1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
// Copyright (C) 2018-2021 Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#ifdef HAS_PETSC
#include "Form.h"
#include "assembler.h"
#include "utils.h"
#include <concepts>
#include <dolfinx/la/petsc.h>
#include <functional>
#include <map>
#include <memory>
#include <optional>
#include <petscmat.h>
#include <petscvec.h>
#include <span>
#include <utility>
#include <vector>
namespace dolfinx::common
{
class IndexMap;
}
namespace dolfinx::fem
{
template <dolfinx::scalar T, std::floating_point U>
class DirichletBC;
/// @brief Helper functions for assembly into PETSc data structures
namespace petsc
{
/// @brief Create a matrix
/// @param[in] a A bilinear form
/// @param[in] type The PETSc matrix type to create
/// @return A sparse matrix with a layout and sparsity that matches the
/// bilinear form. The caller is responsible for destroying the Mat
/// object.
template <std::floating_point T>
Mat create_matrix(const Form<PetscScalar, T>& a,
std::optional<std::string> type = std::nullopt)
{
la::SparsityPattern pattern = fem::create_sparsity_pattern(a);
pattern.finalize();
return la::petsc::create_matrix(a.mesh()->comm(), pattern, type);
}
/// @brief Initialise a monolithic matrix for an array of bilinear
/// forms.
///
/// @param[in] a Rectangular array of bilinear forms. The `a(i, j)` form
/// will correspond to the `(i, j)` block in the returned matrix
/// @param[in] type The type of PETSc Mat. If empty the PETSc default is
/// used.
/// @return A sparse matrix with a layout and sparsity that matches the
/// bilinear forms. The caller is responsible for destroying the Mat
/// object.
template <std::floating_point T>
Mat create_matrix_block(
const std::vector<std::vector<const Form<PetscScalar, T>*>>& a,
std::optional<std::string> type = std::nullopt)
{
// Extract and check row/column ranges
std::array<std::vector<std::shared_ptr<const FunctionSpace<T>>>, 2> V
= fem::common_function_spaces(extract_function_spaces(a));
std::array<std::vector<int>, 2> bs_dofs;
for (std::size_t i = 0; i < 2; ++i)
{
for (auto& _V : V[i])
bs_dofs[i].push_back(_V->dofmap()->bs());
}
// Build sparsity pattern for each block
std::shared_ptr<const mesh::Mesh<T>> mesh;
std::vector<std::vector<std::unique_ptr<la::SparsityPattern>>> patterns(
V[0].size());
for (std::size_t row = 0; row < V[0].size(); ++row)
{
for (std::size_t col = 0; col < V[1].size(); ++col)
{
if (const Form<PetscScalar, T>* form = a[row][col]; form)
{
patterns[row].push_back(std::make_unique<la::SparsityPattern>(
create_sparsity_pattern(*form)));
if (!mesh)
mesh = form->mesh();
}
else
patterns[row].push_back(nullptr);
}
}
if (!mesh)
throw std::runtime_error("Could not find a Mesh.");
// Compute offsets for the fields
std::array<std::vector<std::pair<
std::reference_wrapper<const common::IndexMap>, int>>,
2>
maps;
for (std::size_t d = 0; d < 2; ++d)
{
for (auto& space : V[d])
{
maps[d].emplace_back(*space->dofmap()->index_map,
space->dofmap()->index_map_bs());
}
}
// Create merged sparsity pattern
std::vector<std::vector<const la::SparsityPattern*>> p(V[0].size());
for (std::size_t row = 0; row < V[0].size(); ++row)
for (std::size_t col = 0; col < V[1].size(); ++col)
p[row].push_back(patterns[row][col].get());
la::SparsityPattern pattern(mesh->comm(), p, maps, bs_dofs);
pattern.finalize();
// FIXME: Add option to pass customised local-to-global map to PETSc
// Mat constructor
// Initialise matrix
Mat A = la::petsc::create_matrix(mesh->comm(), pattern, type);
// Create row and column local-to-global maps (field0, field1, field2,
// etc), i.e. ghosts of field0 appear before owned indices of field1
std::array<std::vector<PetscInt>, 2> _maps;
for (int d = 0; d < 2; ++d)
{
// TODO: Index map concatenation has already been computed inside
// the SparsityPattern constructor, but we also need it here to
// build the PETSc local-to-global map. Compute outside and pass
// into SparsityPattern constructor.
