File: discreteoperators.h

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (660 lines) | stat: -rw-r--r-- 27,486 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
// Copyright (C) 2015-2025 Garth N. Wells, Jørgen S. Dokken
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#pragma once

#include "DofMap.h"
#include "FiniteElement.h"
#include "FunctionSpace.h"
#include <algorithm>
#include <array>
#include <concepts>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/math.h>
#include <dolfinx/la/utils.h>
#include <dolfinx/mesh/Mesh.h>
#include <memory>
#include <span>
#include <vector>

namespace dolfinx::fem
{

/// @brief Assemble a discrete curl operator.
///
/// For vector-valued finite functions \f$u \in V_{0} \f$ and \f$v \in
/// V_{1}\f$, consider the interpolation of the curl of \f$u\f$ in the
/// space \f$V_{1}\f$, i.e. \f$\Pi_{V_{1}}: \nabla \times u \rightarrow
/// v\f$, where \f$\Pi_{V_{1}}\f$ is the interpolation operator
/// associated with \f$V_{1}\f$. This interpolation of \f$\nabla \times
/// u\f$ into \f$V_{1}\f$ is properly posed and exact for specific
/// choices of function spaces. If \f$V_{0}\f$ is a Nédélec (\f$H({\rm
/// curl})\f$) space of degree \f$k > 1\f$ and \f$V_{1}\f$ is a
/// Raviart-Thomas (\f$H({\rm div})\f$) space of degree of at least \f$k
/// - 1\f$, then the interpolation is exact.
///
/// The implementation of this function exploits the result:
///
/// \f[
///   \hat{\nabla} \times \psi_{C}(\boldsymbol{u}) = \psi_{D}(\nabla \times
///   \boldsymbol{u}),
/// \f]
///
/// where \f$\psi_{C}\f$ is the covariant pull-back (to the reference
/// cell) and \f$\psi_{D}\f$ is the contravariant pull-back. See Ern and
/// Guermond (2021), *Finite Elements I*, Springer Nature,
/// https://doi.org/10.1007/978-3-030-56341-7 [Corollary 9.9 (Commuting
/// properties)]. Consequently, the spaces `V0` and `V1` must use
/// covariant and contravariant maps, respectively.
///
/// This function builds a matrix \f$C\f$ (the 'discrete curl'), which
/// when applied to the degrees-of-freedom of \f$u\f$ gives the
/// degrees-of-freedom of \f$v\f$ such that \f$v = \nabla \times u\f$.
/// If the finite element degree-of-freedom vectors associated with
/// \f$u\f$ and \f$v\f$ are \f$a\f$ and \f$b\f$, respectively, then \f$b
/// = C a\f$, which yields \f$v = \Pi_{V} \nabla \times u\f$. It
/// essentially maps that curl of a function in a degree \f$k > 1\f$
/// Nédélec space into a degree \f$k - 1\f$ Raviart-Thomas space.
///
/// The discerete curl is typically used in constructing algebraic
/// multigrid preconditioners for \f$H({\rm div})\f$ problems, e.g. when
/// using the Hypre Auxiliary-space Divergence Solver (ADS) to solve a
/// mixed Poisson in three-dimension.
///
/// @pre `V0` and `V1` must be vector-valued, in three spatial
/// dimensions, and use covariant and contravariant maps, respectively.
///
/// @tparam T Scalar type of the mesh and elements. @tparam U Scalar
/// type of the matrix being inserted into. This is usually the same as
/// `T`, but may differ for matrix backends that support only a specific
/// type, e.g. PETSc which supports only one scalar type for a build of
/// PETSc.
///
/// @param[in] V0 Space that \f$u\f$ is from. It must be a covariant
/// Piola mapped element. It is normally an \f$H({\rm
/// curl})\f$-conforming Nédélec space.
/// @param[in] V1 Space that \f$v\f$ is from. It must be a contravariant
/// Piola mapped element. It is normally an \f$H({\rm
/// div})\f$-conforming Raviart-Thomas space of one degree lower than
/// `V0`.
/// @param[in] mat_set A functor that sets (not add) values in a matrix
/// \f$C\f$.
template <std::floating_point T, dolfinx::scalar U = T>
void discrete_curl(const FunctionSpace<T>& V0, const FunctionSpace<T>& V1,
                   la::MatSet<U> auto&& mat_set)
{
  // Get mesh
  auto mesh = V0.mesh();
  assert(mesh);
  assert(V1.mesh());
  if (mesh != V1.mesh())
    throw std::runtime_error("Meshes must be the same.");

