1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
// Copyright (C) 2013-2019 Johan Hake, Jan Blechta and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "utils.h"
#include "Constant.h"
#include "DofMap.h"
#include "FiniteElement.h"
#include "Form.h"
#include "Function.h"
#include "FunctionSpace.h"
#include "dofmapbuilder.h"
#include <algorithm>
#include <array>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/Timer.h>
#include <dolfinx/common/log.h>
#include <dolfinx/la/SparsityPattern.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <dolfinx/mesh/topologycomputation.h>
#include <memory>
#include <stdexcept>
#include <string>
#include <ufcx.h>
using namespace dolfinx;
//-----------------------------------------------------------------------------
fem::DofMap fem::create_dofmap(
MPI_Comm comm, const ElementDofLayout& layout, mesh::Topology& topology,
const std::function<void(std::span<std::int32_t>, std::uint32_t)>&
permute_inv,
const std::function<std::vector<int>(
const graph::AdjacencyList<std::int32_t>&)>& reorder_fn)
{
// Create required mesh entities
const int D = topology.dim();
for (int d = 0; d < D; ++d)
{
if (layout.num_entity_dofs(d) > 0)
topology.create_entities(d);
}
auto [_index_map, bs, dofmaps]
= build_dofmap_data(comm, topology, {layout}, reorder_fn);
auto index_map = std::make_shared<common::IndexMap>(std::move(_index_map));
// If the element's DOF transformations are permutations, permute the
// DOF numbering on each cell
if (permute_inv)
{
const int num_cells = topology.connectivity(D, 0)->num_nodes();
topology.create_entity_permutations();
const std::vector<std::uint32_t>& cell_info
= topology.get_cell_permutation_info();
int dim = layout.num_dofs();
for (std::int32_t cell = 0; cell < num_cells; ++cell)
{
std::span<std::int32_t> dofs(dofmaps.front().data() + cell * dim, dim);
permute_inv(dofs, cell_info[cell]);
}
}
return DofMap(layout, index_map, bs, std::move(dofmaps.front()), bs);
}
//-----------------------------------------------------------------------------
std::vector<fem::DofMap> fem::create_dofmaps(
MPI_Comm comm, const std::vector<ElementDofLayout>& layouts,
mesh::Topology& topology,
const std::function<void(std::span<std::int32_t>, std::uint32_t)>&
permute_inv,
const std::function<std::vector<int>(
const graph::AdjacencyList<std::int32_t>&)>& reorder_fn)
{
std::int32_t D = topology.dim();
assert(layouts.size() == topology.entity_types(D).size());
// Create required mesh entities
for (std::int32_t d = 0; d < D; ++d)
{
if (layouts.front().num_entity_dofs(d) > 0)
topology.create_entities(d);
}
auto [_index_map, bs, dofmaps]
= build_dofmap_data(comm, topology, layouts, reorder_fn);
auto index_map = std::make_shared<common::IndexMap>(std::move(_index_map));
// If the element's DOF transformations are permutations, permute the
// DOF numbering on each cell
if (permute_inv)
{
if (layouts.size() != 1)
{
throw std::runtime_error(
"DOF transformations not yet supported in mixed topology.");
}
std::int32_t num_cells = topology.connectivity(D, 0)->num_nodes();
topology.create_entity_permutations();
const std::vector<std::uint32_t>& cell_info
= topology.get_cell_permutation_info();
std::int32_t dim = layouts.front().num_dofs();
for (std::int32_t cell = 0; cell < num_cells; ++cell)
{
std::span<std::int32_t> dofs(dofmaps.front().data() + cell * dim, dim);
permute_inv(dofs, cell_info[cell]);
}
}
std::vector<DofMap> dms;
dms.reserve(dofmaps.size());
for (std::size_t i = 0; i < dofmaps.size(); ++i)
dms.emplace_back(layouts[i], index_map, bs, std::move(dofmaps[i]), bs);
return dms;
}
//-----------------------------------------------------------------------------
std::vector<std::string> fem::get_coefficient_names(const ufcx_form& ufcx_form)