// TODO: avoid concatenating the same maps twice in case that V[0]
// == V[1].
const std::vector<
std::pair<std::reference_wrapper<const common::IndexMap>, int>>& map
= maps[d];
std::vector<PetscInt>& _map = _maps[d];
// Concatenate the block index map in the row and column directions
const auto [rank_offset, local_offset, ghosts, _]
= common::stack_index_maps(map);
for (std::size_t f = 0; f < map.size(); ++f)
{
auto offset = local_offset[f];
const common::IndexMap& imap = map[f].first.get();
int bs = map[f].second;
for (std::int32_t i = 0; i < bs * imap.size_local(); ++i)
_map.push_back(i + rank_offset + offset);
for (std::int32_t i = 0; i < bs * imap.num_ghosts(); ++i)
_map.push_back(ghosts[f][i]);
}
}
// Create PETSc local-to-global map/index sets and attach to matrix
ISLocalToGlobalMapping petsc_local_to_global0;
ISLocalToGlobalMappingCreate(MPI_COMM_SELF, 1, _maps[0].size(),
_maps[0].data(), PETSC_COPY_VALUES,
&petsc_local_to_global0);
if (V[0] == V[1])
{
MatSetLocalToGlobalMapping(A, petsc_local_to_global0,
petsc_local_to_global0);
ISLocalToGlobalMappingDestroy(&petsc_local_to_global0);
}
else
{
ISLocalToGlobalMapping petsc_local_to_global1;
ISLocalToGlobalMappingCreate(MPI_COMM_SELF, 1, _maps[1].size(),
_maps[1].data(), PETSC_COPY_VALUES,
&petsc_local_to_global1);
MatSetLocalToGlobalMapping(A, petsc_local_to_global0,
petsc_local_to_global1);
ISLocalToGlobalMappingDestroy(&petsc_local_to_global0);
ISLocalToGlobalMappingDestroy(&petsc_local_to_global1);
}
return A;
}
/// @brief Create nested (MatNest) matrix.
///
/// @note The caller is responsible for destroying the Mat object.
template <std::floating_point T>
Mat create_matrix_nest(
const std::vector<std::vector<const Form<PetscScalar, T>*>>& a,
std::optional<std::vector<std::vector<std::optional<std::string>>>> types)
{
// Extract and check row/column ranges
auto V = fem::common_function_spaces(extract_function_spaces(a));
// Loop over each form and create matrix
int rows = a.size();
int cols = a.front().size();
std::vector<Mat> mats(rows * cols, nullptr);
std::shared_ptr<const mesh::Mesh<T>> mesh;
for (int i = 0; i < rows; ++i)
{
for (int j = 0; j < cols; ++j)
{
if (const Form<PetscScalar, T>* form = a[i][j]; form)
{
if (types)
mats[i * cols + j] = create_matrix(*form, types->at(i).at(j));
else
mats[i * cols + j] = create_matrix(*form, std::nullopt);
mesh = form->mesh();
}
}
}
if (!mesh)
throw std::runtime_error("Could not find a Mesh.");
// Initialise block (MatNest) matrix
Mat A;
MatCreate(mesh->comm(), &A);
MatSetType(A, MATNEST);
MatNestSetSubMats(A, rows, nullptr, cols, nullptr, mats.data());
MatSetUp(A);
// De-reference Mat objects
for (std::size_t i = 0; i < mats.size(); ++i)
{
if (mats[i])
MatDestroy(&mats[i]);
}
return A;
}
/// @brief Initialise monolithic vector. Vector is not zeroed.
///
/// The caller is responsible for destroying the Mat object
Vec create_vector_block(
const std::vector<
std::pair<std::reference_wrapper<const common::IndexMap>, int>>& maps);
/// @brief Create nested (VecNest) vector. Vector is not zeroed.
Vec create_vector_nest(
const std::vector<
std::pair<std::reference_wrapper<const common::IndexMap>, int>>& maps);
// -- Vectors ----------------------------------------------------------------
/// @brief Assemble linear form into an already allocated PETSc vector.
///
/// Ghost contributions are not accumulated (not sent to owner). Caller
/// is responsible for calling `VecGhostUpdateBegin/End`.