  if (mesh->geometry().dim() != 3)
    throw std::runtime_error("Geometric must be equal to 3..");
  if (mesh->geometry().dim() != mesh->topology()->dim())
  {
    throw std::runtime_error(
        "Geometric and topological dimensions must be equal.");
  }
  constexpr int gdim = 3;

  // Get elements
  std::shared_ptr<const FiniteElement<T>> e0 = V0.element();
  assert(e0);
  if (e0->map_type() != basix::maps::type::covariantPiola)
  {
    throw std::runtime_error(
        "Finite element for parent space must be covariant Piola.");
  }

  std::shared_ptr<const FiniteElement<T>> e1 = V1.element();
  assert(e1);
  if (e1->map_type() != basix::maps::type::contravariantPiola)
  {
    throw std::runtime_error(
        "Finite element for target space must be contracovariant Piola.");
  }

  // Get cell orientation information
  std::span<const std::uint32_t> cell_info;
  if (e1->needs_dof_transformations() or e0->needs_dof_transformations())
  {
    mesh->topology_mutable()->create_entity_permutations();
    cell_info = std::span(mesh->topology()->get_cell_permutation_info());
  }

  // Get dofmaps
  auto dofmap0 = V0.dofmap();
  assert(dofmap0);
  auto dofmap1 = V1.dofmap();
  assert(dofmap1);

  // Get dof transformation operators
  auto apply_dof_transformation0
      = e0->template dof_transformation_fn<T>(doftransform::standard, false);
  auto apply_inverse_dof_transform1 = e1->template dof_transformation_fn<U>(
      doftransform::inverse_transpose, false);

  // Get sizes of elements
  const std::size_t space_dim0 = e0->space_dimension();
  const std::size_t space_dim1 = e1->space_dimension();
  if (e0->reference_value_size() != 3)
    throw std::runtime_error("Value size for parent space should be 3.");
  if (e1->reference_value_size() != 3)
    throw std::runtime_error("Value size for target space should be 3.");

  // Get the V1 reference interpolation points
  const auto [X, Xshape] = e1->interpolation_points();

  // Get/compute geometry map and evaluate at interpolation points
  const CoordinateElement<T>& cmap = mesh->geometry().cmap();
  auto x_dofmap = mesh->geometry().dofmap();
  const std::size_t num_dofs_g = cmap.dim();
  std::span<const T> x_g = mesh->geometry().x();
  std::array<std::size_t, 4> Phi_g_shape = cmap.tabulate_shape(1, Xshape[0]);
  std::vector<T> Phi_g_b(std::reduce(Phi_g_shape.begin(), Phi_g_shape.end(), 1,
                                     std::multiplies{}));
  // (derivative,  point index, phi, component)
  md::mdspan<const T, md::extents<std::size_t, gdim + 1, md::dynamic_extent,
                                  md::dynamic_extent, 1>>
      Phi_g(Phi_g_b.data(), Phi_g_shape);
  cmap.tabulate(1, X, Xshape, Phi_g_b);

  // Geometry data structures
  std::vector<T> coord_dofs_b(num_dofs_g * gdim);
  md::mdspan<T, md::extents<std::size_t, md::dynamic_extent, 3>> coord_dofs(
      coord_dofs_b.data(), num_dofs_g, gdim);
  std::vector<T> J_b(Xshape[0] * gdim * gdim);
  md::mdspan<T, md::extents<std::size_t, md::dynamic_extent, 3, 3>> J(
      J_b.data(), Xshape[0], gdim, gdim);
  std::vector<T> K_b(Xshape[0] * gdim * gdim);
  md::mdspan<T, typename decltype(J)::extents_type> K(K_b.data(), J.extents());
  std::vector<T> detJ(Xshape[0]);
  std::vector<T> det_scratch(2 * gdim * gdim);