{
return std::vector<std::string>(ufcx_form.coefficient_name_map,
ufcx_form.coefficient_name_map
+ ufcx_form.num_coefficients);
}
//-----------------------------------------------------------------------------
std::vector<std::string> fem::get_constant_names(const ufcx_form& ufcx_form)
{
return std::vector<std::string>(ufcx_form.constant_name_map,
ufcx_form.constant_name_map
+ ufcx_form.num_constants);
}
//-----------------------------------------------------------------------------
std::vector<std::int32_t>
fem::compute_integration_domains(fem::IntegralType integral_type,
const mesh::Topology& topology,
std::span<const std::int32_t> entities)
{
const int tdim = topology.dim();
int dim = -1;
switch (integral_type)
{
case IntegralType::cell:
dim = tdim;
break;
case IntegralType::exterior_facet:
dim = tdim - 1;
break;
case IntegralType::interior_facet:
dim = tdim - 1;
break;
case IntegralType::vertex:
dim = 0;
break;
case IntegralType::ridge:
dim = tdim - 2;
break;
default:
throw std::runtime_error(
"Cannot compute integration domains. Integral type not supported.");
}
{
// Create span of the owned entities (leaves off any ghosts)
assert(topology.index_map(dim));
auto it1 = std::ranges::lower_bound(entities,
topology.index_map(dim)->size_local());
entities = entities.first(std::distance(entities.begin(), it1));
}
auto get_connectivities = [tdim, &topology](int entity_dim)
-> std::pair<std::shared_ptr<const graph::AdjacencyList<int>>,
std::shared_ptr<const graph::AdjacencyList<int>>>
{
auto e_to_c = topology.connectivity(entity_dim, tdim);
if (!e_to_c)
{
throw std::runtime_error(
std::format("Topology entity-to-cell connectivity has not been "
"computed for entity dim {}.",
entity_dim));
}
auto e_to_f = topology.connectivity(tdim, entity_dim);
if (!e_to_f)
{
throw std::runtime_error(
std::format("Topology cell-to-entity connectivity has not been "
"computed for entity dim {}.",
entity_dim));
}
return {e_to_c, e_to_f};
};
std::vector<std::int32_t> entity_data;
switch (integral_type)
{
case IntegralType::cell:
{
entity_data.insert(entity_data.begin(), entities.begin(), entities.end());
break;
}
case IntegralType::interior_facet:
{
auto [f_to_c, c_to_f] = get_connectivities(tdim - 1);
// Create indicator for interprocess facets
assert(topology.index_map(tdim - 1));
const std::vector<std::int32_t>& interprocess_facets
= topology.interprocess_facets();
std::vector<std::int8_t> interprocess_marker(
topology.index_map(tdim - 1)->size_local()
+ topology.index_map(tdim - 1)->num_ghosts(),
0);
std::ranges::for_each(interprocess_facets, [&interprocess_marker](auto f)
{ interprocess_marker[f] = 1; });
for (auto f : entities)
{
if (f_to_c->num_links(f) == 2)
{
// Get the facet as a pair of (cell, local facet) pairs, one
// for each cell
auto facets
= impl::get_cell_facet_pairs<2>(f, f_to_c->links(f), *c_to_f);
entity_data.insert(entity_data.end(), facets.begin(), facets.end());
}
else if (interprocess_marker[f])
{
throw std::runtime_error(
"Cannot compute interior facet integral over interprocess facet. "
"Use \"shared facet\" ghost mode when creating the mesh.");
}
}
break;
}
case IntegralType::exterior_facet:
case IntegralType::vertex:
case IntegralType::ridge:
{
auto [e_to_c, c_to_e] = get_connectivities(dim);
for (auto entity : entities)
{
std::array<std::int32_t, 2> pair = impl::get_cell_entity_pairs<1>(
entity, e_to_c->links(entity), *c_to_e);
entity_data.insert(entity_data.end(), pair.begin(), pair.end());
}
break;
}
default:
throw std::runtime_error(
"Cannot compute integration domains. Integral type not supported.");
}
return entity_data;
}
//-----------------------------------------------------------------------------
|