///
/// @param[in,out] b The PETsc vector to assemble the form into. The
/// vector must already be initialised with the correct size. The
/// process-local contribution of the form is assembled into this
/// vector. It is not zeroed before assembly.
/// @param[in] L The linear form to assemble
/// @param[in] constants The constants that appear in `L`
/// @param[in] coeffs The coefficients that appear in `L`
template <std::floating_point T>
void assemble_vector(
Vec b, const Form<PetscScalar, T>& L,
std::span<const PetscScalar> constants,
const std::map<std::pair<IntegralType, int>,
std::pair<std::span<const PetscScalar>, int>>& coeffs)
{
Vec b_local;
VecGhostGetLocalForm(b, &b_local);
PetscInt n = 0;
VecGetSize(b_local, &n);
PetscScalar* array = nullptr;
VecGetArray(b_local, &array);
std::span<PetscScalar> _b(array, n);
fem::assemble_vector(_b, L, constants, coeffs);
VecRestoreArray(b_local, &array);
VecGhostRestoreLocalForm(b, &b_local);
}
/// @brief Assemble linear form into an already allocated PETSc vector.
///
/// Ghost contributions are not accumulated (not sent to owner). Caller
/// is responsible for calling `VecGhostUpdateBegin`/`End`.
///
/// @param[in,out] b Vector to assemble the form into. The vector must
/// already be initialised with the correct size. The process-local
/// contribution of the form is assembled into this vector. It is not
/// zeroed before assembly.
/// @param[in] L Linear form to assemble.
template <std::floating_point T>
void assemble_vector(Vec b, const Form<PetscScalar, T>& L)
{
Vec b_local;
VecGhostGetLocalForm(b, &b_local);
PetscInt n = 0;
VecGetSize(b_local, &n);
PetscScalar* array = nullptr;
VecGetArray(b_local, &array);
std::span<PetscScalar> _b(array, n);
fem::assemble_vector(_b, L);
VecRestoreArray(b_local, &array);
VecGhostRestoreLocalForm(b, &b_local);
}
// FIXME: clarify how x0 is used
// FIXME: if bcs entries are set
// FIXME: need to pass an array of Vec for x0?
// FIXME: clarify zeroing of vector
/// @brief Modify RHS vector to account for Dirichlet boundary
/// conditions.
///
/// Modify b such that:
///
/// b <- b - alpha * A_j (g_j - x0_j)
///
/// where j is a block (nest) index. For a non-blocked problem j = 0. The
/// boundary conditions bcs1 are on the trial spaces V_j. The forms in
/// [a] must have the same test space as L (from which b was built), but the
/// trial space may differ. If x0 is not supplied, then it is treated as
/// zero.
///
/// Ghost contributions are not accumulated (not sent to owner). Caller
/// is responsible for calling VecGhostUpdateBegin/End.
template <std::floating_point T>
void apply_lifting(
Vec b,
std::vector<
std::optional<std::reference_wrapper<const Form<PetscScalar, T>>>>
a,
const std::vector<std::span<const PetscScalar>>& constants,
const std::vector<std::map<std::pair<IntegralType, int>,
std::pair<std::span<const PetscScalar>, int>>>&
coeffs,
const std::vector<
std::vector<std::reference_wrapper<const DirichletBC<PetscScalar, T>>>>&
bcs1,
const std::vector<Vec>& x0, PetscScalar alpha)
{
Vec b_local;
VecGhostGetLocalForm(b, &b_local);
PetscInt n = 0;
VecGetSize(b_local, &n);
PetscScalar* array = nullptr;
VecGetArray(b_local, &array);
std::span<PetscScalar> _b(array, n);
if (x0.empty())
fem::apply_lifting(_b, a, constants, coeffs, bcs1, {}, alpha);
else
{
std::vector<std::span<const PetscScalar>> x0_ref;
std::vector<Vec> x0_local(a.size());
std::vector<const PetscScalar*> x0_array(a.size());
for (std::size_t i = 0; i < a.size(); ++i)
{
assert(x0[i]);
VecGhostGetLocalForm(x0[i], &x0_local[i]);
PetscInt n = 0;
VecGetSize(x0_local[i], &n);
VecGetArrayRead(x0_local[i], &x0_array[i]);
x0_ref.emplace_back(x0_array[i], n);
}
std::vector x0_tmp(x0_ref.begin(), x0_ref.end());
fem::apply_lifting(_b, a, constants, coeffs, bcs1, x0_tmp, alpha);
for (std::size_t i = 0; i < x0_local.size(); ++i)
{
VecRestoreArrayRead(x0_local[i], &x0_array[i]);
VecGhostRestoreLocalForm(x0[i], &x0_local[i]);
}
}
VecRestoreArray(b_local, &array);
VecGhostRestoreLocalForm(b, &b_local);
}
// FIXME: clarify how x0 is used
// FIXME: if bcs entries are set
// FIXME: need to pass an array of Vec for x0?