  // Evaluate V0 basis function derivatives at reference interpolation
  // points for V1, (deriv, pt_idx, phi (dof), comp)
  const auto [Phi0_b, Phi0_shape] = e0->tabulate(X, Xshape, 1);
  md::mdspan<const T, md::extents<std::size_t, 4, md::dynamic_extent,
                                  md::dynamic_extent, 3>>
      Phi0(Phi0_b.data(), Phi0_shape);

  // Create working arrays, (point, phi (dof), deriv, comp)
  md::extents<std::size_t, md::dynamic_extent, md::dynamic_extent, 3, 3>
      dPhi0_ext(Phi0.extent(1), Phi0.extent(2), Phi0.extent(0) - 1,
                Phi0.extent(3));
  std::vector<T> dPhi0_b(dPhi0_ext.extent(0) * dPhi0_ext.extent(1)
                         * dPhi0_ext.extent(2) * dPhi0_ext.extent(3));
  md::mdspan<T, decltype(dPhi0_ext)> dPhi0(dPhi0_b.data(), dPhi0_ext);

  // Get the interpolation operator (matrix) Pi that maps a function
  // evaluated at the interpolation points to the V1 element degrees of
  // freedom, i.e. dofs = Pi f_x
  const auto [Pi1_b, pi_shape] = e1->interpolation_operator();
  md::mdspan<const T, md::dextents<std::size_t, 2>> Pi_1(Pi1_b.data(),
                                                         pi_shape);

  // curl data structure, (pt_idx, phi (dof), comp)
  std::vector<T> curl_b(dPhi0.extent(0) * dPhi0.extent(1) * dPhi0.extent(3));
  md::mdspan<
      T, md::extents<std::size_t, md::dynamic_extent, md::dynamic_extent, 3>>
      curl(curl_b.data(), dPhi0.extent(0), dPhi0.extent(1), dPhi0.extent(3));

  std::vector<U> Ab(space_dim0 * space_dim1);
  std::vector<U> local1(space_dim1);

  // Iterate over mesh and interpolate on each cell
  assert(mesh->topology()->index_map(gdim));
  for (std::int32_t c = 0; c < mesh->topology()->index_map(gdim)->size_local();
       ++c)
  {
    // Get cell geometry (coordinate dofs)
    auto x_dofs = md::submdspan(x_dofmap, c, md::full_extent);
    for (std::size_t i = 0; i < x_dofs.size(); ++i)
      for (std::size_t j = 0; j < gdim; ++j)
        coord_dofs(i, j) = x_g[3 * x_dofs[i] + j];

    // Compute Jacobians at reference points for current cell
    std::ranges::fill(J_b, 0);
    for (std::size_t p = 0; p < Xshape[0]; ++p)
    {
      auto dPhi_g
          = md::submdspan(Phi_g, std::pair(1, gdim + 1), p, md::full_extent, 0);
      auto _J = md::submdspan(J, p, md::full_extent, md::full_extent);
      cmap.compute_jacobian(dPhi_g, coord_dofs, _J);
      auto _K = md::submdspan(K, p, md::full_extent, md::full_extent);
      cmap.compute_jacobian_inverse(_J, _K);
      detJ[p] = cmap.compute_jacobian_determinant(_J, det_scratch);
    }

    // TODO: re-order loops and/or re-pack Phi0 to allow a simple flat
    // copy?

