std::vector<T> constants = pack_constants(a);
auto coefficients = allocate_coefficient_storage(a);
pack_coefficients(a, coefficients);
// Assemble
assemble_matrix(mat_add, a, std::span(constants),
make_coefficients_span(coefficients), bcs);
}
/// @brief Assemble bilinear form into a matrix. Matrix must already be
/// initialised. Does not zero or finalise the matrix.
///
/// @param[in] mat_add The function for adding values into the matrix.
/// @param[in] a The bilinear form to assemble.
/// @param[in] dof_marker0 Boundary condition markers for the rows. If
/// `bc[i]` is `true` then rows `i` in A` `will be zeroed. The index `i`
/// is a local index.
/// @param[in] dof_marker1 Boundary condition markers for the columns.
/// If `bc[i]` is `true` then rows `i` in `A` will be zeroed. The index
/// `i` is a local index.
template <dolfinx::scalar T, std::floating_point U>
void assemble_matrix(auto mat_add, const Form<T, U>& a,
std::span<const std::int8_t> dof_marker0,
std::span<const std::int8_t> dof_marker1)
{
// Prepare constants and coefficients
const std::vector<T> constants = pack_constants(a);
auto coefficients = allocate_coefficient_storage(a);
pack_coefficients(a, coefficients);
// Assemble
assemble_matrix(mat_add, a, std::span(constants),
make_coefficients_span(coefficients), dof_marker0,
dof_marker1);
}
/// @brief Sets a value to the diagonal of a matrix for specified rows.
///
/// This function is typically called after assembly. The assembly
/// function zeroes Dirichlet rows and columns. For block matrices, this
/// function should normally be called only on the diagonal blocks, i.e.
/// blocks for which the test and trial spaces are the same.
///
/// @param[in] set_fn The function for setting values to a matrix.
/// @param[in] rows Row blocks, in local indices, for which to add a
/// value to the diagonal.
/// @param[in] diagonal Value to add to the diagonal for the specified
/// rows.
template <dolfinx::scalar T>
void set_diagonal(auto set_fn, std::span<const std::int32_t> rows,
T diagonal = 1.0)
{
for (std::size_t i = 0; i < rows.size(); ++i)
{
std::span diag_span(&diagonal, 1);
set_fn(rows.subspan(i, 1), rows.subspan(i, 1), diag_span);
}
}
/// @brief Sets a value to the diagonal of the matrix for rows with a
/// Dirichlet boundary conditions applied.
///
/// This function is typically called after assembly. The assembly
/// function zeroes Dirichlet rows and columns. This function adds the
/// value only to rows that are locally owned, and therefore does not
/// create a need for parallel communication. For block matrices, this
/// function should normally be called only on the diagonal blocks, i.e.
/// blocks for which the test and trial spaces are the same.
/// @param[in] set_fn The function for setting values to a matrix.
/// @param[in] V The function space for the rows and columns of the
/// matrix. It is used to extract only the Dirichlet boundary conditions
/// that are define on V or subspaces of V.
/// @param[in] bcs The Dirichlet boundary conditions.
/// @param[in] diagonal Value to add to the diagonal for rows with a
/// boundary condition applied.
template <dolfinx::scalar T, std::floating_point U>
void set_diagonal(
auto set_fn, const FunctionSpace<U>& V,
const std::vector<std::reference_wrapper<const DirichletBC<T, U>>>& bcs,
T diagonal = 1.0)
{
for (auto& bc : bcs)
{
if (V.contains(*bc.get().function_space()))
{
const auto [dofs, range] = bc.get().dof_indices();
set_diagonal(set_fn, dofs.first(range), diagonal);
}
}
}
} // namespace dolfinx::fem
|