// FIXME: clarify zeroing of vector
/// Modify b such that:
///
/// b <- b - alpha * A_j (g_j - x0_j)
///
/// where j is a block (nest) index. For a non-blocked problem j = 0. The
/// boundary conditions bcs1 are on the trial spaces V_j. The forms in
/// [a] must have the same test space as L (from which b was built), but the
/// trial space may differ. If x0 is not supplied, then it is treated as
/// zero.
///
/// Ghost contributions are not accumulated (not sent to owner). Caller
/// is responsible for calling VecGhostUpdateBegin/End.
template <std::floating_point T>
void apply_lifting(
Vec b,
const std::vector<
std::optional<std::reference_wrapper<const Form<PetscScalar, double>>>>&
a,
const std::vector<std::vector<
std::reference_wrapper<const DirichletBC<PetscScalar, double>>>>& bcs1,
const std::vector<Vec>& x0, PetscScalar alpha)
{
Vec b_local;
VecGhostGetLocalForm(b, &b_local);
PetscInt n = 0;
VecGetSize(b_local, &n);
PetscScalar* array = nullptr;
VecGetArray(b_local, &array);
std::span<PetscScalar> _b(array, n);
if (x0.empty())
fem::apply_lifting(_b, a, bcs1, {}, alpha);
else
{
std::vector<std::span<const PetscScalar>> x0_ref;
std::vector<Vec> x0_local(a.size());
std::vector<const PetscScalar*> x0_array(a.size());
for (std::size_t i = 0; i < a.size(); ++i)
{
assert(x0[i]);
VecGhostGetLocalForm(x0[i], &x0_local[i]);
PetscInt n = 0;
VecGetSize(x0_local[i], &n);
VecGetArrayRead(x0_local[i], &x0_array[i]);
x0_ref.emplace_back(x0_array[i], n);
}
std::vector x0_tmp(x0_ref.begin(), x0_ref.end());
fem::apply_lifting(_b, a, bcs1, x0_tmp, alpha);
for (std::size_t i = 0; i < x0_local.size(); ++i)
{
VecRestoreArrayRead(x0_local[i], &x0_array[i]);
VecGhostRestoreLocalForm(x0[i], &x0_local[i]);
}
}
VecRestoreArray(b_local, &array);
VecGhostRestoreLocalForm(b, &b_local);
}
// -- Setting bcs ------------------------------------------------------------
// FIXME: Move these function elsewhere?
// FIXME: clarify x0
// FIXME: clarify what happens with ghosts
/// Set bc values in owned (local) part of the PETSc vector, multiplied
/// by 'alpha'. The vectors b and x0 must have the same local size. The
/// bcs should be on (sub-)spaces of the form L that b represents.
template <std::floating_point T>
void set_bc(
Vec b,
const std::vector<std::reference_wrapper<const DirichletBC<PetscScalar, T>>>
bcs,
const Vec x0, PetscScalar alpha = 1)
{
PetscInt n = 0;
VecGetLocalSize(b, &n);
PetscScalar* array = nullptr;
VecGetArray(b, &array);
std::span<PetscScalar> _b(array, n);
if (x0)
{
Vec x0_local;
VecGhostGetLocalForm(x0, &x0_local);
PetscInt n = 0;
VecGetSize(x0_local, &n);
const PetscScalar* array = nullptr;
VecGetArrayRead(x0_local, &array);
std::span<const PetscScalar> _x0(array, n);
for (auto& bc : bcs)
bc.set(_b, _x0, alpha);
VecRestoreArrayRead(x0_local, &array);
VecGhostRestoreLocalForm(x0, &x0_local);
}
else
{
for (auto& bc : bcs)
bc->set(_b, std::nullopt, alpha);
}
VecRestoreArray(b, &array);
}
} // namespace petsc
} // namespace dolfinx::fem
#endif
|