    // Copy (d)Phi0 (on reference) and apply DOF transformation
    // Phi0:  (deriv, pt_idx, phi (dof), comp)
    // dPhi0: (pt_idx, phi (dov), deriv, comp)
    for (std::size_t p = 0; p < Phi0.extent(1); ++p)           // point
      for (std::size_t phi = 0; phi < Phi0.extent(2); ++phi)   // phi_i
        for (std::size_t d = 0; d < Phi0.extent(3); ++d)       // Comp. of phi
          for (std::size_t dx = 0; dx < dPhi0.extent(2); ++dx) // dx
            dPhi0(p, phi, dx, d) = Phi0(dx + 1, p, phi, d);

    for (std::size_t p = 0; p < dPhi0.extent(0); ++p) // point
    {
      // Size: num_phi * num_derivs * num_components
      std::size_t size = dPhi0.extent(1) * dPhi0.extent(2) * dPhi0.extent(3);
      std::size_t offset = p * size; // Offset for point p

      // Shape: (num_phi , (value_size * num_derivs))
      apply_dof_transformation0(std::span(dPhi0.data_handle() + offset, size),
                                cell_info, c,
                                dPhi0.extent(2) * dPhi0.extent(3));
    }

    // Compute curl
    // dPhi0: (pt_idx, phi_idx, deriv, comp)
    // curl: (pt_idx, phi_idx, comp)
    for (std::size_t p = 0; p < curl.extent(0); ++p) // point
    {
      for (std::size_t i = 0; i < curl.extent(1); ++i) // phi_i
      {
        curl(p, i, 0) = dPhi0(p, i, 1, 2) - dPhi0(p, i, 2, 1);
        curl(p, i, 1) = dPhi0(p, i, 2, 0) - dPhi0(p, i, 0, 2);
        curl(p, i, 2) = dPhi0(p, i, 0, 1) - dPhi0(p, i, 1, 0);
      }
    }

    // Apply interpolation matrix to basis derivatives values of V0 at
    // the interpolation points of V1
    for (std::size_t i = 0; i < curl.extent(1); ++i)
    {
      auto values = md::submdspan(curl, md::full_extent, i, md::full_extent);
      impl::interpolation_apply(Pi_1, values, std::span(local1), 1);
      for (std::size_t j = 0; j < local1.size(); ++j)
        Ab[space_dim0 * j + i] = local1[j];
    }

    apply_inverse_dof_transform1(Ab, cell_info, c, space_dim0);
    mat_set(dofmap1->cell_dofs(c), dofmap0->cell_dofs(c), Ab);
  }
}

/// @brief Assemble a discrete gradient operator.
///
/// The discrete gradient operator \f$A\f$ interpolates the gradient of
/// a Lagrange finite element function in \f$V_0 \subset H^1\f$ into a
/// Nédélec (first kind) space \f$V_1 \subset H({\rm curl})\f$, i.e.
/// \f$\nabla V_0 \rightarrow V_1\f$. If \f$u_0\f$ is the
/// degree-of-freedom vector associated with \f$V_0\f$, then
/// \f$u_1=Au_0\f$ where \f$u_1\f$ is the degrees-of-freedom vector for
/// interpolating function in the \f$H({\rm curl})\f$ space. An example
/// of where discrete gradient operators are used is the creation of
/// algebraic multigrid solvers for \f$H({\rm curl})\f$ and \f$H({\rm
/// div})\f$ problems.
///
/// @note The sparsity pattern for a discrete operator can be
/// initialised using sparsitybuild::cells. The space `V1` should be
/// used for the rows of the sparsity pattern, `V0` for the columns.
///
/// @warning This function relies on the user supplying appropriate
/// input and output spaces. See parameter descriptions.
///
/// @param[in] topology Mesh topology
/// @param[in] V0 Lagrange element and dofmap for corresponding space to
/// interpolate the gradient from.
/// @param[in] V1 Nédélec (first kind) element and dofmap for
/// corresponding space to interpolate into.
/// @param[in] mat_set A functor that sets values in a matrix
template <dolfinx::scalar T, std::floating_point U = dolfinx::scalar_value_t<T>>
void discrete_gradient(mesh::Topology& topology,
                       std::pair<std::reference_wrapper<const FiniteElement<U>>,
                                 std::reference_wrapper<const DofMap>>
                           V0,
                       std::pair<std::reference_wrapper<const FiniteElement<U>>,
                                 std::reference_wrapper<const DofMap>>
                           V1,
                       auto&& mat_set)
{
  auto& e0 = V0.first.get();
  const DofMap& dofmap0 = V0.second.get();
  auto& e1 = V1.first.get();
  const DofMap& dofmap1 = V1.second.get();

  using cmdspan2_t = md::mdspan<const U, md::dextents<std::size_t, 2>>;
  using cmdspan4_t = md::mdspan<const U, md::dextents<std::size_t, 4>>;

  // Check elements
  if (e0.map_type() != basix::maps::type::identity)
    throw std::runtime_error("Wrong finite element space for V0.");
  if (e0.block_size() != 1)
    throw std::runtime_error("Block size is greater than 1 for V0.");
  if (e0.reference_value_size() != 1)
    throw std::runtime_error("Wrong value size for V0.");

  if (e1.map_type() != basix::maps::type::covariantPiola)
    throw std::runtime_error("Wrong finite element space for V1.");
  if (e1.block_size() != 1)
    throw std::runtime_error("Block size is greater than 1 for V1.");

  // Get V1 (H(curl)) space interpolation points
  const auto [X, Xshape] = e1.interpolation_points();

  // Tabulate first derivatives of Lagrange space at V1 interpolation
  // points
  const int ndofs0 = e0.space_dimension();
  const int tdim = topology.dim();
  std::vector<U> phi0_b((tdim + 1) * Xshape[0] * ndofs0 * 1);
  cmdspan4_t phi0(phi0_b.data(), tdim + 1, Xshape[0], ndofs0, 1);
  e0.tabulate(phi0_b, X, Xshape, 1);

  // Reshape Lagrange basis derivatives as a matrix of shape (tdim *
  // num_points, num_dofs_per_cell)
  cmdspan2_t dphi_reshaped(
      phi0_b.data() + phi0.extent(3) * phi0.extent(2) * phi0.extent(1),
      tdim * phi0.extent(1), phi0.extent(2));

  // Get inverse DOF transform function
  auto apply_inverse_dof_transform = e1.template dof_transformation_fn<T>(
      doftransform::inverse_transpose, false);

  // Generate cell permutations
  topology.create_entity_permutations();
  const std::vector<std::uint32_t>& cell_info
      = topology.get_cell_permutation_info();

  // Create element kernel function

  // Build the element interpolation matrix
  std::vector<T> Ab(e1.space_dimension() * ndofs0);
  {
    md::mdspan<T, md::dextents<std::size_t, 2>> A(Ab.data(),
                                                  e1.space_dimension(), ndofs0);
    const auto [Pi, shape] = e1.interpolation_operator();
    cmdspan2_t _Pi(Pi.data(), shape);
    math::dot(_Pi, dphi_reshaped, A);
  }

  // Insert local interpolation matrix for each cell
  auto cell_map = topology.index_map(tdim);
  assert(cell_map);
  std::int32_t num_cells = cell_map->size_local();
  std::vector<T> Ae(Ab.size());
  for (std::int32_t c = 0; c < num_cells; ++c)
  {
    std::ranges::copy(Ab, Ae.begin());
    apply_inverse_dof_transform(Ae, cell_info, c, ndofs0);
    mat_set(dofmap1.cell_dofs(c), dofmap0.cell_dofs(c), Ae);
  }
}

/// @brief Assemble an interpolation operator matrix.
///
/// The interpolation operator \f$A\f$ interpolates a function in the
/// space \f$V_0\f$ into a space \f$V_1\f$. If \f$u_0\f$ is the
/// degree-of-freedom vector associated with \f$V_0\f$, then the
/// degree-of-freedom vector \f$u_1\f$ for the interpolated function in
/// \f$V_1\f$ is given by \f$u_1=Au_0\f$.
///
/// @note The sparsity pattern for a discrete operator can be
/// initialised using sparsitybuild::cells. The space `V1` should be
/// used for the rows of the sparsity pattern, `V0` for the columns.
///
/// @param[in] V0 Space to interpolate from.
/// @param[in] V1 Space to interpolate to.
/// @param[in] mat_add Functor that adds values to a matrix.
template <dolfinx::scalar T, std::floating_point U>
void interpolation_matrix(const FunctionSpace<U>& V0,
                          const FunctionSpace<U>& V1, auto&& mat_add)
{
  // Get mesh
  auto mesh = V0.mesh();
  assert(mesh);

  // Mesh dims
  const int tdim = mesh->topology()->dim();
  const int gdim = mesh->geometry().dim();

  // Get elements
  std::shared_ptr<const FiniteElement<U>> e0 = V0.element();
  assert(e0);
  std::shared_ptr<const FiniteElement<U>> e1 = V1.element();
  assert(e1);

  std::span<const std::uint32_t> cell_info;
  if (e1->needs_dof_transformations() or e0->needs_dof_transformations())
  {
    mesh->topology_mutable()->create_entity_permutations();
    cell_info = std::span(mesh->topology()->get_cell_permutation_info());
  }

  // Get dofmaps
  auto dofmap0 = V0.dofmap();
  assert(dofmap0);
  auto dofmap1 = V1.dofmap();
  assert(dofmap1);

  // Get block sizes and dof transformation operators
  const int bs0 = e0->block_size();
  const int bs1 = e1->block_size();
  auto apply_dof_transformation0
      = e0->template dof_transformation_fn<U>(doftransform::standard, false);
  auto apply_inverse_dof_transform1 = e1->template dof_transformation_fn<T>(
      doftransform::inverse_transpose, false);

  // Get sizes of elements
  const std::size_t space_dim0 = e0->space_dimension();
  const std::size_t space_dim1 = e1->space_dimension();
  const std::size_t dim0 = space_dim0 / bs0;
  const std::size_t value_size_ref0 = e0->reference_value_size();
  const std::size_t value_size0 = V0.element()->reference_value_size();

  // Get geometry data
  const CoordinateElement<U>& cmap = mesh->geometry().cmap();
  auto x_dofmap = mesh->geometry().dofmap();
  const std::size_t num_dofs_g = cmap.dim();
  std::span<const U> x_g = mesh->geometry().x();

  using mdspan2_t = md::mdspan<U, md::dextents<std::size_t, 2>>;
  using cmdspan2_t = md::mdspan<const U, md::dextents<std::size_t, 2>>;
  using cmdspan4_t = md::mdspan<const U, md::dextents<std::size_t, 4>>;
  using mdspan3_t = md::mdspan<U, md::dextents<std::size_t, 3>>;

  // Evaluate coordinate map basis at reference interpolation points
  const auto [X, Xshape] = e1->interpolation_points();
  std::array<std::size_t, 4> phi_shape = cmap.tabulate_shape(1, Xshape[0]);
  std::vector<U> phi_b(
      std::reduce(phi_shape.begin(), phi_shape.end(), 1, std::multiplies{}));
  cmdspan4_t phi(phi_b.data(), phi_shape);
  cmap.tabulate(1, X, Xshape, phi_b);

  // Evaluate V0 basis functions at reference interpolation points for V1
  std::vector<U> basis_derivatives_reference0_b(Xshape[0] * dim0
                                                * value_size_ref0);
  cmdspan4_t basis_derivatives_reference0(basis_derivatives_reference0_b.data(),
                                          1, Xshape[0], dim0, value_size_ref0);
  e0->tabulate(basis_derivatives_reference0_b, X, Xshape, 0);

  // Clamp values
  std::ranges::transform(
      basis_derivatives_reference0_b, basis_derivatives_reference0_b.begin(),
      [atol = 1e-14](auto x) { return std::abs(x) < atol ? 0.0 : x; });

  // Create working arrays
  std::vector<U> basis_reference0_b(Xshape[0] * dim0 * value_size_ref0);
  mdspan3_t basis_reference0(basis_reference0_b.data(), Xshape[0], dim0,
                             value_size_ref0);
  std::vector<U> J_b(Xshape[0] * gdim * tdim);
  mdspan3_t J(J_b.data(), Xshape[0], gdim, tdim);
  std::vector<U> K_b(Xshape[0] * tdim * gdim);
  mdspan3_t K(K_b.data(), Xshape[0], tdim, gdim);
  std::vector<U> detJ(Xshape[0]);
  std::vector<U> det_scratch(2 * tdim * gdim);

  // Get the interpolation operator (matrix) `Pi` that maps a function
  // evaluated at the interpolation points to the element degrees of
  // freedom, i.e. dofs = Pi f_x
  const auto [_Pi_1, pi_shape] = e1->interpolation_operator();
  cmdspan2_t Pi_1(_Pi_1.data(), pi_shape);

  bool interpolation_ident = e1->interpolation_ident();

  using u_t = md::mdspan<U, md::dextents<std::size_t, 2>>;
  using U_t = md::mdspan<const U, md::dextents<std::size_t, 2>>;
  using J_t = md::mdspan<const U, md::dextents<std::size_t, 2>>;
  using K_t = md::mdspan<const U, md::dextents<std::size_t, 2>>;
  auto push_forward_fn0
      = e0->basix_element().template map_fn<u_t, U_t, J_t, K_t>();

  // Basis values of Lagrange space unrolled for block size
  // (num_quadrature_points, Lagrange dof, value_size)
  std::vector<U> basis_values_b(Xshape[0] * bs0 * dim0
                                * V1.element()->value_size());
  mdspan3_t basis_values(basis_values_b.data(), Xshape[0], bs0 * dim0,
                         V1.element()->value_size());
  std::vector<U> mapped_values_b(Xshape[0] * bs0 * dim0
                                 * V1.element()->value_size());
  mdspan3_t mapped_values(mapped_values_b.data(), Xshape[0], bs0 * dim0,
                          V1.element()->value_size());

  auto pull_back_fn1
      = e1->basix_element().template map_fn<u_t, U_t, K_t, J_t>();

  std::vector<U> coord_dofs_b(num_dofs_g * gdim);
  mdspan2_t coord_dofs(coord_dofs_b.data(), num_dofs_g, gdim);
  std::vector<U> basis0_b(Xshape[0] * dim0 * value_size0);
  mdspan3_t basis0(basis0_b.data(), Xshape[0], dim0, value_size0);

  // Buffers
  std::vector<T> Ab(space_dim0 * space_dim1);
  std::vector<T> local1(space_dim1);

  // Iterate over mesh and interpolate on each cell
  auto cell_map = mesh->topology()->index_map(tdim);
  assert(cell_map);
  std::int32_t num_cells = cell_map->size_local();
  int row_bs = dofmap1->bs();
  std::int32_t num_owned_rows
      = dofmap1->index_map->size_local() * dofmap1->index_map_bs() / row_bs;
  std::int32_t num_ghosted_rows
      = dofmap1->index_map->num_ghosts() * dofmap1->index_map_bs() / row_bs;
  std::vector<std::int8_t> row_added(num_owned_rows + num_ghosted_rows, 0);

  for (std::int32_t c = 0; c < num_cells; ++c)
  {
    // Get cell geometry (coordinate dofs)
    auto x_dofs = md::submdspan(x_dofmap, c, md::full_extent);
    for (std::size_t i = 0; i < x_dofs.size(); ++i)
    {
      for (int j = 0; j < gdim; ++j)
        coord_dofs(i, j) = x_g[3 * x_dofs[i] + j];
    }

    // Compute Jacobians and reference points for current cell
    std::ranges::fill(J_b, 0);
    for (std::size_t p = 0; p < Xshape[0]; ++p)
    {
      auto dphi
          = md::submdspan(phi, std::pair(1, tdim + 1), p, md::full_extent, 0);
      auto _J = md::submdspan(J, p, md::full_extent, md::full_extent);
      cmap.compute_jacobian(dphi, coord_dofs, _J);
      auto _K = md::submdspan(K, p, md::full_extent, md::full_extent);
      cmap.compute_jacobian_inverse(_J, _K);
      detJ[p] = cmap.compute_jacobian_determinant(_J, det_scratch);
    }

    // Copy evaluated basis on reference, apply DOF transformations, and
    // push forward to physical element
    for (std::size_t k0 = 0; k0 < basis_reference0.extent(0); ++k0)
      for (std::size_t k1 = 0; k1 < basis_reference0.extent(1); ++k1)
        for (std::size_t k2 = 0; k2 < basis_reference0.extent(2); ++k2)
          basis_reference0(k0, k1, k2)
              = basis_derivatives_reference0(0, k0, k1, k2);
    for (std::size_t p = 0; p < Xshape[0]; ++p)
    {
      apply_dof_transformation0(
          std::span(basis_reference0.data_handle() + p * dim0 * value_size_ref0,
                    dim0 * value_size_ref0),
          cell_info, c, value_size_ref0);
    }

    for (std::size_t p = 0; p < basis0.extent(0); ++p)
    {
      auto _u = md::submdspan(basis0, p, md::full_extent, md::full_extent);
      auto _U = md::submdspan(basis_reference0, p, md::full_extent,
                              md::full_extent);
      auto _K = md::submdspan(K, p, md::full_extent, md::full_extent);
      auto _J = md::submdspan(J, p, md::full_extent, md::full_extent);
      push_forward_fn0(_u, _U, _J, detJ[p], _K);
    }

    // Unroll basis function for input space for block size
    for (std::size_t p = 0; p < Xshape[0]; ++p)
      for (std::size_t i = 0; i < dim0; ++i)
        for (std::size_t j = 0; j < value_size0; ++j)
          for (int k = 0; k < bs0; ++k)
            basis_values(p, i * bs0 + k, j * bs0 + k) = basis0(p, i, j);

    // Pull back the physical values to the reference of output space
    for (std::size_t p = 0; p < basis_values.extent(0); ++p)
    {
      auto _u
          = md::submdspan(basis_values, p, md::full_extent, md::full_extent);
      auto _U
          = md::submdspan(mapped_values, p, md::full_extent, md::full_extent);
      auto _K = md::submdspan(K, p, md::full_extent, md::full_extent);
      auto _J = md::submdspan(J, p, md::full_extent, md::full_extent);
      pull_back_fn1(_U, _u, _K, 1.0 / detJ[p], _J);
    }

    // Apply interpolation matrix to basis values of V0 at the
    // interpolation points of V1
    if (interpolation_ident)
    {
      md::mdspan<T, md::dextents<std::size_t, 3>> A(
          Ab.data(), Xshape[0], V1.element()->value_size(), space_dim0);
      for (std::size_t i = 0; i < mapped_values.extent(0); ++i)
        for (std::size_t j = 0; j < mapped_values.extent(1); ++j)
          for (std::size_t k = 0; k < mapped_values.extent(2); ++k)
            A(i, k, j) = mapped_values(i, j, k);
    }
    else
    {
      for (std::size_t i = 0; i < mapped_values.extent(1); ++i)
      {
        auto values
            = md::submdspan(mapped_values, md::full_extent, i, md::full_extent);
        impl::interpolation_apply(Pi_1, values, std::span(local1), bs1);
        for (std::size_t j = 0; j < local1.size(); j++)
          Ab[space_dim0 * j + i] = local1[j];
      }
    }

    apply_inverse_dof_transform1(Ab, cell_info, c, space_dim0);

    // Zero out all rows that have already been added on this process
    // and only add owned rows
    {
      md::mdspan<T, md::dextents<std::size_t, 2>> A(Ab.data(), space_dim1,
                                                    space_dim0);
      auto row_dofs = dofmap1->cell_dofs(c);
      for (std::size_t i = 0; i < row_dofs.size(); ++i)
      {
        std::int32_t r = row_dofs[i];
        if (r >= num_owned_rows || row_added[r])
        {
          for (std::size_t j = 0; j < space_dim0; ++j)
            for (int k = 0; k < row_bs; ++k)
              A(i * row_bs + k, j) = 0.0;
        }
        row_added[r] = 1;
      }
    }
    mat_add(dofmap1->cell_dofs(c), dofmap0->cell_dofs(c), Ab);
  }
}

} // namespace dolfinx::fem